首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interaction at dopamine D4 receptors may improve cognitive function, which is highly impaired in individuals with schizophrenia, but comparative studies of recent antipsychotics in cellular models of D4 receptor activation are lacking. Here, we report the in-vitro profile of over 30 ligands at recombinant hD4.4 receptors. In [35S]GTPgammaS binding experiments using membranes of CHO-hD4.4 cells, apomorphine, preclamol and the selective D4 agonists, ABT724, CP226269, Ro-10-5824 and PD168077, behaved as partial agonists (Emax 20-60% vs. dopamine), whereas L745870 and RBI257, displayed antagonist properties. The 'conventional' antipsychotic, haloperidol and the 'atypicals', clozapine and risperidone, exhibited antagonist properties, while 'third generation' compounds bifeprunox, SLV313 and F15063, acted as partial agonists (10-30%). Aripiprazole and SSR181507 slightly stimulated [35S]GTPgammaS binding at micromolar concentrations. In Xenopus laevis oocytes co-expressing hD4.4 receptors with G-protein-coupled inwardly rectifying potassium (GIRK) channels, apomorphine, preclamol, ABT724, CP226269, and PD168077 stimulated GIRK currents (Emax 70-80%). The 5-HT1A receptor ligands, WAY100635 and flibanserin, also exhibited partial agonist activity (30% and 15%, respectively). Haloperidol, clozapine, olanzapine and nemonapride did not stimulate GIRK currents, whereas aripiprazole, bifeprunox, SLV313 and F15063, but not SSR181507, exhibited partial agonism (Emax 20-35%). In-vitro responses depended on experimental conditions: increasing NaCl concentration (30 mm to 100 mm) reduced agonist efficacy in [35S]GTPgammaS binding, whereas decreasing the amount of hD4.4 cRNA injected into oocytes (from 2.0 to 0.5 ng/oocyte) reduced agonist efficacy of several compounds. These data indicate that, unlike conventional or 'atypical' antipsychotics, several 'third generation' agents display D4 receptor partial agonism that may be sufficient to influence physiological D4 receptor activity in vivo.  相似文献   

2.
The D(2) dopaminergic receptor represents a major target of antipsychotic drugs. Using the coupling of the human D(2long) (hD(2L)) receptor to G protein-coupled inward rectifier potassium (GIRK) channels in Xenopus laevis oocytes, we examined the activity of antipsychotic agents of different classes - typical, atypical, and a "new generation" of compounds, exhibiting a preferential D(2) and 5-HT(1A) receptor profile. When the hD(2L) receptor was coexpressed with GIRK channels, a series of reference compounds exhibited full agonist (dopamine, and quinpirole), partial agonist (apomorphine, (-)3-PPP, and (+)-UH232) or inverse agonist (raclopride, and L741626) properties. Sarizotan exhibited only very weak partial agonist action. At higher levels of receptor cRNA injected per oocyte, both partial agonist activity and inverse agonist properties were generally more pronounced. The inverse agonist action of L741626 was reversed by interaction with sarizotan, thus confirming the constitutive activity of wild-type hD(2L) receptors in the oocyte expression system. When antipsychotic agents were tested for their actions at the hD(2L) receptor, typical (haloperidol) as well as atypical (nemonapride, ziprasidone, and clozapine) compounds acted as inverse agonists. In contrast, among D(2)/5-HT(1A) antipsychotics, only SLV313 and F15063 behaved as inverse agonists, whilst the other members of this group (bifeprunox, SSR181507 and the recently marketed antipsychotic, aripiprazole) exhibited partial agonist properties. Thus, the X. laevis oocyte expression system highlights markedly different activity of antipsychotics at the hD(2L) receptor. These differential properties may translate to distinct therapeutic potential of these compounds.  相似文献   

