首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Rapid diagnostic tests (RDTs) are less reliant on expert microscopy and have the potential to reduce errors in malaria diagnosis but have not been extensively evaluated in nonimmune persons or in countries where infection is not endemic. We evaluated the ICT P.f/P.v (ICT-Amrad, Sydney, Australia) and OptiMal (Flow Inc., Portland, Oreg.) assays prospectively for the diagnosis of malaria in 158 specimens from 144 febrile returned travellers in Australia by using expert microscopy and PCR as reference standards. Malaria was diagnosed in 93 specimens from 87 patients by expert microscopy, with 3 additional specimens from recently treated patients testing positive for Plasmodium falciparum by PCR. For the diagnosis of asexual-stage P. falciparum malaria, the sensitivity and specificity of the ICT P.f/P.v assay were 97 and 90%, respectively, and those of the OptiMal assay were 85 and 96%, respectively. The ICT P.f/P.v assay missed one infection with a density of 45 parasites/ micro l, whereas the OptiMal assay missed infections up to 2,500/ micro l; below 1,000/ micro l, its sensitivity was only 43%. For the diagnosis of P. vivax malaria, the sensitivity and specificity of the ICT P.f/P.v assay were 44 and 100%, respectively, and those of the OptiMal assay were 80 and 97%, respectively. Both assays missed infections with parasite densities over 5,000/ micro l: up to 10,000/ micro l with the former and 5,300/ micro l with the latter. Despite the high sensitivity of the ICT P.f/P.v assay for P. falciparum malaria, caution is warranted before RDTs are widely adopted for the diagnosis of malaria in nonimmune patients or in countries where malaria is not endemic.  相似文献   

2.
Microscopic detection of parasites has been the reference standard for malaria diagnosis for decades. However, difficulty in maintaining required technical skills and infrastructure has spurred the development of several nonmicroscopic malaria rapid diagnostic devices based on the detection of malaria parasite antigen in whole blood. The ParaSight F test is one such device. It detects the presence of Plasmodium falciparum-specific histidine-rich protein 2 by using an antigen-capture immunochromatographic strip format. The present study was conducted at outpatient malaria clinics in Iquitos, Peru, and Maesod, Thailand. Duplicate, blinded, expert microscopy was employed as the reference standard for evaluating device performance. Of 2,988 eligible patients, microscopy showed that 547 (18%) had P. falciparum, 658 (22%) had P. vivax, 2 (0.07%) had P. malariae, and 1,750 (59%) were negative for Plasmodium. Mixed infections (P. falciparum and P. vivax) were identified in 31 patients (1%). The overall sensitivity of ParaSight F for P. falciparum was 95%. When stratified by magnitude of parasitemia (no. of asexual parasites per microliter of whole blood), sensitivities were 83% (>0 to 500 parasites/microl), 87% (501 to 1,000/microl), 98% (1,001 to 5,000/microl), and 98% (>5,000/microl). Device specificity was 86%.  相似文献   

3.
Conventional light microscopy has been the established method for malaria diagnosis. However, recently several nonmicroscopic rapid diagnostic tests have been developed for situations in which reliable microscopy may not be available. This study was conducted to evaluate the diagnostic performance of a recently introduced ICT Malaria Pf/Pv test. This assay detects Plasmodium falciparum histidine-rich protein 2 antigen (PfHRP-2) for P. falciparum diagnosis and pan-malarial antigen for P. vivax diagnosis. In this study we compared the performance of ICT Malaria Pf/Pv with microscopy of Giemsa-stained blood films and with an OptiMAL test that detects Plasmodium lactate dehydrogenase (pLDH) antigen. A total of 750 clinically suspected malaria patients were examined at local health centers in Kuwait. Both the antigen tests had a high degree of specificity (>98%) for detection of malaria infection. However, they were less sensitive than microscopy. Compared with microscopy the ICT Malaria PF/pf test failed to detect malaria infection in 93 (34%) of 271 malaria patients (11% of patients with P. falciparum and 37% of patients with P. vivax) and the OptiMAL test failed to detect malaria infection in 41 (15%) of 271 malaria patients (7% of patients with P. falciparum and 13% of patients with P. vivax). The sensitivities of the ICT Malaria Pf/Pv and OptiMAL tests for detection of P. falciparum infection were 81 and 87%, and those for detecting P. vivax were 58 to 79%, respectively. The sensitivity of the ICT Malaria Pf/Pv and OptiMAL tests decreased significantly to 23 and 44%, respectively, at parasite densities of <500/ micro l. Both of the tests also produced a number of false-positive results. Overall, the performance of the OptiMAL test was better than that of the ICT Malaria Pf/Pv test. However, our results raise particular concern over the sensitivity of the ICT Malaria Pf/Pv test for detection of P. vivax infection. Further developments appear necessary to improve the performance of the ICT Malaria Pf/Pv test.  相似文献   

