首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Previous magnetic resonance imaging (MRI) studies in young patients with bipolar disorder indicated the presence of grey matter concentration changes as well as microstructural alterations in white matter in various neocortical areas and the corpus callosum. Whether these structural changes are also present in elderly patients with bipolar disorder with long-lasting clinical evolution remains unclear.

Methods

We performed a prospective MRI study of consecutive elderly, euthymic patients with bipolar disorder and healthy, elderly controls. We conducted a voxel-based morphometry (VBM) analysis and a tract-based spatial statistics (TBSS) analysis to assess fractional anisotropy and longitudinal, radial and mean diffusivity derived by diffusion tensor imaging (DTI).

Results

We included 19 patients with bipolar disorder and 47 controls in our study. Fractional anisotropy was the most sensitive DTI marker and decreased significantly in the ventral part of the corpus callosum in patients with bipolar disorder. Longitudinal, radial and mean diffusivity showed no significant between-group differences. Grey matter concentration was reduced in patients with bipolar disorder in the right anterior insula, head of the caudate nucleus, nucleus accumbens, ventral putamen and frontal orbital cortex. Conversely, there was no grey matter concentration or fractional anisotropy increase in any brain region in patients with bipolar disorder compared with controls.

Limitations

The major limitation of our study is the small number of patients with bipolar disorder.

Conclusion

Our data document the concomitant presence of grey matter concentration decreases in the anterior limbic areas and the reduced fibre tract coherence in the corpus callosum of elderly patients with long-lasting bipolar disorder.  相似文献   

2.

Background

There is evidence to suggest that obsessive–compulsive disorder (OCD) is associated with structural abnormalities in cortico–striato–thalamic circuits, yet the extent of white matter abnormalities is not well established. In this study, we used diffusion tensor imaging (DTI) to examine white matter integrity in specific regions of interest (ROIs) in patients with OCD.

Methods

Patients with OCD and sex-, age- and IQ-matched healthy controls underwent DTI. The primary objective was to explore whether patients with OCD had white matter abnormalities in the anterior limb of the internal capsule (ALIC), the uncinate fasciculus, the genu of the corpus callosum and the cingulum. The secondary objective was to evaluate the relation between fractional anisotropy and mean diffusivity in these ROIs and other clinical variables (including age at onset of OCD, OCD severity and levels of depressive and anxiety symptomatology) in patients with OCD.

Results

There were 15 patients and 17 controls enrolled in our study. Compared with healthy controls, patients with OCD showed increased fractional anisotropy in bilateral regions of the ALIC adjacent to the body of the caudate, as well as decreased fractional anisotropy in the right anterior limb near the head of the caudate. Patients also had decreased mean diffusivity in the body of the right cingulum and the left anterior cingulum compared with controls. Correlational analyses revealed significant associations of fractional anisotropy and mean diffusivity in select circuits with OCD, depression and anxiety severity scores.

Limitations

Inclusion of patients with OCD receiving pharmacotherapy may have been a limitation. In addition, the patients were heterogeneous in terms of their obsessive–compulsive symptom profiles; we did not distinguish between different obsessive–compulsive symptom dimensions.

Conclusion

The study results provide further evidence for OCD-related white matter abnormalities in the ALIC and cingulum, consistent with a corticostriatal model of OCD.  相似文献   

3.

Background

While many diffusion tensor imaging (DTI) investigations have noted disruptions to white matter integrity in individuals with chronic psychotic disorders, fewer studies have been conducted in young people at the early stages of disease onset. Using whole tract reconstruction techniques, the aim of this study was to identify the white matter pathology associated with the common clinical symptoms and executive function impairments observed in young people with psychosis.

Methods

We obtained MRI scans from young people with psychosis and healthy controls. Eighteen major white matter tracts were reconstructed to determine group differences in fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD) and then were subsequently correlated with symptomatology and neurocognitive performance.