3.
The effects of new generation antipsychotic drugs (APDs) targeting dopamine D(2) and serotonin 5-HT(1A) receptors were compared with typical and atypical APDs on phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and measures of G protein activation in CHO cell lines stably expressing the human dopamine D(3) receptor. The preferential dopamine D(3) agonists (+)-7-OH-DPAT and PD128907, like dopamine and quinelorane, efficaciously stimulated ERK 1/2 phosphorylation at dopamine D(3) receptors. In contrast, in [(35)S]GTPgammaS binding experiments, (+)-7-OH-DPAT exhibited partial agonist properties, while PD128907 and quinelorane maintained full agonist properties. The preferential dopamine D(3) ligand BP 897 and the antidyskinetic sarizotan partially activated ERK 1/2 phosphorylation while exerting no agonist activity on GTPgammaS binding, suggesting signal amplification at the MAP kinase level. Antipsychotics differed in their ability to inhibit both agonist-stimulated GTPgammaS binding and ERK 1/2 phosphorylation, but all typical and atypical compounds tested acted as dopamine D(3) receptor antagonists with the exception of n-desmethylclozapine, the active metabolite of clozapine, which partially activated dopamine D(3) receptor-mediated ERK 1/2 phosphorylation. Among the new generation dopamine D(2)/serotonin 5-HT(1A) antipsychotics, only F 15063 and SLV313 acted as pure dopamine D(3) receptor antagonists, bifeprunox was highly efficacious whereas SSR181507 and aripiprazole showed marked partial agonist properties for ERK 1/2 phosphorylation. In contrast, in the GTPgammaS binding study, aripiprazole was devoid of agonist properties and bifeprunox, and to an even lesser extent SSR181507, only weakly stimulated GTPgammaS binding. In summary, these findings underline the differences of dopamine D(3) properties of new generation antipsychotics which may need to be considered in understanding their diverse therapeutic actions.  相似文献   

4.
Serotonin 5-HT1A receptors are promising targets in the management of schizophrenia but little information exists about affinity and efficacy of novel antipsychotics at these sites. We addressed this issue by comparing binding affinity at 5-HT1A receptors with dopamine rD2 receptors, which are important targets for antipsychotic drug action. Agonist efficacy at 5-HT1A receptors was determined for G-protein activation and adenylyl cyclase activity. Whereas haloperidol, thioridazine, risperidone and olanzapine did not interact with 5-HT1A receptors, other antipsychotic agents exhibited agonist properties at these sites. E(max) values (% effect induced by 10 microM of 5-HT) for G-protein activation at rat brain 5-HT1A receptors: sarizotan (66.5), bifeprunox (35.9), SSR181507 (25.8), nemonapride (25.7), ziprasidone (20.6), SLV313 (19), aripiprazole (15), tiospirone (8.9). These data were highly correlated with results obtained at recombinant human 5-HT1A receptors in determinations of G-protein activation and inhibition of forskolin-stimulated adenylyl cyclase. In binding-affinity determinations, the antipsychotics exhibited diverse properties at r5-HT1A receptors: sarizotan (pK(i)=8.65), SLV313 (8.64), SSR181507 (8.53), nemonapride (8.35), ziprasidone (8.30), tiospirone (8.22), aripiprazole (7.42), bifeprunox (7.19) and clozapine (6.31). The affinity ratios of the ligands at 5-HT1A vs. D2 receptors also varied widely: ziprasidone, SSR181507 and SLV313 had similar affinities whereas aripiprazole, nemonapride and bifeprunox were more potent at D2 than 5-HT1A receptors. Taken together, these data indicate that aripiprazole has low efficacy and modest affinity at 5-HT1A receptors, whereas bifeprunox has low affinity but high efficacy. In contrast, SSR181507 has intermediate efficacy but high affinity, and is likely to have more prominent 5-HT1A receptor agonist properties. Thus, the contribution of 5-HT1A receptor activation to the pharmacological profile of action of the antipsychotics will depend on the relative 5-HT1A/D2 affinities and on 5-HT1A agonist efficacy of the drugs.  相似文献   