4.
A TaqMan-based real-time PCR qualitative assay for the detection of three species of malaria parasites-Plasmodium falciparum, P. ovale, and P. vivax-was devised and evaluated using 122 whole-blood samples from patients who had traveled to areas where malaria is endemic and who presented with malaria-like symptoms and fever. The assay was compared to conventional microscopy and to an established nested-PCR assay. The specificity of the new assay was confirmed by sequencing the PCR products from all the positive samples and by the lack of cross-reactivity with Toxoplasma gondii and Leishmania infantum DNA. Real-time PCR assay showed a detection limit (analytical sensitivity) of 0.7, 4, and 1.5 parasites/ micro l for P. falciparum, P. vivax, and P. ovale, respectively. Real-time PCR, like nested PCR, brought to light errors in the species identification by microscopic examination and revealed the presence of mixed infections (P. falciparum plus P. ovale). Real-time PCR can yield results within 2 h, does not require post-PCR processing, reduces sample handling, and minimizes the risks of contamination. The assay can therefore be easily implemented in routine diagnostic malaria tests. Future studies are warranted to investigate the clinical value of this technique.  相似文献   

5.
Malaria is still a major health problem in Thailand and its incidence is currently rising in Korea. To identify a useful antigen for the diagnosis of malaria patients, a cDNA expression library from malaria parasites was constructed and screened out immunologically. One clone was selected in view of its predominant reactivity with the patient sera. The recombinant malaria parasite antigen (Pv30) with 27 kDa as a C-terminal His-tag fusion protein that was produced in Escherichia coli was identified through immunoblot analysis. The deduced amino acid sequence had the sequence homology with the merozoite surface protein 1 (MSP1) genes of Plasmodium falciparum and P. yoelii, each by 41% and 42%, respectively. Measurement of serum IgG and IgM antibody to Pv30 by enzyme-linked immunosorbent assay (ELISA) was evaluated as a serodiagnostic test for malaria patients in Thailand (endemic area) and Korea (recently reemerging area). The sensitivity of P. vivax, P. falciparum, and P. malariae was 96.3% (26 /27), 90.6% (29/32), and 100% (6/6), respectively, and the specificity was 63.5% (40/63) in Thailand samples. The sensitivity of P. vivax was 98.8% (88/89), and the specificity was 96.6% (86/89) in Korean samples. Pv30 appears to be a good and reliable recombinant antigen for serodiagonosis of malaria in a nonendemic area.  相似文献   

6.
This study was done to compare the ability of a newly developed rapid malaria test OPtiMAL, an immunochromatographic antigen detection assay for the diagnosis of malaria using parasite lactate dehydrogenase, against standard microscopy. Blood samples were obtained from 232 patients suspected of having malaria. A total of 122 samples (52.5%) were positive by blood films while 118 (50.8%) were positive by OPtiMAL test. The blood film indicated that 21.4% (26 of 122) of the patients were positive for P. falciparum and 78.6% (96 of 122) were infected with P. vivax. OPtiMAL test showed that 21.2% (25 of 118) were positive for P. falciparum and 78.8% (93 of 118) were infected with P. vivax. This assay had sensitivities of 88.4% and 96.8% compared to traditional blood films for detection of P. falciparum and P. vivax malaria respectively. Thus OPtiMAL test can be used with or without traditional blood film examination for detection of both P. vivax and P. falciparum malaria and can be effectively used for the rapid diagnosis of malaria.  相似文献   