Results

Our study included 42 young people with psychosis (mean age 23 yr) and 45 healthy controls (mean age 25 yr). Compared with the control group, the psychosis group had reduced FA and AD in the left inferior longitudinal fasciculus (ILF) and forceps major indicative of axonal disorganization, reduction and/or loss. These changes were associated with worse overall psychiatric symptom severity, increases in positive and negative symptoms, and worse current levels of depression. The psychosis group also showed FA reductions in the left superior longitudinal fasciculus that were associated with impaired neurocognitive performance in attention and semantic fluency.

Limitations

Our analysis grouped 4 subcategories of psychosis together, and a larger follow-up study comparing affective and nonaffective psychoses is warranted.

Conclusion

Our findings suggest that impaired axonal coherence in the left ILF and forceps major underpin psychiatric symptoms in young people in the early stages of psychosis.  相似文献   

4.

Objective

The purpose of our study was to investigate alterations of white matter integrity in adults with major depressive disorder (MDD) using magnetic resonance imaging (MRI).

Methods

We performed diffusion tensor imaging with a 3T MRI scanner on 45 patients with major depression and 45 healthy controls matched for age, sex and education. Using a voxel-based analysis, we measured the fractional anisotropy (FA), and we investigated the differences between the patient and control groups. We examined the correlations between the microstructure abnormalities of white matter and symptom severity, age of illness onset and cumulative illness duration, respectively.

Results

We found a significant decrease in FA in the left hemisphere, including the anterior limb of the internal capsule and the inferior parietal portion of the superior longitudinal fasciculus, in patients with MDD compared with healthy controls. Diffusion tensor imaging measures in the left anterior limb of the internal capsule were negatively related to the severity of depressive symptoms, even after we controlled for age and sex.

Conclusion

Our findings provide new evidence of microstructural changes of white matter in non–late-onset adult depression. Our results complement those observed in late-life depression and support the hypothesis that the disruption of cortical– subcortical circuit integrity may be involved in the etiology of major depressive disorder.Medical subject headings: depressive disorder, major; magnetic resonance imaging; brain diseases  相似文献   

5.

Background

White matter damage is common after carbon monoxide (CO) intoxication, but in vivo follow-up studies about the mechanism of white matter damage are not possible in pathology series. Diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) can quantify diffusion parameters and volumetric changes in white matter that can be correlated with neuropsychological performances in longitudinal studies.

Methods

We examined 9 patients with CO intoxication using DTI, VBM and neuropsychologic tests at an average of 3 and 10 months after CO exposure. We used data from 18 age- and sex-matched controls for comparison.

Results

We found that cognitive recovery at 10 months after CO intoxication was not significant, although it was after 3 months. The neuropsychologic tests correlated better for the fibre tract of the semicentrum ovale and not the periventricular fibres. Diffusion measures suggest increases in fractional anisotropy, mean diffusivity and axial eigenvalues over time, while increases in radial eigenvalue were evident at 3 months compared with controls. Periventricular white matter atrophy was observed 10 months after CO intoxication

Limitations

Our study included few cases, and the interpretation of the putative changes on neuroimaging findings cannot be confirmed by histology.

Conclusion

Our study showed that the evolution of white matter injury in CO encephalopathy occurred over time. Cognitive recovery was not evident in the follow-up period because of white matter injuries.  相似文献   

6.

Background

Apolipoprotein E (apoE) and cholesterol play a critical role in synapse and myelin maintenance and integrity and are thus appealing candidates in the pathogenesis of schizophrenia and bipolar disorder. To explore the role of these 2 molecules, we quantified cholesterol and apoE levels in prefrontal grey and white matter in patients with schizophrenia, bipolar disorder and healthy controls. Furthermore, we investigated the relations between apoE and cholesterol levels and the APOE genotype.

Methods

We obtained dorsolateral prefrontal grey and white matter from the Stanley Medical Research Institute Brain Collection (schizophrenia n = 35, bipolar disorder n = 35 and controls n = 35). Cholesterol levels were quantified using high-pressure liquid chromatography, whereas apoE was measured by enzyme-linked immunosorbent assay.