5.
5-HT(1A) receptors are implicated in the aetiology of schizophrenia. Herein, the influence of 15 antipsychotics on the binding of the selective 'neutral' antagonist, [3H]WAY100,635 ([3H]N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)-cyclo-hexanecarboxamide), was examined at human 5-HT(1A) receptors expressed in Chinese Hamster Ovary cells. In competition binding experiments, 5-HT displayed biphasic isotherms which were shifted to the right in the presence of the G-protein uncoupling agent, GTPgammaS (100 microM). In analogy, the isotherms of ziprasidone, quetiapine and S16924 (((R-2-[1-[2-(2,3-dihydro-benzo[1,4]dioxin-5-yloxy)-ethyl]-pyrrolidin-3yl]-1-(4-fluoro-phenyl)-ethanone), were displaced to the right by GTPgammaS, consistent with agonist actions. Binding of several other antipsychotics, such as ocaperidone, olanzapine and risperidone, was little influenced by GTPgammaS. Isotherms of the neuroleptics, haloperidol, chlorpromazine and thioridazine were shifted to the left in the presence of GTPgammaS, suggesting inverse agonist properties. For most ligands, the magnitude of affinity changes induced by GTPgammaS (alteration in pK(i) values) correlated well with their previously determined efficacies in [35S]GTPgammaS binding studies [Eur. J. Pharmacol. 355 (1998) 245]. In contrast, the affinity of the 'atypical' antipsychotic agent, clozapine, which is a known partial agonist at 5-HT(1A) receptors, was less influenced by GTPgammaS. When the ratio of high-/low-affinity values was plotted against efficacy, hyperbolic isotherms were obtained, consistent with a modified ternary complex model which assumes that receptors can adopt active conformations in the absence of agonist. In conclusion, modulation of [3H]-WAY100,635 binding by GTPgammaS differentiated agonist vs. inverse agonist properties of antipsychotics at 5-HT(1A) receptors. These may contribute to differing profiles of antipsychotic activity.  相似文献   

6.
RATIONALE: There is evidence that serotonergic mechanisms contribute to the functional profiles of antipsychotic drugs, several of which display affinity for human (h)5-HT(1A) receptors. OBJECTIVE: Here, we compared the interaction of several antipsychotic agents at h5-HT(1A) receptors employing mitogen-activated protein kinase (MAPK), an intracellular marker. METHODS: The influence of antipsychotics on MAPK phosphorylation was quantified in Chinese hamster ovary (CHO) cells stably transfected with h5-HT(1A) receptors by use of a highly selective antibody. RESULTS: The novel antipsychotic agent, S16924, concentration-dependently (pEC(50), 8.10) stimulated the phosphorylation of MAPK. Its maximal effect (96%) was similar to that of the prototypical 5-HT(1A) agonist, (+)8-OH-DPAT (pEC(50), 8.54) (defined as 100%). The selective 5-HT(1A) receptor antagonist WAY100,635, which was inactive alone, abolished stimulation of MAPK by S16924 with a pK(b) of 9.66. This stimulatory influence of S16924 on MAPK was potently mimicked by the benzoisoxazole, antipsychotic ziprasidone (pEC(50), 7.25; 93%). The atypical antipsychotic clozapine also activated MAPK, albeit with lower potency and efficacy (pEC(50), 5.43 and 43%). These actions of ziprasidone and clozapine were also blocked by WAY100,635. Evaluated at a single, high concentration, several other antipsychotics stimulated MAPK phosphorylation with variable efficacy: quetiapine (75%), ocaperidone (74%), tiospirone (57%), olanzapine (54%) and risperidone (21%). In all cases, their actions were abolished by WAY100,635. In contrast, haloperidol, thioridazine and sertindole did not stimulate MAPK. CONCLUSIONS: Antipsychotics display contrasting efficacies in modulating MAPK phosphorylation at h5-HT(1A) receptors, ranging from high (e.g. S16924 and ziprasidone), via intermediate (e.g. clozapine) to low (e.g. haloperidol). Differential modulation of 5-HT(1A) receptor-coupled MAPK may contribute to their contrasting functional profiles.  相似文献   