7.
The OptiMAL test (Flow Inc., Portland, Oreg.), which detects a malaria parasite lactate dehydrogenase (pLDH) antigen, has not been evaluated for its sensitivity in the diagnosis of malaria infection in various epidemiological settings. Using microscopy and a PCR as reference standards, we performed a comparison of these assays with the OptiMAL test for the detection of Plasmodium falciparum and Plasmodium vivax infection in 550 immigrants who had come from areas where malaria is endemic to reside in Kuwait, where malaria is not endemic. As determined by microscopy, 125 (23%) patients had malaria, and of these, 84 (67%) were infected with P. vivax and 36 were infected with P. falciparum; in 5 cases the parasite species could not be determined due to a paucity of the parasites. The PCR detected malaria infection in 145 (26%) patients; 102 (70%) of the patients had P. vivax infection and 43 had P. falciparum infection. Of the five cases undetermined by microscopy, the PCR detected P. falciparum infection in two cases, P. vivax infection in two cases, and mixed (P. falciparum plus P. vivax) infection in one case. Correspondingly, the OptiMAL test detected malaria infection in 95 patients (17%); of these, 70 (74%) had P. vivax infection and 25 were infected with P. falciparum. In this study, 61 (49%) of the 125 malaria cases, as confirmed by microscopy, had a degree of parasitemia of <100 parasites per microl, and 23 (18%) of the cases had a degree of <50 parasites per microl. Our results show that the sensitivity of the OptiMAL test is high (97%) at a high level of parasitemia (>100 parasites/microl) but drops to 59% when the level is <100 parasites/microl and to 39% when it is <50 parasites/microl. In addition, the OptiMAL test failed to identify four patients whose blood smears contained P. falciparum gametocytes only. We conclude that the sensitivity and specificity of the OptiMAL test are comparable to those of microscopy in detecting malaria infection at a parasitemia level of >100 parasites/microl; however, the test failed to identify more than half of the patients with a parasitemia level of <50 parasites/microl. Thus, the OptiMAL test should be used with great caution, and it should not replace conventional microscopy in the diagnosis of malaria infection.  相似文献   

8.
Real-time PCR for detection and identification of Plasmodium spp   总被引:2,自引:0,他引:2       下载免费PDF全文
Rapid and accurate detection of malaria parasites in blood is needed to institute proper therapy. We developed and used a real-time PCR assay to detect and distinguish four Plasmodium spp. that cause human disease by using a single amplification reaction and melting curve analysis. Consensus primers were used to amplify a species-specific region of the multicopy 18S rRNA gene, and SYBR Green was used for detection in a LightCycler instrument. Patient specimens infected at 0.01 to 0.02% parasitemia densities were detected, and analytical sensitivity was estimated to be 0.2 genome equivalent per reaction. Melting curve analysis based on nucleotide variations within the amplicons provided a basis for accurate differentiation of Plasmodium falciparum, P. vivax, P. ovale, and P. malariae. For assay validation, 358 patient blood samples from the National University Hospital in Singapore and Evanston Northwestern Healthcare in Illinois were analyzed. Of 76 blinded patient samples with a microscopic diagnosis of P. falciparum, P. vivax, or P. ovale infection, 74 (97.4%) were detected by real-time PCR, including three specimens containing mixed P. falciparum-P. vivax infections. No Plasmodium DNA was amplified in any of the 82 specimens sent for malaria testing but that were microscopically negative for Plasmodium infection. In addition, 200 blood samples from patients whose blood was collected for reasons other than malaria testing were also determined to be negative by real-time PCR. Real-time PCR with melting curve analysis could be a rapid and objective supplement to the examination of Giemsa-stained blood smears and may replace microscopy following further validation.  相似文献   

