首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parathyroid hormone-related peptide (PTHrP) was initially identified as a product of malignant tumors that mediates paraneoplastic hypercalcemia. It is now known that the parathyroid hormone (PTH) and PTHrP genes are evolutionarily related and that the products of these two genes share a common receptor, the PTH/PTHrP receptor. PTHrP and the PTH/PTHrP receptor are widely expressed in both adult and fetal tissues, and recent gene-targeting and disruption experiments have implicated PTHrP as a developmental regulatory molecule. Apparent PTHrP functions include the regulation of endochondral bone development, of hair follicle formation, and of branching morphogenesis in the breast. Herein, we report that overexpression of PTHrP in chondrocytes using the mouse type II collagen promoter induces a novel form of chondrodysplasia characterized by short-limbed dwarfism and a delay in endochondral ossification. This features a delay in chondrocyte differentiation and in bone collar formation and is sufficiently marked that the mice are born with a cartilaginous endochondral skeleton. In addition to the delay, chondrocytes in the transgenic mice initially become hypertrophic at the periphery of the developing long bones rather than in the middle, leading to a seeming reversal in the pattern of chondrocyte differentiation and ossification. By 7 weeks, the delays in chondrocyte differentiation and ossification have largely corrected, leaving foreshortened and misshapen but histologically near-normal bones. These findings confirm a role for PTHrP as an inhibitor of the program of chondrocyte differentiation. PTHrP may function in this regard to maintain the stepwise differentiation of chondrocytes that initiates endochondral ossification in the midsection of endochondral bones early in development and that also permits linear growth at the growth plate later in development.  相似文献   

2.
In prostanoid biosynthesis, the first two steps are catalyzed by cyclooxygenases (COX). In mice and humans, deregulated expression of COX-2, but not of COX-1, is characteristic of epithelial tumors, including squamous cell carcinomas of skin. To explore the function of COX-2 in epidermis, a keratin 5 promoter was used to direct COX-2 expression to the basal cells of interfollicular epidermis and the pilosebaceous appendage of transgenic mouse skin. COX-2 overexpression in the expected locations, resulting in increased prostaglandin levels in epidermis and plasma, correlated with a pronounced skin phenotype. Heterozygous transgenic mice exhibited a reduced hair follicle density. Moreover, postnatally hair follicle morphogenesis and thinning of interfollicular dorsal epidermis were delayed. Adult transgenics showed a body-site-dependent sparse coat of greasy hair, the latter caused by sebaceous gland hyperplasia and increased epicutaneous sebum levels. In tail skin, hyperplasia of scale epidermis reflecting an increased number of viable and cornified cell layers was observed. Hyperplasia was a result of a disturbed program of epidermal differentiation rather than an increased proliferation rate, as reflected by the strong suppression of keratin 10, involucrin, and loricrin expression in suprabasal cells. Further pathological signs were loss of cell polarity, mainly of basal keratinocytes, epidermal invaginations into the dermis, and formation of horn perls. Invaginating hyperplastic lobes were surrounded by CD31-positive vessels. These results demonstrate a causal relationship between transgenic COX-2 expression in basal keratinocytes and epidermal hyperplasia as well as dysplastic features at discrete body sites.  相似文献   

3.
C H Chen  Y Sakai  M B Demay 《Endocrinology》2001,142(12):5386-5389
Vitamin D receptor (VDR) null mice develop hypocalcemia, hyperparathyroidism, rickets, osteomalacia and alopecia. Normalization of mineral ion homeostasis prevents all of these abnormalities except alopecia. Hair reconstitution assays, performed in athymic nude mice, demonstrate that the lack of VDR in keratinocytes leads to a defect in anagen initiation, similar to that observed in VDR null mice. Although these studies demonstrate that expression of the VDR in keratinocytes is necessary, they do not prove that it is sufficient for maintenance of the normal hair cycle. To address this hypothesis, we generated transgenic mice expressing the human VDR under the control of the keratin 14 (K14) promoter. Two highly expressing transgenic lines were mated with VDR null mice to obtain VDR null mice expressing the human VDR transgene (hVDR+/mVDR-). Expression of the transgene in the VDR null mice prevented alopecia. Furthermore, when subjected to anagen initiation, the hair follicle keratinocytes of the hVDR+/mVDR- mice demonstrated an enhanced proliferative response compared to those of control littermates. Restoration of VDR expression in the keratinocytes of VDR null mice, prevents the hair cycle defect that leads to the development of alopecia.  相似文献   