7.
Antipsychotic drugs act preferentially via dopamine D(2) receptor blockade, but interaction with serotonin 5-HT(1A) receptors has attracted interest as additional target for antipsychotic treatment. As receptor internalisation is considered crucial for drug action, we tested the propensity of antipsychotics to internalise human (h)D(2S) receptors and h5-HT(1A) receptors. Agonist-induced internalisation of hemaglutinin (HA)-tagged hD(2S) and HA-h5-HT(1A) receptors expressed in HEK293 cells was increased by coexpression of G-protein coupled receptor kinase 2 and beta-arrestin2. At the HA-hD(2S) receptor, dopamine, quinpirole and bromocriptine behaved as full agonists, while S(-)-3-(3-hydroxyphenyl)-N-n-propylpiperidine [(-)-3PPP] and sarizotan were partial agonists. The typical antipsychotic, haloperidol, and the atypical compounds, olanzapine, nemonapride, ziprasidone and clozapine did not internalise HA-hD(2S) receptors, whereas aripiprazole potently internalised these receptors (>50% relative efficacy). Among antipsychotics with combined D(2)/5-HT(1A) properties, bifeprunox and (3-exo)-8-benzoyl-N-[[(2S)7-chloro-2,3-dihydro-1,4-benzodioxin-1-yl]methyl]-8-azabicyclo-[3.2.1]octane-3-methanamine (SSR181507) partially internalised HA-hD(2S) receptors, piperazine, 1-(2,3-dihydro-1,4-benzodioxin-5-yl)-4-[[5-(4-fluorophenyl)-3-pyridinyl]methyl (SLV313) and N-[(2,2-dimethyl-2,3-dihydro-benzofuran-7-yloxy)ethyl]-3-(cyclopent-1-enyl)-benzylamine (F15063) were inactive. At the HA-h5-HT(1A) receptor, serotonin, (+)-8-hydroxy-2-(di-n-propylamino)tetralin [(+)-8-OH-DPAT] and sarizotan were full agonists, buspirone acted as partial agonist. (-)-Pindolol showed little activity and no internalising properties were manifested for the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (WAY100635). Most antipsychotics induced HA-h5-HT(1A) receptor internalisation, with an efficacy rank order: nemonapride>F15063>SSR181507>bifeprunox approximately SLV313 approximately ziprasidone>aripiprazole and potencies: SLV313>SSR181507 approximately F15063>bifeprunox approximately nemonapride approximately aripiprazole>ziprasidone. Interestingly, the internalisation induced by clozapine was only minimal, whereas aripirazole and bifeprunox were more potent for internalisation than for G-protein activation. These different profiles of antipsychotics for receptor internalisation may help to evaluate their potential therapeutic impact in the treatment of schizophrenia.  相似文献   

8.
We have previously reported that (R)-(+)-2-amino-4-(4-fluorophenyl)-5-[1-[4-(4-fluorophenyl)-4-oxobutyl]+ ++pyrrolidin-3-yl]thiazole (NRA0045) is a novel antipsychotic agent with affinities for dopamine D4, 5-hydroxytryptamine 2A (5-HT2A) and alpha1 receptors. In the present study, in vivo receptor occupancy of 5-HT2A, alpha1, dopamine D2 and D3 receptors by NRA0045 was assessed, based on in vivo and ex vivo receptor binding, and findings were compared to reference antipsychotic drugs (haloperidol, risperidone, clozapine). Intraperitoneal administration of haloperidol highly occupied the dopamine D2 receptor in the striatum and nucleus accumbens, and alpha1 adrenoceptors in the frontal cortex. Occupation of the 5-HT2A receptor in the frontal cortex and the dopamine D3 receptor in the nucleus accumbens and islands of Cajella was moderate. By contrast, atypical antipsychotics such as risperidone and clozapine dose-dependently occupied the 5-HT2A receptor in the frontal cortex, with moderate to negligible occupancy of the D2 receptor in the striatum and the nucleus accumbens. Clozapine and risperidone also occupied the alpha1 adrenoceptor in the frontal cortex, and clozapine did not occupy the dopamine D3 receptor. As seen with other atypical antipsychotics, intraperitoneal administration of NRA0045 dose-dependently occupied the 5-HT2A receptor and the alpha1 adrenoceptor in the frontal cortex, while it was without effect on dopamine D2 and D3 receptors in the striatum, nucleus accumbens and islands of Cajella. Thus, the strong occupancy of 5-HT2A and alpha1 receptors is involved in the pharmacological action of NRA0045.  相似文献   

9.
Some atypical antipsychotic drugs appear to improve cognitive function in schizophrenia and since acetylcholine (ACh) is of importance in cognition, we used in vivo microdialysis to examine the effects of antipsychotics administered acutely (SC or IP) at pharmacologically comparable doses on ACh outflow in the hippocampus of the rat. The atypical antipsychotics olanzapine and clozapine produced robust increases in ACh up to 1500% and 500%, respectively. The neuroleptics haloperidol, thioridazine, and chlorpromazine, as well as the atypical antipsychotics risperidone and ziprasidone produced modest increases in ACh by about 50-100%. Since most atypical antipsychotics affect a variety of monoaminergic receptors, we examined whether selective ligands for some of these receptors affect hippocampal ACh. Antagonists for the 5-HT(2A) (MDL 100,907), the 5-HT(2C) (SB 242,084), the 5-HT(6) (Ro 04-6790), the D(2) (raclopride) receptors, and the alpha(1)-adrenoceptors (prazosin) modestly increased ACh by about 50%. The 5-HT(1A) agonist R-(+)-8-OH-DPAT and the alpha(2)-adrenoceptor antagonist yohimbine significantly increased ACh by about 100% and 50%, respectively. Thus, olanzapine and clozapine increased ACh to a greater extent than other tested antipsychotics, explaining perhaps their purported beneficial effect in cognitive function in schizophrenia. It appears that selective activity at each of the monoaminergic receptors studied is not the sole mechanism underlying the olanzapine and clozapine induced increases in hippocampal ACh.  相似文献   