Results

We found no significant differences in cholesterol or apoE levels among the groups. ApoE levels were higher in grey matter than in white matter in all groups; conversely, levels of cholesterol were higher in white matter than in grey matter. We observed a significant inverse correlation between apoE and cholesterol levels in both grey and white matter. Furthermore, in grey matter, apoE levels were significantly higher in APOE ɛ2 carriers compared with APOE ɛ3 or APOE ɛ4 carriers, with cholesterol levels following the opposite trend.

Limitations

Limitations of our study include our inability to control for potential confounding variables and the small numbers of APOE ɛ2 and ɛ4 carriers in each group.

Conclusion

Although large amounts of cholesterol are present in white matter, apoE expression is limited. The APOE genotype may play a role in the regulation of both cholesterol and apoE levels in grey matter. The impact of APOE polymorphisms on lipid homeostasis in people with psychiatric disorders warrants further investigation.  相似文献   

7.

Background

We sought to test the hypothesis that deficits in grey matter volume are characteristic of psychotic youth with early-onset schizophrenia-spectrum disorders (EOSS) but not of psychotic youth with early-onset mood disorders (EOMD).

Methods

We used magnetic resonance imaging to examine brain volume in 24 psychotic youth (13 male, 11 female) with EOSS (n = 12) or EOMD (n = 12) and 17 healthy controls (10 male, 7 female). We measured the volume of grey and white matter using an automated segmentation program.

Results

After adjustment for age and intracranial volume, whole brain volume was lower in the EOSS patients than in the healthy controls (p = 0.001) and EOMD patients (p = 0.002). The EOSS patients had a deficit in grey matter volume (p = 0.005), especially in the frontal (p = 0.003) and parietal (p = 0.006) lobes, with no significant differences in white matter volume.

Limitations

The main limitations of our study were its small sample size and the inclusion of patients with depression and mania in the affective group.

Conclusion

Adolescents with EOSS have grey matter deficits compared with healthy controls and psychotic adolescents with EOMD. Our results suggest that grey matter deficits are not generally associated with psychosis but may be specifically associated with schizophrenia. Larger studies with consistent methods are needed to reconcile the contradictory findings among imaging studies involving psychotic youth.  相似文献   

8.

Objective

This study proposes an automated diagnostic method to classify patients with Alzheimer''s disease (AD) of degenerative etiology using magnetic resonance imaging (MRI) markers.

Methods

Twenty-seven patients with subjective memory impairment (SMI), 18 patients with mild cognitive impairment (MCI), and 27 patients with AD participated. MRI protocols included three dimensional brain structural imaging and diffusion tensor imaging to assess the cortical thickness, subcortical volume and white matter integrity. Recursive feature elimination based on support vector machine (SVM) was conducted to determine the most relevant features for classifying abnormal regions and imaging parameters, and then a factor analysis for the top-ranked factors was performed. Subjects were classified using nonlinear SVM.

Results

Medial temporal regions in AD patients were dominantly detected with cortical thinning and volume atrophy compared with SMI and MCI patients. Damage to white matter integrity was also accredited with decreased fractional anisotropy and increased mean diffusivity (MD) across the three groups. The microscopic damage in the subcortical gray matter was reflected in increased MD. Classification accuracy between pairs of groups (SMI vs. MCI, MCI vs. AD, SMI vs. AD) and among all three groups were 84.4% (±13.8), 86.9% (±10.5), 96.3% (±4.6), and 70.5% (±11.5), respectively.

Conclusion

This proposed method may be a potential tool to diagnose AD pathology with the current clinical criteria.  相似文献   

9.

Background

Neuregulin1 (NRG1) influences the development of white matter connectivity and is implicated in genetic susceptibility to schizophrenia. The cingulum bundle is a white matter structure implicated in schizophrenia. Its anterior component is especially implicated, as it provides reciprocal connections between brain regions with prominent involvement in the disorder. Abnormalities in the structural integrity of the anterior cingulum in patients with schizophrenia have been reported previously. The present study investigated the potential contribution of NRG1 variation to anterior cingulum abnormalities in participants with schizophrenia.