4.
The biologic action of parathyroid hormone (PTH)-related peptide (PTHrP) in normal skin was investigated in cultured human keratinocytes and in SKH-1 hairless mice. The results indicate that the PTHrP agonists human PTHrP-(1-34) and PTH(1-34) are potent inhibitors of epidermal cell proliferation. [Nle8,18,Tyr34]bovine PTH-(7-34)-amide, an antagonist of the PTH/PTHrP receptor, blocked the inhibitory effect of PTH-(1-34) in cultured keratinocytes. In the SKH-1 mice, PTH-(7-34) caused a 244% increase of [3H]thymidine incorporation into isolated epidermal DNA and 246% and 180% increases in the number and length of hair shafts, respectively. Thus, PTH and PTHrP may play an important role in the normal physiology of skin, and their agonists and antagonists have potentially wide therapeutic applications in the treatment of hyperproliferative skin disorders and aging skin and could also be effective in stimulating and maintaining hair growth.  相似文献   

5.
To study the role of transforming growth factor type beta1 (TGFbeta1) in epidermal growth control and disease, we have generated a conditional expression system by using the bovine keratin 5 promoter to drive expression of the tetracycline-regulated transactivators tTA and rTA, and a constitutively active mutant of TGFbeta1 linked to the tetO target sequence for the transactivator. This model allows for induction or suppression of exogenous TGFbeta1 with oral doxycycline. Maximal expression of TGFbeta1 during gestation caused embryonic lethality, whereas partial suppression allowed full-term development with neonatal lethality characterized by runting, epidermal hypoproliferation, and blocked hair follicle growth. With complete suppression, phenotypically normal double transgenic (DT) mice were born. Acute induction of TGFbeta1 in the epidermis of adult mice inhibited basal and follicular keratinocyte proliferation and reentry of telogen hair follicles into anagen. However, chronic expression of TGFbeta1 in adult DTs caused severe alopecia characterized by epidermal and follicular hyperproliferation, apoptosis, as well as dermal fibrosis and inflammation. Readministration of doxycycline to tTA DT mice caused hair regrowth within 14 days. The mRNA and protein for Smad7, an inhibitor of TGFbeta signaling, were up-regulated in the epidermis and hair follicles of alopecic skin and rapidly induced in rTA mice in parallel with the TGFbeta1 transgene, suggesting that the hyperproliferative phenotype may result in part from development of a sustained negative feedback loop. Thus, this conditional expression system provides an important model for understanding the role of TGFbeta1 during development, in normal skin biology, and in disease.  相似文献   

6.
The hair follicle bulge area is an abundant, easily accessible source of actively growing, pluripotent adult stem cells. Nestin, a protein marker for neural stem cells, also is expressed in follicle stem cells and their immediate, differentiated progeny. The fluorescent protein GFP, whose expression is driven by the nestin regulatory element in transgenic mice, served to mark the follicle cell fate. The pluripotent nestin-driven GFP stem cells are positive for the stem cell marker CD34 but negative for keratinocyte marker keratin 15, suggesting their relatively undifferentiated state. These cells can differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. In vivo studies show the nestin-driven GFP hair follicle stem cells can differentiate into blood vessels and neural tissue after transplantation to the subcutis of nude mice. Equivalent hair follicle stem cells derived from transgenic mice with beta-actin-driven GFP implanted into the gap region of a severed sciatic nerve greatly enhance the rate of nerve regeneration and the restoration of nerve function. The follicle cells transdifferentiate largely into Schwann cells, which are known to support neuron regrowth. Function of the rejoined sciatic nerve was measured by contraction of the gastrocnemius muscle upon electrical stimulation. After severing the tibial nerve and subsequent transplantation of hair follicle stem cells, walking print length and intermediate toe spread significantly recovered, indicating that the transplanted mice recovered the ability to walk normally. These results suggest that hair follicle stem cells provide an important, accessible, autologous source of adult stem cells for regenerative medicine.  相似文献   