10.
In order to better define the role of 5-HT(1A) receptors in the modulation of extrapyramidal motor functions, we investigated the effect of 5-HT(1A) agonists on tacrine-induced tremulous jaw movements (TJM) in rats, a putative model of parkinsonian tremor. Acute injection of 5-HT(1A) agonists 8-OH-DPAT and buspirone dose-dependently counteracted the tacrine-induced oral movements (ED(50)=0.04 and 1.0mg/kg, respectively), an effect reversed by the selective 5-HT(1A) antagonist WAY 100,635. In contrast to classical antipsychotics, the atypical antipsychotics risperidone (ED(50)=0.3mg/kg) and clozapine (ED(50)=1.5mg/kg) blocked the oral movements induced by the cholinomimetic agent at or below the doses required for suppression of conditioned avoidance response. The compound F-97013-GD (6-methyl-2-[4-(naphtylpiperazin-1-yl)butyl]-3-(2H)-pyridazinone), a putative antipsychotic drug that in functional in vitro and in vivo assays behaved as a mixed dopamine D(2)-antagonist and 5-HT(1A)-partial agonist, also displayed a potent antitremorgenic effect in this paradigm (ED(50)=0.5mg/kg). Interestingly, pretreatment with WAY 100,635 blocked the inhibitory effect of F-97013-GD but not that of clozapine. The 5-HT depleting agent para-chlorophenylalanine (PCPA) partially attenuated tacrine-induced TJM but did not block the suppressive effect of 5-HT(1A) agonists. In addition, only high doses of F-97013-GD induced catalepsy in rodents and, like 8-OH-DPAT and clozapine, the compound reversed the haloperidol-induced catalepsy in rats. These results show that 5-HT(1A) receptors play a role in the regulation of tacrine-induced TJM and suggest that their activation by novel antipsychotics may not only reduce the extrapyramidal side effects EPS liability, but also be effective in the treatment of parkinsonian tremor.  相似文献   

11.
Schizophrenia is a serious and disabling psychiatric disorder affecting approximately 1% of the world's population. A new generation of atypical antipsychotics has been introduced over the past decade. These atypical antipsychotics have comparable or greater efficacy than traditional antipsychotics in the treatment of the psychotic symptoms of schizophrenia and a much improved neurologic side effect profile. This paper reviews the pharmacological efficacy and safety of a potential atypical antipsychotic, NRA0562. NRA0562 has a high affinity for dopamine D1, D2L, D4.2, 5-HT2A receptors as well as alpha1-adrenoceptors, and has a moderate affinity for H1 receptors. NRA0562 strongly binds to 5-HT2A receptors and alpha1-adrenoceptors in the frontal cortex, its binding to striatal D2 receptors is weaker, similar to that of clozapine. NRA562 displayed potent antipsychotic activities in animal models of schizophrenia, such as methamphetamine (MAP)-induced hyperactivity, apomorphine-induced disruption of pre-pulse inhibition and conditioned avoidance test. NRA0562 is more potent in reversing the inhibitory effects of MAP at A10 than at A9 dopamine neurons. It increased Fos-like immunoreactivity in the nucleus accumbens more effectively than in the dorsolateral striatum, indicating that NRA0562 has the profile of an atypical antipsychotic. In vivo assays for extrapyramidal side effect liability showed that NRA0562 has a low rate of neurological side effects. Thus, NRA0562 may have unique antipsychotic activity with a lower propensity for extrapyramidal side effects.  相似文献   