Methods

We studied 31 men with schizophrenia and 36 healthy men using diffusion tensor imaging to investigate the association between fractional anisotropy in the anterior cingulum and a single-nucleotide polymorphism (SNP8NRG221533: rs35753505) of NRG1.

Results

Consistent with previous reports, fractional anisotropy was significantly reduced in the anterior cingulum in the schizophrenia group. Moreover, the results revealed a significant group (schizophrenia, control) by genotype (C/C, T carriers, including CT and TT) interaction between genetic variation in NRG1 and diagnosis of schizophrenia, such that the patients with the T allele for SNP8NRG221533 had significantly decreased anterior cingulum fractional anisotropy compared with patients homozygous for the C allele and healthy controls who were T carriers.

Limitations

Limitations of our study included the small sample size of the TT subgroup and our use of only fractional anisotropy as an index of myelin integrity. In addition, the use of diffusion tensor imaging acquisition methods limited our ability to study other brain regions that may be involved in schizophrenia.

Conclusion

Our results suggest that NRG1 variation may play a role in the pathophysiology of anterior cingulum abnormalities in patients with schizophrenia.  相似文献   

10.

Background

Previous diffusion tensor imaging (DTI) studies in patients with obsessive–compulsive disorder (OCD) have reported inconsistent findings, and it is not known whether observed findings are related to abnormalities in axonal structure or myelination.

Methods

In this DTI study, we investigated fractional anisotropy, as well as axial and radial diffusivity, in 21 patients with OCD and 29 healthy controls.

Results

We found decreased fractional anisotropy in the body of the corpus callosum in the OCD group, which was underpinned by increased radial diffusivity.

Limitations

The cross-sectional design was the main limitation.

Conclusion

Our findings of increased radial diffusivity provide preliminary evidence for abnormal myelination in patients with OCD.  相似文献   

11.

Background

The question of whether Asperger syndrome can be distinguished from autism has attracted much debate and may even incur delay in diagnosis and intervention. Accordingly, there has been a proposal for Asperger syndrome to be subsumed under autism in the forthcoming Diagnostic and Statistical Manual of Mental Disorders, fifth edition, in 2013. One approach to resolve this question has been to adopt the criterion of absence of clinically significant language or cognitive delay — essentially, the “absence of language delay.” To our knowledge, this is the first meta-analysis of magnetic resonance imaging (MRI) studies of people with autism to compare absence with presence of language delay. It capitalizes on the voxel-based morphometry (VBM) approach to systematically explore the whole brain for anatomic correlates of delay and no delay in language acquisition in people with autism spectrum disorders.

Methods

We conducted a systematic search for VBM MRI studies of grey matter volume in people with autism. Studies with a majority (at least 70%) of participants with autism diagnoses and a history of language delay were assigned to the autism group (n = 151, control n = 190). Those with a majority (at least 70%) of individuals with autism diagnoses and no language delay were assigned to the Asperger syndrome group (n = 149, control n = 214). We entered study coordinates into anatomic likelihood estimation meta-analysis software with sampling size weighting to compare grey matter summary maps driven by Asperger syndrome or autism.

Results

The summary autism grey matter map showed lower volumes in the cerebellum, right uncus, dorsal hippocampus and middle temporal gyrus compared with controls; grey matter volumes were greater in the bilateral caudate, prefrontal lobe and ventral temporal lobe. The summary Asperger syndrome map indicated lower grey matter volumes in the bilateral amygdala/hippocampal gyrus and prefrontal lobe, left occipital gyrus, right cerebellum, putamen and precuneus compared with controls; grey matter volumes were greater in more limited regions, including the bilateral inferior parietal lobule and the left fusiform gyrus. Both Asperger syndrome and autism studies reported volume increase in clusters in the ventral temporal lobe of the left hemisphere.

Limitations

We assigned studies to autism and Asperger syndrome groups for separate analyses of the data and did not carry out a direct statistical group comparison. In addition, studies available for analysis did not capture the entire spectrum, therefore we cannot be certain that our findings apply to a wider population than that sampled.