7.
We have previously demonstrated that overexpression of parathyroid hormone-related protein (PTHrP) in the mammary glands of transgenic mice results in defects in ductal elongation and branching during puberty and in lobuloalveolar development during pregnancy. In addition, we have shown that PTHrP is necessary for the formation of the initial ductal tree during embryonic mammary development. In order to examine the effect of varying the timing of PTHrP overexpression on mammary development, we created tetracycline-regulated, K14-tTA/Tet(O)-PTHrP double transgenic mice. In this report, we document that this 'tet-off' system directs transgene expression to the mammary gland and that it is fully repressed in the presence of tetracycline. Using these mice, we demonstrate that transient overexpression of PTHrP before birth causes defects in ductal branching during puberty and that overexpression of PTHrP during puberty decreases the rate of ductal elongation. Furthermore, we demonstrate that if PTHrP overexpression is initiated after ductal morphogenesis is completed, lobuloalveolar development is unaffected. Finally, we demonstrate that the impairment in ductal elongation caused by PTHrP is associated with an increase in the basal rate of epithelial cell apoptosis in terminal end buds and a failure to increase end bud cell proliferation and decrease apoptosis in response to estrogen and progesterone.  相似文献   

8.
We have generated a transgenic mouse line by microinjection of a chimeric DNA fragment (KER-CAT) containing a hair-specific, murine ultra-high-sulfur keratin promoter (KER) fused to the coding region of the bacterial chloramphenicol acetyltransferase (CAT) gene. A 671-base pair (bp) stretch of the 5' promoter region was used to direct the expression of the CAT gene in this construct. Of the tissues tested for CAT activity in these transgenic animals only skin with growing hair, isolated hair follicles, and microdissected vibrissae showed substantial levels of activity. These are the same tissues where the endogenous ultra-high-sulfur keratin gene is expressed as shown by in situ hybridization. Furthermore, analysis of the CAT activity during the developmental stages of the hair growth cycle shows that the chimeric gene is expressed during the anagen phase of the hair growth cycle; this is the expected time during development for its expression. From these results we conclude that 671 bp of the promoter sequence from the ultra-high-sulfur keratin gene is sufficient to direct the correct development-specific and tissue-specific expression of the reporter gene construct in transgenic mice. The appropriate expression of the KER-CAT construct in transgenic mice is an important step in understanding the regulation of this gene during hair organogenesis.  相似文献   