12.
New atypical antipsychotic drugs such as risperidone, olanzapine and quetiapine, that have been modeled on the prototype agent clozapine and developed since the 1990's, are now referred to as second-generation antipsychotics (SGA). It has been proposed by Meltzer (1989) that the interaction between serotonin (5-HT) and dopamine (DA) systems may play a critical role in the mechanism of action for atypical antipsychotics because potent 5-HT2A receptor antagonism together with relatively weak D2 receptor antagonism could differentiate most atypical antipsychotics from typical antipsychotics. This serotonin-dopamine hypothesis has become a useful model for studying and developing new drugs to achieve a significant antipsychotic effect with lower incidence of extrapyramidal side effects compared to first-generation antipsychotics. In contrast, Kapur and Seeman (2001) argued the alternative "fast-off" theory that clozapine occupies D2 receptors to a similar extent as typical antipsychotics do and then rapidly dissociates from D2 receptors. This paper reviews the current issues on the serotonin-dopamine hypothesis and recent research on the role of 5-HT receptor subtypes in the mechanism of action for SGA. In particular, SGA-induced DA release in the prefrontal cortex, possibly through the functional activation of 5-HT1A receptors by 5-HT2A and D2 receptor-mediated interaction, may be the basis for the cognitive effects of SGA.  相似文献   

13.
This study aimed to explore strain and species differences in the involvement of 5-HT1A receptors in the action of antipsychotic drugs, using prepulse inhibition (PPI), a model of sensory processing which is deficient in schizophrenia patients. We used automated startle boxes to compare the effect of the 5-HT1A receptor agonist, (+/-)-8-hydroxy-dipropyl-amino-tetralin (8-OH-DPAT), on PPI in three mouse strains. Balb/c mice were then pretreated with antipsychotics, treated with 8-OH-DPAT or saline, and tested for PPI. 8-OH-DPAT treatment dose dependently increased PPI in Balb/c mice, but had less effect in 129Sv and C57Bl/6 mice. In Balb/c mice, the effect of 8-OH-DPAT was blocked by the typical antipsychotic and dopamine D2 receptor antagonist, haloperidol and the third generation antipsychotic, aripiprazole, which has activity at both 5-HT1A and dopamine D2 receptors. The atypical antipsychotics, clozapine, olanzapine and risperidone, had lesser effects. Similar to our earlier studies in rats, the present PPI results suggest that 5-HT1A receptors are involved in the action of some antipsychotic drugs in mice. Despite strain and species differences in the magnitude and direction of the effect of 8-OH-DPAT, downstream dopamine D2 receptor activation seems to be an important mediator. These comparative results allow a theoretical framework of receptor interactions, which may guide further studies on the involvement of 5-HT1A receptors in schizophrenia.  相似文献   

14.
The affinities of a range of antipsychotic drugs at human hippocampal 5-HT1A receptors, defined by specific [3H]8-OH-DPAT binding, were determined. Clozapine demonstrated the highest affinity; all other antipsychotics studied demonstrated pK(i) values below 6.0 5-HT1A receptors are found on cortical glutamatergic neurons, a dysfunction of which may occur in schizophrenia. Binding at this site indicates a possible mechanism contributing to the unique efficacy of clozapine in the treatment of some schizophrenic patients.  相似文献   

15.
N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP) and ketamine can evoke psychotic symptoms in normal individuals and schizophrenic patients. Here, we have examined the effects of PCP (5 mg/kg) and ketamine (25 mg/kg) on the efflux of serotonin (5-HT) in the medial prefrontal cortex (mPFC) and their possible blockade by the antipsychotics, clozapine, olanzapine and haloperidol, as well as ritanserin (5-HT2A/2C receptor antagonist) and prazosin (alpha1-adrenoceptor antagonist). The systemic administration, but not the local perfusion, of the two NMDA receptor antagonists markedly increased the efflux of 5-HT in the mPFC. The atypical antipsychotics clozapine (1 mg/kg) and olanzapine (1 mg/kg), and prazosin (0.3 mg/kg), but not the classical antipsychotic haloperidol (1 mg/kg), reversed the PCP- and ketamine-induced increase in 5-HT efflux. Ritanserin (5 mg/kg) was able to reverse only the effect of PCP. These findings indicate that an increased serotonergic transmission in the mPFC is a functional consequence of NMDA receptor hypofunction and this effect is blocked by atypical antipsychotic drugs.  相似文献   