Conclusion

Whereas grey matter differences in people with Asperger syndrome compared with controls are sparser than those reported in studies of people with autism, the distribution and direction of differences in each category are distinctive.  相似文献   

12.

Background

One of the characteristics of hypoglycemic encephalopathy (HE) is selective vulnerability of different brain regions.

Case Report

We observed a patient with unilateral HE affecting the right internal capsule and the subcortical white matter. The patient had a preexisting stroke in the opposite hemisphere. The hemisphere that was affected by HE exhibited greater regional blood flow (single positron-emission tomography) and higher fractional anisotropy (diffusion-tensor imaging) than the unaffected hemisphere.

Conclusions

This case suggests that the degree of metabolism required to maintain the function of brain structures and neuronal integrity is an important factor determining the selective vulnerability in HE.  相似文献   

13.

Background

Many studies using diffusion tensor imaging (DTI) have demonstrated impaired white matter integrity in patients with major depressive disorder (MDD), with significant results found in diverse brain regions. We sought to identify whether there are consistent changes of regional white matter integrity in patients with MDD, as shown by decreased fractional anisotropy in DTI.

Method

A systematic search strategy was used to identify relevant whole brain voxel-based DTI studies of patients with MDD in relation to comparison groups. Relevant databases were searched for studies published between January 1994 and February 2011 using combinations of the terms “DTI” or “diffusion tensor;” “whole brain” or “voxel-based;” and “depress*.” Using the studies that met our inclusion criteria, we performed a meta-analysis of the coordinates of decreased fractional anisotropy using the activation likelihood estimation (ALE) method, which detects 3-dimensional conjunctions of coordinates from multiple studies, weighted by sample size. We then used DTIquery software for fibre tracking to locate the fascicles involved in each region.

Results

We included 11 studies with a combined sample of 231 patients with MDD and 261 comparison participants, providing 50 coordinates of decreased fractional anisotropy. Our meta-analysis identified 4 consistent locations of decreased fractional anisotropy in patients with MDD: white matter in the right frontal lobe, right fusiform gyrus, left frontal lobe and right occipital lobe. Fibre tracking showed that the main fascicles involved were the right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, right posterior thalamic radiation and interhemispheric fibres running through the genu and body of the corpus callosum.

Limitations

The number of studies included was relatively small, and the DTI data acquisition and analysis techniques were heterogeneous. The ALE method cannot handle studies with no significant group differences.

Conclusion

Voxel-based analysis of DTI studies of patients with MDD consistently identified decreased fractional anisotropy in the white matter fascicles connecting the prefrontal cortex within cortical (frontal, temporal and occipital lobes) and subcortical areas (amygdala and hippocampus). This is strong evidence for the involvement of these neural circuits in the pathology of MDD.  相似文献   

14.

Background

Attention-deficit/hyperactivity disorder (ADHD) is an early-onset neurodevelopmental disorder with multiple behavioural problems and executive dysfunctions for which neuroimaging studies have reported a variety of abnormalities, with inconsistencies partly owing to confounding by medication and concurrent psychiatric disease. We aimed to investigate the microstructural abnormalities of white matter in unmedicated children and adolescents with pure ADHD and to explore the association between these abnormalities and behavioural symptoms and executive functions.

Methods

We assessed children and adolescents with ADHD and healthy controls using psychiatric interviews. Behavioural problems were rated using the revised Conners’ Parent Rating Scale, and executive functions were measured using the Stroop Colour-Word Test and the Wisconsin Card Sorting test. We acquired diffusion tensor imaging data using a 3 T MRI system, and we compared diffusion parameters, including fractional anisotropy (FA) and mean, axial and radial diffusivities, between the 2 groups.

Results

Thirty-three children and adolescents with ADHD and 35 healthy controls were included in our study. In patients compared with controls, FA was increased in the left posterior cingulum bundle as a result of both increased axial diffusivity and decreased radial diffusivity. In addition, the averaged FA of the cluster in this region correlated with behavioural measures as well as executive function in patients with ADHD.