9.
PTH-related protein (PTHrP) is produced in vascular smooth muscle, where it is postulated to exert vasorelaxant properties by activation of the PTH/PTHrP type 1 receptor. As a model for studying the actions of locally produced PTHrP in vascular smooth muscle in vivo, we developed transgenic mice that overexpress the PTH/PTHrP receptor (PTHrP-R) in smooth muscle. Oocyte injection with a SMP8-PTHrP-R fusion construct yielded six founder mice. F1 offspring were viable and demonstrated selective overexpression of the SMP8-PTHP-R messenger RNA in smooth muscle-rich tissues. Baseline blood pressure measured in conscious mice by tail sphygmomanometry was significantly lower in the receptor-overexpressing mice than that in controls (117 +/- 4 vs. 133 +/- 3 mm Hg; P < 0.05). In anesthetized animals, iv infusion of PTHrP-(1-34)NH2 caused a significantly greater reduction in blood pressure and total peripheral resistance in transgenic mice than in control animals. Vascular contractility was studied in paired, isometrically mounted aortas from 9-week-old transgenic and wild-type mice. The force of contraction in response to phenlyephrine was not significantly different between transgenic and wild-type mice. However, PTHrP-(1-34) NH2 relaxed aortic vessel preparations from transgenic mice to a greater extent than in controls (77.1 +/- 3% vs. 38.4 +/- 4%; P < 0.001). To determine the impact of overexpression of PTH/PTHrP type 1 receptor and its ligand on the development of the cardiovascular system, double transgenic mice were created by crossing SMP8-PTHrP-R transgenic mice with mice overexpressing PTHrP (SMP8-PTHrP). Double transgenic mice died around day E9 with abnormalities in the developing heart. In conclusion, overexpression of PTH/PTHrP type 1 receptor in vascular smooth muscle of transgenic mice reduces blood pressure, probably through sustained activation of the receptor by endogenous ligand. The cardiovascular defects observed in mice overexpressing both PTHrP and its receptor suggest that PTHrP may play a role in the normal development of the cardiovascular system.  相似文献   

10.
Parathyroid hormone-related protein (PTHrP), an important factor in the pathogenesis of humoral hypercalcemia of malignancy, is produced by many normal tissues, including the skin, where it regulates keratinocyte growth and differentiation and dermal fibroblast function. Keratinocyte growth factor (KGF), a member of the fibroblast growth factor (FGF) family, is a secretory product of stromal cells and functions as a mediator of epithelial cell growth and differentiation. Phenotypes of the skin in several transgenic mouse models, in which the KGF and PTHrP genes have been overexpressed or disrupted, suggest that these two factors interact in vivo to regulate homeostasis of the skin. In this study, we investigated the effects of KGF on PTHrP secretion and expression by normal human foreskin keratinocytes (NHFK) and the effects of PTHrP on KGF secretion and expression by normal human dermal fibroblasts (NHDF) in vitro. N-terminal PTHrP(1-36) increased KGF secretion, protein expression and mRNA expression by NHDF in a dose-dependent manner, however, KGF did not regulate PTHrP expression and secretion by NHFK. By flow cytometry, PTHrP also increased the percentage of NHDF producing KGF. Our results indicate that PTHrP produced by keratinocytes is a potential paracrine regulator of KGF expression by dermal fibroblasts in vivo. This paracrine regulation may explain, in part, the epidermal atrophy seen in the PTHrP null mice and epidermal hyperplasia seen in transgenic mice overexpressing PTHrP in their basal keratinocytes. Our results also suggest that PTHrP is an important mediator for the healing of skin wounds and growth of neoplasms of squamous origin.  相似文献   

11.
ObjectiveInsulin-like growth factor 1 (IGF-1) increases the growth of cultured hair follicles and plays a role in regulating hair migration during the development of hair follicles in transgenic mice. However, the exogenous effect of IGF-1 on hair growth in wild-type mice has not been reported. In the present study, we examined whether IGF-1 was an important regulator of hair follicle growth in wide-type mice in vivo.DesignC57BL/6 mice were injected with different concentrations of IGF-1 on dorsal skin. The treated tissues were analyzed by immunoassay methods for TGF-β1 and BrdU.ResultsLocal injection of IGF-1 increased hair follicle number and prolonged the growing phase during the transition from anagen to telogen. Meanwhile, immunology analyses revealed that IGF-1 also stimulated the proliferation of follicle cells in anagen of the matrix and down regulated TGF-β1 expression in hair follicles.ConclusionsThese observations suggest that IGF-1 is an effective stimulator of hair follicle development in wide-type mice in vivo and may be a promising drug candidate for baldness therapy.  相似文献   