16.
Dopamine receptor agonists and antagonists have been extensively characterized in radioligand binding assays; only a limited number of laboratories have characterized them using a functional assay at multiple receptor subtypes. Experiments were designed to assess four agonists and seven antagonists at three cloned human dopamine receptors using agonist-stimulated [35S]GTPgammaS binding assays in membranes to quantify the initial cellular event following ligand/receptor interaction. In this model there is constitutive G protein activity (agonist-independent [35S]GTPgammaS binding) and potentially constitutive dopamine receptor activity. Thus, discrimination between silent antagonists, partial agonists and inverse agonists is theoretically possible. It was anticipated that distinctions could be made regarding efficacy of the seven receptor antagonists to provide insight regarding the therapeutic use of antipsychotic drugs. In membranes prepared from CHO cells transfected to express high densities of human D2short, D4.2 or D4.7 receptors, the dopamine receptor agonists apomorphine, pergolide, quinelorane and quinpirole produced concentration-dependent increases in agonist-stimulated [35S]GTPgammaS binding. At the hD2short receptor, pergolide and apomorphine were essentially equipotent and more potent than quinelorane and quinpirole; all four agonists displayed similar efficacy at this receptor. At the hD4.2 and the hD4.7 receptors apomorphine was the most potent and pergolide the least efficacious of the four drugs. The ability (both potency and efficacy) of clozapine, haloperidol, olanzapine, quetiapine, risperidone, spiperone and ziprasidone to block apomorphine-stimulated [35S]GTPgammaS binding and alter basal [35S]GTPgammaS binding was also assessed. All of the antagonists inhibited apomorphine-stimulated [35S]GTPgammaS binding with potencies (Kb values) similar to and in rank order consistent with their affinities reported in the literature using radioligand binding assays. Additionally, none of the antagonists altered basal, agonist-independent [35S]GTPgammaS binding, thus they behaved as pure, silent antagonists at D2short, D4.2 and D4.7 receptors under our conditions. In summary, the data suggest that therapeutic distinctions between typical and atypical antipsychotic drugs cannot be made based on their function at D2short, D4.2 and D4.7 subtypes of dopamine receptors.  相似文献   

17.
The present study examined the effects of N-desmethylclozapine (NDMC), a biologically active metabolite of the atypical antipsychotic clozapine, at cloned human opioid receptors stably expressed in Chinese hamster ovary (CHO) cells and at native opioid receptors present in NG108-15 cells and rat brain. In CHO cells expressing the delta-opioid receptor (CHO/DOR), NDMC behaved as a full agonist both in stimulating [(35)S]GTPgammaS binding (pEC(50)=7.24) and in inhibiting cyclic AMP formation (pEC(50)=6.40). NDMC inhibited [(3)H]naltrindole binding to CHO/DOR membranes with competition curves that were modulated by guanine nucleotides in an agonist-like manner. Determination of intrinsic efficacies by taking into consideration both the maximal [(35)S]GTPgammaS binding stimulation and the extent of receptor occupancy at which half-maximal effect occurred indicated that NDMC had an efficacy value equal to 82% of that of the full delta-opioid receptor agonist DPDPE, whereas clozapine and the other clozapine metabolite clozapine N-oxide displayed much lower levels of agonist efficacy. NDMC exhibited poor agonist activity and lower affinity at the kappa-opioid receptor and was inactive at mu-opioid and NOP receptors. In NG108-15 cells, NDMC inhibited cyclic AMP formation and stimulated the phosphorylation of extracellular signal-regulated kinase 1/2 by activating the endogenously expressed delta-opioid receptor. Moreover, in membranes of different brain regions, NDMC stimulated [(35)S]GTPgammaS binding and regulated adenylyl cyclase activity and the effects were potently antagonized by naltrindole. These data demonstrate for the first time that NDMC acts as a selective and efficacious delta-opioid receptor agonist and suggest that this unique property may contribute, at least in part, to the clinical actions of the atypical antipsychotic clozapine.  相似文献   