9.
We investigated the absolute counts of CD4+, CD8+, B, NK, and CD3+ cells and total lymphocytes in patients with acute Plasmodium falciparum and Plasmodium vivax malaria. Three-color flow cytometry was used for enumerating the immune cells. After slide smears were stained with 3% Giemsa stain, parasite species were detected using light microscopy. Data were analyzed using STATA and SPSS software. A total of 204 adults of both sexes (age, >15 years) were included in the study. One hundred fifty-eight were acute malaria patients, of whom 79 (50%) were infected with P. falciparum, 76 (48.1%) were infected with P. vivax, and 3 (1.9%) were infected with both malaria parasites. The remaining 46 subjects were healthy controls. The leukocyte count in P. falciparum patients was lower than that in controls (P=0.015). Absolute counts of CD4+, CD8+, B, and CD3+ cells and total lymphocytes were decreased very significantly during both P. falciparum (P<0.0001) and P. vivax (P<0.0001) infections. However, the NK cell count was an exception in that it was not affected by either P. falciparum or P. vivax malaria. No difference was found in the percentages of CD4, CD8, and CD3 cells in P. falciparum or P. vivax patients compared to controls. In summary, acute malaria infection causes a depletion of lymphocyte populations in the peripheral blood. Thus, special steps should be taken in dealing with malaria patients, including enumeration of peripheral lymphocyte cells for diagnostic purposes and research on peripheral blood to evaluate the immune status of patients.  相似文献   

10.
The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum (RESA-P), found in the membrane of erythrocytes infected with young asexual stages of P. falciparum, is a promising vaccine candidate. Antibodies to RESA-P were inducible by infection with another human malaria species, P. malariae. Of 298 serum samples from inhabitants of three isolated localities in Peru where P. vivax and P. malariae were endemic and P. falciparum had never been reported, 26% had anti-RESA-P antibodies as evidenced by a modified immunofluorescent-antibody assay and confirmed by Western blot (immunoblot) analysis. These seroepidemiologic observations were corroborated by the fact that of six chimpanzees infected with P. malariae, three developed anti-RESA-P antibodies after infection. The modified immunofluorescent-antibody-reactive antibodies, purified by adsorption and elution on monolayers of glutaraldehyde-fixed and air-dried P. falciparum-infected erythrocytes, reacted in an immunofluorescent-antibody assay with both parasite structures and erythrocyte membrane in P. falciparum antigen preparations, but only with parasite structures in P. malariae antigen preparations. This serologic cross-reactivity between P. falciparum and P. malariae is of interest in view of the importance of RESA-P as a vaccine candidate and because the two species are coendemic in many areas.  相似文献   

11.
The Plasmodium MSP-1 is a promising malaria vaccine candidate. However, the highly polymorphic nature of the MSP-1 gene (msp1) presents a potential obstacle for effective vaccine development. To investigate the evolutionary history of msp1 polymorphism in P. vivax, we construct phylogenetic trees of msp1 from P. vivax and related monkey malaria parasite species. All P. vivax msp1 alleles cluster in the P. vivax lineage and are not distributed among other species. Similarly, all P. cynomolgi msp1 alleles cluster in the P. cynomolgi lineage. This suggests that, in contrast to presumed ancient origin of P. falciparum msp1 polymorphism, the origin of P. vivax msp1 polymorphism is relatively recent. We observed positive selection in the P. vivax lineage but not in P. cynomolgi. Also, positive selection acts on different regions of msp1 in P. vivax and P. falciparum. This study shows that the evolutionary history of msp1 differs greatly among parasite lineages.  相似文献   