Limitations

This study was limited by its cross-sectional design and small sample size. The cluster size of the significant result was small.

Conclusion

Our findings suggest that white matter abnormalities within the limbic network could be part of the neural underpinning of behavioural problems and executive dysfunction in patients with ADHD.  相似文献   

15.

Objective

In bipolar disorder, dysregulation of mood may result from white matter abnormalities that change fiber tract length and fiber density. There are few studies evaluating the white matter microstructural changes in bipolar I patients (BD) with depressive episodes. The present study aimed to evaluate anterior corona radiata in BD patients with depressive episode using Diffusion Tensor Imaging (DTI).

Methods

Twenty-one patients with bipolar depression and 19 healthy controls were investigated and groups were matched for age and gender. Diffusion-weighted echoplanar brain images (DW-EPI) were obtained using a 1.5 T MRI scanner. Regions of interest (ROIs) were manually placed on directional maps based on principal anisotropy. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of white matter were measured in the anterior corona radiata (ACR) bilaterally by diffusion tensor imaging.

Results

There was not a significant difference between groups of age and gender (p>0.05). Significantly lower FA was observed in bilateral ACR in bipolar patients with depression compared with healthy individuals. And there is significantly higher ADC values in the left frontal corona radiate in bipolar patients.

Conclusion

White matter abnormalities can be detected in patients with BD using DTI. The neuropathology of these abnormalities is unclear, but neuronal and axonal loss, myelin abnormalities and reduced white matter fiber density are likely to be relevant.  相似文献   

16.

Background

The etiology of anorexia nervosa is still unknown. Multiple and distributed brain regions have been implicated in its pathophysiology, implying a dysfunction of connected neural circuits. Despite these findings, the role of white matter in anorexia nervosa has been rarely assessed. In this study, we used diffusion tensor imaging (DTI) to characterize alterations of white matter microstructure in a clinically homogeneous sample of patients with anorexia nervosa.

Methods

Women with anorexia nervosa (restricting subtype) and healthy controls underwent brain DTI. We used tract-based spatial statistics to compare fractional anisotropy (FA) and mean diffusivity (MD) maps between the groups. Furthermore, axial (AD) and radial diffusivity (RD) measures were extracted from regions showing group differences in either FA or MD.

Results

We enrolled 19 women with anorexia nervosa and 19 healthy controls in our study. Patients with anorexia nervosa showed significant FA decreases in the parietal part of the left superior longitudinal fasciculus (SLF; pFWE < 0.05), with increased MD and RD but no differences in AD. Patients with anorexia nervosa also showed significantly increased MD in the fornix (pFWE < 0.05), accompanied by decreased FA and increased RD and AD.

Limitations

Limitations include our modest sample size and cross-sectional design.

Conclusion

Our findings support the presence of white matter pathology in patients with anorexia nervosa. Alterations in the SLF and fornix might be relevant to key symptoms of anorexia nervosa, such as body image distortion or impairments in body–energy–balance and reward processes. The differences found in both areas replicate those found in previous DTI studies and support a role for white matter pathology of specific neural circuits in individuals with anorexia nervosa.  相似文献   

17.

Background

There is growing evidence that inhalants are neurotoxic to white matter, yet limited work has been conducted to investigate the neurobiologic effects of long-term exposure among adolescent users, despite inhalant use being most prominent during this developmental period.

Methods

We used diffusion tensor imaging to examine white-matter integrity in 11 adolescents who used inhalants, 11 matched cannabis users and 8 drug-naive controls.

Results

Although both groups of drug users had white-matter abnormalities (i.e., lower fractional anisotropy), abnormalities were more pronounced in the inhalant group, particularly among early-onset users.

Limitations

The findings of this study should be considered in light of its small sample size, cross-sectional design and the complex psychosocial background of long-term inhalant users.

Conclusion

White-matter abnormalities may underpin long-term behavioural and mental health problems seen in individuals with long-term inhalant use.  相似文献   

18.