18.
It is now known that the blockade of 5-HT2 receptors can ameliorate the negative symptoms of schizophrenia and extrapyramidal side effects (EPS) associated with antipsychotic treatments. Perospirone hydrochloride (perospirone), which was identified as a novel serotonin-dopamine antagonist (SDA)-type antipsychotic agent in 1987 by Sumitomo Pharmaceuticals, possesses high affinities both for dopamine 5-HT2 and D2 receptors. Perospirone, like conventional antipsychotics, significantly inhibited various behaviors induced by dopaminergic hyperactivation. Perospirone also produced a significant improvement in animal models of the negative symptoms and mood disorders, where the conventional antipsychotics were unaffected. In addition, perospirone was weaker than the conventional antipsychotics (e.g., haloperidol) in inducing EPS signs (e.g., catalepsy and bradykinesia), suggesting that the drug has an atypical antipsychotic property. A recent double-blind study with schizophrenia patients demonstrated that perospirone was comparative with haloperidol in improving the positive symptoms, but was significantly superior to haloperidol against the negative symptoms. Furthermore, the extrapyramidal score in patients with perospirone treatment was lower that those with haloperidol treatment. These findings suggested that perospirone acts as an antagonist both for 5-HT2 and D2 receptors and has broader clinical efficacy and lower EPS liability than haloperidol in schizophrenia treatment.  相似文献   

19.
Dopamine D2 receptor blockade is thought to be mandatory for antipsychotic action because most of the currently used antipsychotics have high affinity at these receptors. Here, we examined the in vivo binding characteristics of the D2-like receptor antagonist [3H]nemonapride in rat brain areas including the striatum, olfactory lobes and frontal cortex and its inhibition by a series of D2 antagonist antipsychotics. In vivo affinity of [3H]nemonapride was similar (apparent Kd value: 0.05 micromol/kg) in all brain regions examined. The estimated number of binding sites was higher in the striatum (66 fmol/mg wet weight) than in the olfactory lobes (28 fmol/mg wet weight) and the frontal cortex (21 fmol/mg wet weight). In the striatum, [3H]nemonapride binding was inhibited in a dose-dependent manner with the following order of potency (ED50, mg/kg): nemonapride (0.04), raclopride (0.13), spiperone and risperidone (0.14), haloperidol (0.21), clozapine (7.2) and thioridazine (9.4); in the olfactory lobes: nemonapride (0.03), raclopride and spiperone (0.09), haloperidol (0.10), risperidone (0.15), thioridazine and clozapine (11); in the frontal cortex, only the high affinity dopamine D2 antagonist compounds nemonapride (0.05), haloperidol (0.09), and raclopride (0.12) significantly decreased the binding of [3H]nemonapride. The present data suggest that conventional and atypical antipsychotics may be distinguished by their differential occupancy of striatal versus frontocortical D2-like receptors in vivo.  相似文献   

20.
The relationship between clinically effective antipsychotic drug dosage and binding affinity to cloned dopamine (DA) and serotonin receptor subtypes was analyzed in an effort to elucidate the contribution of individual receptor subtypes to medication response. Clinically effective dose and binding affinity to D(2) DA receptor were modestly correlated for typical antipsychotic medications (r=0.54, p=0.046), but surprisingly were not correlated for atypical antipsychotics (r=0.41, p=0.31). For typical antipsychotics, a more robust inverse relationship was observed between medication dose and 5-HT(2C) affinity (r=-0.68, p=0.021). The strongest correlation for typical antipsychotics was observed between drug dosage and 5-HT(2C)/D(2) binding affinity ratio (r=-0.81, p=0.003). For atypical antipsychotics, no significant correlations were identified between medication dosage and 5-HT(2C), 5-HT(2A), 5-HT(2C)/D(2), or 5-HT(2A)/D(2) receptor-binding affinities. In contrast, atypical antipsychotic medication dosage was highly correlated with the ratios of D(2) (5-HT(2A)/5-HT(1A)) (r=0.80, p=0.031), and D(2) (5-HT(2C)/5-HT(1A)) (r=0.78, p=0.038) binding affinities. These observations demonstrate an interaction between D(2) and 5-HT(2C) receptor effects contributing to positive symptom response for typical antipsychotic medications, suggesting that signaling through 5-HT(2C) receptors interacts with and improves antipsychotic effects achieved via D(2) receptor blockade. This analysis also demonstrates that, in contrast to typical antipsychotics, therapeutic effects of atypical antipsychotic medications are determined by opposing interactions among three different domains: (1) increasing D(2) DA receptor-binding affinity enhances antipsychotic potency. (2) Increasing 5-HT(2C) and 5-HT(2A) receptor-binding affinities also facilitate antipsychotic efficacy. (3) Increasing 5-HT(1A) receptor-binding affinity, in contrast, reduces antipsychotic efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号