12.
We evaluated the performance of the VecTest Malaria Antigen Panel (V-MAP) assay for the detection of Plasmodium falciparum and P. vivax (variants 210 and 247) circumsporozoite protein in anopheline mosquitoes in Thailand. The V-MAP assay is a rapid, one-step procedure using a 'dipstick' wicking test strip. The circumsporozoite (CS) ELISA was used as the reference standard. Mosquitoes evaluated in the study included field-collected specimens (n = 930) and laboratory-reared specimens that had been fed on blood collected from patients with and without Plasmodium gametocytes (n = 4,110) or on cultured P. falciparum gametocytes (n = 262). Field-collected mosquitoes were triturated individually or in pools of 2-5 and tested using 613 V-MAP assays. Laboratory-reared specimens were tested individually using 4,372 V-MAP assays. Assay performance depended on the species of Plasmodium and the number of sporozoites used as the cut-off. For P. falciparum, optimal performance was achieved using a cut-off of 150 sporozoites (sensitivity = 100%, specificity = 99.2%, and accuracy = 0.99). For P. vivax variant 210, optimal performance was also achieved using a cut-off of 150 sporozoites (sensitivity = 94.8%, specificity = 94.5%, and accuracy = 0.95). We were unable to develop a standard-curve for the CS-ELISA using P. vivax variant 247 because of a lack of sporozoites; however, using a cut-off of 30 pg P. vivax 247 antigen (mosquitoes with less than this amount of antigen were considered negative), assay performance (sensitivity = 94.3%, specificity = 99.2%, and accuracy = 0.99) was comparable to that achieved for P. falciparum and P. vivax 210. These results clearly demonstrate that the V-MAP assay performs at an acceptable level and offers practical advantages for field workers needing to make rapid surveys of malaria vectors.  相似文献   

13.
Acute renal failure, disseminated intravascular coagulation (DIC), acute respiratory distress syndrome (ARDS), hypoglycemia, coma, or epileptic seizures are manifestations of severe Plasmodium falciparum malaria. On the other hand, Plasmodium vivax malaria seldom results in pulmonary damage, and pulmonary complications are exceedingly rare. We report the case of a 42-year-old male living in a malaria-endemic area who presented with ARDS and was diagnosed as having Plasmodium vivax malaria. A diagnosis of Plasmodium vivax malaria was established by a positive Plasmodium LDH immunochromatographic assay while a negative PfHRP2 based assay ruled out P. falciparum malaria. After specific anti-plasmodial therapy and intensive supportive care, the patient recovered and was discharged from hospital. The use of NIPPV in vivax-malaria related ARDS was associated with a good outcome.  相似文献   

14.
In areas such as eastern Indonesia where both Plasmodium falciparum and Plasmodium vivax occur, rapid antigen detection tests for malaria need to be able to detect both species. We evaluated the new combined P. falciparum-P. vivax immunochromatographic test (ICT Malaria P.f/P.v.) in Radamata Primary Health Centre, Sumba, Indonesia, from February to May 1998 with 560 symptomatic adults and children with a presumptive clinical diagnosis of malaria. Blinded microscopy was used as the "gold standard," with all discordant and 20% of concordant results cross-checked blindly. Only 50% of those with a presumptive clinical diagnosis of malaria were parasitemic. The ICT Malaria P.f/P.v immunochromatographic test was sensitive (95. 5%) and specific (89.8%) for the diagnosis of falciparum malaria, with a positive predictive value (PPV) and a negative predictive value (NPV) of 88.1 and 96.2%, respectively. HRP2 and panmalarial antigen line intensities were associated with parasitemia density for both species. Although the specificity and NPV for the diagnosis of vivax malaria were 94.8 and 98.2%, respectively, the overall sensitivity (75%) and PPV (50%) for the diagnosis of vivax malaria were less than the desirable levels. The sensitivity for the diagnosis of P. vivax malaria was 96% with parasitemias of >500/microl but only 29% with parasitemias of <500/microl. Nevertheless, compared with the test with HRP2 alone, use of the combined antigen detection test would reduce the rate of undertreatment from 14.7 to 3.6% for microscopy-positive patients, and this would be at the expense of only a modest increase in the rate of overtreatment of microscopy-negative patients from 7.1 to 15. 4%. Cost remains a major obstacle to widespread use in areas of endemicity.  相似文献   