12.
Nestin expression in hair follicle sheath progenitor cells   总被引:12,自引:0,他引:12       下载免费PDF全文
The intermediate filament protein, nestin, marks progenitor cells of the CNS. Such CNS stem cells are selectively labeled by placing GFP under the control of the nestin regulatory sequences. During early anagen or growth phase of the hair follicle, nestin-expressing cells, marked by GFP fluorescence in nestin-GFP transgenic mice, appear in the permanent upper hair follicle immediately below the sebaceous glands in the follicle bulge. This is where stem cells for the hair follicle outer-root sheath are thought to be located. The relatively small, oval-shaped, nestin-expressing cells in the bulge area surround the hair shaft and are interconnected by short dendrites. The precise locations of the nestin-expressing cells in the hair follicle vary with the hair cycle. During telogen or resting phase and in early anagen, the GFP-positive cells are mainly in the bulge area. However, in mid- and late anagen, the GFP-expressing cells are located in the upper outer-root sheath as well as in the bulge area but not in the hair matrix bulb. These observations show that the nestin-expressing cells form the outer-root sheath. Results of the immunohistochemical staining showed that nestin, GFP, keratin 5/8, and keratin 15 colocalize in the hair follicle bulge cells, outer-root sheath cells, and basal cells of the sebaceous glands. These data indicate that nestin-expressing cells, marked by GFP, in the hair follicle bulge are indeed progenitors of the follicle outer-root sheath. The expression of the unique protein, nestin, in both neural stem cells and hair follicle stem cells suggests their possible relation.  相似文献   

13.
Parathyroid hormone-related peptide (PTHrP) is the product of a growth factor-regulated gene that may play a role in cell growth and differentiation. Previous studies have shown a widespread, yet clearly localized, distribution in embryonic and fetal tissues. These findings are consistent with a paracrime or autocrine function of PTHrP which itself appears related to the transforming growth factor-β family of growth factors. Recently we found that reactive human bile ductules in chronic cholestatic conditions and in regenerating human liver express immunoreactive PTHrP, while normal adult human liver does not express this peptide. Because reactive bile ductules are thought to derive at least in part from ‘facultative stem cells’, the aim of this study was to investigate PTHrP immunoreactivity in human liver during fetal life and after birth. Therefore, we investigated the distribution of PTHrP in 12 human fetal liver specimens from 16 weeks of gestation until birth, 21 liver specimens from children from 1 day of age to 14 years of age and four normal adult liver biopsies. These specimens were partly needle biopsies, taken for diagnostic purposes, partly post mortem specimens. In fetal livers, we found that PTHrP was faintly expressed in the ductal plate, whereas bile ducts already incorporated in the mesenchyme of the portal tract showed stronger immunoreactivity. PTHrP immunoreactivity became more intense with gestational age, and bile ducts in neonatal livers showed strong immunoreactivity. In children from the age of 2–3 years old, PTHrP immunoreactivity progressively diminished and was no longer found after the age of 4 years. All adult biopsies were consistently negative for PTHrP. These results suggest that PTHrP plays a physiological role during normal human liver development and that this peptide may function as a growth and differentiation factor for growing and maturing bile ducts.  相似文献   

14.
Receptor activator of NF-κB (RANK), known for controlling bone mass, has been recognized for its role in epithelial cell activation of the mammary gland. Because bone and the epidermo-pilosebaceous unit of the skin share a lifelong renewal activity where similar molecular players operate, and because mammary glands and hair follicles are both skin appendages, we have addressed the function of RANK in the hair follicle and the epidermis. Here, we show that mice deficient in RANK ligand (RANKL) are unable to initiate a new growth phase of the hair cycle and display arrested epidermal homeostasis. However, transgenic mice overexpressing RANK in the hair follicle or administration of recombinant RANKL both activate the hair cycle and epidermal growth. RANK is expressed by the hair follicle germ and bulge stem cells and the epidermal basal cells, cell types implicated in the renewal of the epidermo-pilosebaceous unit. RANK signaling is dispensable for the formation of the stem cell compartment and the inductive hair follicle mesenchyme, and the hair cycle can be rescued by Rankl knockout skin transplantation onto nude mice. RANKL is actively transcribed by the hair follicle at initiation of its growth phase, providing a mechanism for stem cell RANK engagement and hair-cycle entry. Thus, RANK-RANKL regulates hair renewal and epidermal homeostasis and provides a link between these two activities.  相似文献   