Background

Psychotic disorders are associated with widespread reductions in white matter (WM) integrity. However, the stage at which these abnormalities first appear and whether they are correlates of psychotic illness, as opposed to an increased vulnerability to psychosis, is unclear. We addressed these issues by using diffusion tensor imaging (DTI) to study subjects at ultra high risk (UHR) of psychosis before and after the onset of illness.

Methods

Thirty-two individuals at UHR for psychosis, 32 controls, and 15 patients with first-episode schizophrenia were studied using DTI. The UHR subjects and controls were re-scanned after 28 months. During this period, 8 UHR subjects had developed schizophrenia. Between-group differences in fractional anisotropy (FA) and diffusivity were evaluated cross sectionally and longitudinally using a nonparametric voxel-based analysis.

Results

At baseline, WM DTI properties were significantly different between the 3 groups (P < .001). Relative to controls, first-episode patients showed widespread reductions in FA and increases in diffusivity. DTI indices in the UHR group were intermediate relative to those in the other 2 groups. Longitudinal analysis revealed a significant group by time interaction in the left frontal WM (P < .001). In this region, there was a progressive reduction in FA in UHR subjects who developed psychosis that was not evident in UHR subjects who did not make a transition.

Conclusions

People at UHR for psychosis show alterations in WM qualitatively similar to, but less severe than, those in patients with schizophrenia. The onset of schizophrenia may be associated with a progressive reduction in the integrity of the frontal WM.  相似文献   

19.

Background

Voxel-based morphometry (VBM) studies have demonstrated that grey matter abnormalities are involved in the pathophysiology of late-life depression (LLD), but the findings are inconsistent and have not been quantitatively reviewed. The aim of the present study was to conduct a meta-analysis that integrated the reported VBM studies, to determine consistent grey matter alterations in individuals with LLD.

Methods

A systematic search was conducted to identify VBM studies that compared patients with LLD and healthy controls. We performed a meta-analysis using the effect size signed differential mapping method to quantitatively estimate regional grey matter abnormalities in patients with LLD.

Results

We included 9 studies with 11 data sets comprising 292 patients with LLD and 278 healthy controls in our meta-analysis. The pooled and subgroup meta-analyses showed robust grey matter reductions in the right lentiform nucleus extending into the parahippocampus, the hippocampus and the amygdala, the bilateral medial frontal gyrus and the right subcallosal gyrus as well as a grey matter increase in the right lingual gyrus. Meta-regression analyses showed that mean age and the percentage of female patients with LLD were not significantly related to grey matter changes.

Limitations

The analysis techniques, patient characteristics and clinical variables of the studies included were heterogeneous, and most participants were medicated.

Conclusion

The present meta-analysis is, to our knowledge, the first to overcome previous inconsistencies in the VBM studies of LLD and provide robust evidence for grey matter alterations within fronto–striatal–limbic networks, thereby implicating them in the pathophysiology of LLD. The mean age and the percentage of female patients with LLD did not appear to have a measurable impact on grey matter changes, although we cannot rule out the contributory effects of medication.  相似文献   

20.

Background

Abnormalities in the corpus callosum have long been implicated in schizophrenia. Previous diffusion tensor imaging (DTI) studies in patients with different durations of schizophrenia yielded inconsistent results. By comparing patients with different durations of schizophrenia, we investigated if white matter abnormalities of the corpus callosum emerge at an early stage in the illness or result from pathological progression.

Methods

We recruited patients with first-episode schizophrenia, patients with chronic schizophrenia and age-, sex-and handedness-matched healthy controls. We used 2 DTI techniques (voxel-based and fibre-tracking DTI) to investigate differences in corpus callosum integrity among the 3 groups.

Results

With both DTI techniques, significantly decreased fractional anisotropy values were identified in the genu of corpus callosum in patients with chronic schizophrenia, but not first-episode schizophrenia, compared with healthy controls.

Limitations

This study was cross-sectional, and the sample size was relatively small.

Conclusion

Abnormalities in the genu of the corpus callosum might be a progressive process in schizophrenia, perhaps related to disease severity and prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号