15.
We studied parasite detectability in thick films by an acridine orange fluorescence technique (AO) to test its applicability and the use of a Malaria Diagnosis Microscope (MDM)-ESL in the detection of parasites, compared to the conventional Giemsa staining method. This study was conducted on 1,390 clinically suspected malaria cases of Thaton township, Myanmar. We found sensitivities of 82.8% for Plasmodium falciparum (P. falciparum) and 100% for Plasmodium vivax (P. vivax) and specificities of 97.1% for P. falciparum and 98.6% for P. vivax. AO had a higher sensitivity than Giemsa-stained films at low levels of parasitemia (< 1,000/microl). AO showed lower sensitivity and higher specificity than the Giemsa method at parasite levels of more than 1,000/microl. The results of using the AO method, achieved by both novice and experienced observers, showed no significant difference and required less practice to perform the test as well as to identify the parasite. The acridine orange fluorescence technique using a malaria diagnosis microscope MDM-ESL series is simple, rapid and cost effective. The microscope is conveniently operable using standard AC power or a 12-V DC car battery, and it is easily convertible to a conventional biological microscope. With the exception of species differentiation, which is not possible with this method, this method would be appropriate for both clinical and epidemiological studies.  相似文献   

16.
Plasmodium vivax malaria vaccine development.   总被引:3,自引:0,他引:3  
Plasmodium vivax represents the most widespread malaria parasite worldwide. Although it does not result in as high a mortality rate as P. falciparum, it inflicts debilitating morbidity and consequent economic impact in endemic communities. In addition, the relapsing behavior of this malaria parasite and the recent resistance to anti-malarials contribute to making its control more difficult. Although the biology of P. vivax is different from that of P. falciparum and the human immune response to this parasite species has been rather poorly studied, significant progress is being made to develop a P. vivax-specific vaccine based on the information and experience gained in the search for a P. falciparum vaccine. We have devoted great effort to antigenically characterize the P. vivax CS protein and to test its immunogenicity using the Aotus monkey model. Together with other groups we are also assessing the immunogenicity and protective efficacy of the asexual blood stage vaccine candidates MSP-1 and DBP in the monkey model, as well as the immunogenicity of Pvs25 and Pvs28 ookinete surface proteins. The transmission-blocking efficacy of the responses induced by these latter antigens is being assessed using Anopheles albimanus mosquitoes. The current status of these vaccine candidates and other antigens currently being studied is described.  相似文献   

17.
The presence of homologous point mutations in the dhfr gene in Plasmodium vivax and Plasmodium falciparum is associated with resistance to antifolate drugs. The spread of antifolate resistance encouraged research for novel antifolate drugs active against both wild-type and dhfr-mutant strains of malaria parasites. Because P. vivax cannot be easily maintained in culture, we transformed a Saccharomyces cerevisiae DHFR-deleted mutant to express wild-type P. vivax dhfr gene and its mutant forms. Twenty-five dicyclic and tricyclic 2,4-diaminopyrimidine derivatives were screened. Six quinazoline compounds showed selective inhibition of yeast transformants expressing P. vivax dhfr genes. The 50% inhibitory concentration (IC(50)) of these six compounds was determined against field isolates of P. falciparum. Our results suggest that a close relationship between the yeast assay based on expression of P. vivax dhfr genes and the in vitro test using P. falciparum parasites in culture is a promising initial step for drug screening.  相似文献   