15.
Angiogenesis is a prominent feature of a number of inflammatory human diseases, including rheumatoid arthritis, psoriasis, and cutaneous delayed-type hypersensitivity (DTH) reactions. Up-regulation of placental growth factor (PlGF), a member of the vascular endothelial growth factor (VEGF) family, has been found in several conditions associated with pathologic angiogenesis; however, its distinct role in the control of angiogenesis has remained unclear. To directly investigate the biologic function of PlGF in cutaneous inflammation and angiogenesis, DTH reactions were investigated in the ear skin of wild-type mice, of PlGF-deficient mice, and of transgenic mice with targeted overexpression of human PlGF-2 in epidermal keratinocytes, driven by a keratin 14 promoter expression construct. Chronic transgenic delivery of PlGF-2 to murine epidermis resulted in a significantly increased inflammatory response, associated with more pronounced vascular enlargement, edema, and inflammatory cell infiltration than seen in wild-type mice. Conversely, PlGF deficiency resulted in a diminished and abbreviated inflammatory response, together with a reduction of inflammatory angiogenesis and edema formation. VEGF expression was up-regulated at a comparable level in the inflamed skin of all genotypes. These findings reveal that placental growth factor plays a critical role in the control of cutaneous inflammation, and they suggest inhibition of PlGF bioactivity as a potential new approach for anti-inflammatory therapy.  相似文献   

16.
Interleukin 6 (IL-6) is a cytokine that mediates a wide range of inflammatory and immune responses. Its expression is elevated in inflammatory or immunodeficient diseases, including psoriasis, rheumatoid arthritis, and AIDS. To explore the role of IL-6 in skin, we utilized a human keratin 14 (K14) promoter to express IL-6 in the basal cells of stratified squamous epithelia of transgenic mice. Mice expressing the K14-IL-6 transgene were smaller than normal and exhibited retarded hair growth. Surprisingly, IL-6 expression did not lead to enhanced epidermal proliferation, but it did result in a thicker stratum corneum, with an otherwise seemingly normal program of differentiation. IL-6 expression did not lead to leukocytic infiltration, making it unlikely that it has direct proinflammatory activity in skin. Based on this study, one role of IL-6 relevant to host defense may be to enhance the stratum corneum, thereby providing increased protection from injurious stimuli or infection. If IL-6 plays additional roles in the skin, it is likely to act synergistically with factors that IL-6 alone cannot induce.  相似文献   

17.
Interaction between the epithelium and the mesenchyme is an essential feature of organogenesis, including hair follicle formation. The dermal papilla (DP), a dense aggregate of specialized dermis-derived stromal cells located at the bottom of the follicle, is a major component of hair that signals the follicular epithelial cells to prolong the hair growth process. However, little is known about DP-specific gene activation with regard to hair induction. In this study we demonstrate that a short fragment (839 bp) of the human versican (a core protein of one of the matrix chondroitin sulfate proteoglycans) promoter is sufficient to activate lacZ reporter gene expression in the DP of postnatal transgenic mice and also in the condensed mesenchyme (the origin of the DP) beneath the hair placode during hair follicle embryogenesis. Using the same versican promoter with green fluorescent protein (GFP), large numbers of fresh pelage DP cells were isolated from newborn transgenic skin by high-speed cell sorting. These GFP-positive DP cells showed abundant versican mRNA, confirming that the reporter molecules reflected endogenous versican gene expression. These sorted GFP-positive cells showed DP-like morphology in culture, but both GFP and versican expression was lost during primary culture. In vivo hair growth assays showed that GFP-positive cells could induce hair when grafted with epithelial cells, whereas GFP-negative cells grafted with epithelium or GFP-positive cells alone did not. These results suggest that versican may play an essential role both in mesenchymal condensation and in hair induction.  相似文献   

18.
Neuropilin 1 (NRP1) is a co-receptor for vascular endothelial growth factor (VEGF165), an inducer of vascular permeability and angiogenesis. Numerous physiological factors enhance VEGF expression and function but only a few have been shown to be negative regulators. Previously, we have shown that the naturally occurring soluble form of NRP1 (sNRP1) inhibits binding of VEGF165 to endothelial cells in vitro and impairs tumor growth in vivo. To investigate the role of sNRP1 in the regulation of vascular development and function, sNRP1 expression was targeted to the skin, where it is not normally expressed, using a keratin 14 (K14) promoter expression construct. K14-sNRP1 transgenic mice displayed normal skin architecture with a subtle abnormal vascular phenotype. While the overall number of skin blood vessels remained unchanged, the lumen size of smooth muscle-associated dermal vessels was reduced. K14-sNRP1 mice had reduced vascular permeability in response to VEGF165, but also to VEGF121 and platelet activating factor, suggesting that the lack of permeability was not solely due to the sequestration of VEGF. sNRP1 also reversed the increase in inflammation and edema induced by transgenic VEGF overexpression in cutaneous delayed-type hypersensitivity reactions. In summary, sNRP1 appears to primarily regulate vessel permeability while its effect on physiological angiogenesis is less evident in this model.  相似文献   

19.
In contrast to the established role of blood vessel remodeling in inflammation, the biologic function of the lymphatic vasculature in acute inflammation has remained less explored. We studied 2 established models of acute cutaneous inflammation, namely, oxazolone-induced delayed-type hypersensitivity reactions and ultraviolet B irradiation, in keratin 14-vascular endothelial growth factor (VEGF)-C and keratin 14-VEGF-D transgenic mice. These mice have an expanded network of cutaneous lymphatic vessels. Transgenic delivery of the lymphangiogenic factors VEGF-C and the VEGFR-3 specific ligand mouse VEGF-D significantly limited acute skin inflammation in both experimental models, with a strong reduction of dermal edema. Expression of VEGFR-3 by lymphatic endothelium was strongly down-regulated at the mRNA and protein level in acutely inflamed skin, and no VEGFR-3 expression was detectable on inflamed blood vessels and dermal macrophages. There was no major change of the inflammatory cell infiltrate or the composition of the inflammatory cytokine milieu in the inflamed skin of VEGF-C or VEGF-D transgenic mice. However, the increased network of lymphatic vessels in these mice significantly enhanced lymphatic drainage from the ear skin. These results provide evidence that specific lymphatic vessel activation limits acute skin inflammation via promotion of lymph flow from the skin and reduction of edema formation.  相似文献   

20.
We have recently shown that the expression of nestin, the neural stem cell marker protein, is expressed in bulge-area stem cells of the hair follicle. We used transgenic mice with GFP expression driven by the nestin regulatory element [nestin-driven GFP (ND-GFP)]. The ND-GFP stem cells give rise to the outer-root sheath of the hair follicle as well as an ND-GFP interfollicular vascular network. In this study, we demonstrate that ND-GFP stem cells isolated from the hair-follicle bulge area that are negative for the keratinocyte marker keratin 15 can differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. These pluripotent ND-GFP stem cells are positive for the stem cell marker CD34, as well as keratin 15-negative, suggesting their relatively undifferentiated state. The apparent primitive state of the ND-GFP stem cells is compatible with their pluripotency. Furthermore, we show that cells derived from ND-GFP stem cells can differentiate into neurons after transplantation to the subcutis of nude mice. These results suggest that hair-follicle bulge-area ND-GFP stem cells may provide an accessible, autologous source of undifferentiated multipotent stem cells for therapeutic application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号