18.
Malaria, both Plasmodium falciparum (Welch) and Plasmodium vivax (Grassi & Feletti), has reemerged as a significant public health disease issue in Peru, especially in forested areas in the eastern part of the country. The spread of Anopheles darlingi Root, the principal South American malaria vector, into new areas of Peru is thought to be a factor in this resurgence. However, epidemiological evidence suggests that in malaria endemic areas of eastern Peru where An. darlingi does not occur, other species are involved in malaria transmission. The objective of this study was to analyze Anopheles species collected from 11 provinces within four departments in eastern Peru during 2001 and 2002 for infections with P. falciparum and P. vivax. More than 84,000 Anopheles mosquitoes representing 13 species were tested by enzyme-linked immunosorbent assay for the presence of Plasmodium circumsporozoite (CS) proteins. Of these, only An. darlingi and Anopheles benarrochi Gabaldón, Cova García & López were found positive. In total, 14 (0.98%) of 1,432 pools of An. darlingi were positive for Plasmodium species; specifically 10 (0.70%) pools were positive for P. falciparum, two (0.14%) were positive for P. vivax VK210, and two (0.14%) were positive for P. vivax VK247 proteins. Nine (0.14%) of 6,323 pools of An. benarrochi were positive for Plasmodium; five (0.08%) of 6,323 pools were positive for P. falciparum, two (0.03%) were positive for P. vivax VK247, one (0.02%) was positive for mixed P. vivax VK210/VK247 infections, and one (0.02%) was positive for mixed P. falciparum and P. vivax VK210 CS-proteins. Although infection rates in An. benarrochi were significantly lower (0.14%) than rates found for An. darlingi (0.98%), our data suggest that An. benarrochi may play a role in transmitting and maintaining Plasmodium species in various malaria endemic areas of eastern Peru.  相似文献   

19.
Reactive oxygen species produced from hemoglobin digestion and the host immune system could have adverse effects on malaria parasites. To protect themselves, malaria parasites are highly dependent on the antioxidant enzymes, including superoxide dismutases and thioredoxin-dependent peroxidases. To date, several thioredoxin peroxidases (TPx) have been characterized in Plasmodium falciparum, but the TPx in Plasmodium vivax has not yet been characterized. The complete sequence of gene coding for thioredoxin peroxidase-1 of P. vivax (PvTPx-1) was amplified by PCR and cloned. Using the recombinant PvTPx-1 (rPvTPx-1), polyclonal antibody was produced in mice for immunolocalization of the enzyme in the parasite. The antioxidant activity of rPvTPx-1 was evaluated by mixed-function oxidation assay. PvTPx-1 has two conserved cysteine residues in the amino acid sequence at the positions 50 and 170 which formed a dimer under a non-reducing condition. Using a thiol mixed-function oxidation assay, the antioxidant activity of rPvTPx-1 was revealed. Indirect immunofluorescence microscopy with the specific antibody indicated that PvTPx-1 was expressed in the cytoplasm of the erythrocytic stage of the parasite in a dots-like pattern. The results suggest that P. vivax uses TPx-1 to reduce and detoxify hydrogen peroxides in order to maintain their redox homeostasis and proliferation in the host body.  相似文献   

20.
Loop-mediated isothermal amplification (LAMP), a novel nucleic acid amplification method, was developed for the clinical detection of four species of human malaria parasites: Plasmodium falciparum, P. vivax, P. malariae, and P. ovale. We evaluated the sensitivity and specificity of LAMP in comparison with the results of microscopic examination and nested PCR. LAMP showed a detection limit (analytical sensitivity) of 10 copies of the target 18S rRNA genes for P. malariae and P. ovale and 100 copies for the genus Plasmodium, P. falciparum, and P. vivax. LAMP detected malaria parasites in 67 of 68 microscopically positive blood samples (sensitivity, 98.5%) and 3 of 53 microscopically negative samples (specificity, 94.3%), in good agreement with the results of nested PCR. The LAMP reactions yielded results within about 26 min, on average, for detection of the genus Plasmodium, 32 min for P. falciparum, 31 min for P. vivax, 35 min for P. malariae, and 36 min for P. ovale. Accordingly, in comparison to the results obtained by microscopy, LAMP had a similar sensitivity and a greater specificity and LAMP yielded results similar to those of nested PCR in a shorter turnaround time. Because it can be performed with a simple technology, i.e., with heat-treated blood as the template, reaction in a water bath, and inspection of the results by the naked eye because of the use of a fluorescent dye, LAMP may provide a simple and reliable test for routine screening for malaria parasites in both clinical laboratories and malaria clinics in areas where malaria is endemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号