首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular smooth muscle cells in spontaneously hypertensive rats (SHR) express angiotensin II-forming chymase (rat vascular chymase [RVCH]), which may contribute to blood pressure regulation. In this study, we studied whether chymase-dependent angiotensin II formation contributes to the regulation of blood pressure in SHR. The systolic blood pressure in 16-week-old Wistar-Kyoto (WKY) rats was 113 +/- 9 mmHg, compared to 172 +/- 3 mmHg in SHR. Using synthetic substrates for measuring angiotensin-converting enzyme (ACE) and chymase activities, it was found that both ACE and chymase activities in extracts from SHR aortas were significantly higher than in those from WKY rat aortas. Using angiotensin I as a substrate, angiotensin II formation in SHR was found to be significantly higher than that in WKY rats, and its formation was completely suppressed by an ACE inhibitor, but not by a chymase inhibitor. RVCH mRNA expression could not be detected in aorta extracts from either WKY rats or SHR. In carotid arteries isolated from WKY rats and SHR, angiotensin I-induced vasoconstriction was completely suppressed by an ACE inhibitor, but not by a chymase inhibitor. Angiotensin I-induced pressor responses in both WKY rats and SHR were also completely inhibited by an ACE inhibitor, but they were not affected by a chymase inhibitor. In SHR, an ACE inhibitor and an angiotensin II receptor blocker showed equipotent hypotensive effects, but a chymase inhibitor did not have a hypotensive effect. These results indicated that chymase-dependent angiotensin II did not regulate blood pressure in SHR in the present study.  相似文献   

2.
OBJECTIVE: Non specific lipoxygenase inhibitors have been reported to reduce the in vitro constrictor response and the in vivo pressor effect of angiotensin II in rats. The aim of this study was to assess the role of cysteinyl leukotrienes, in the vascular response to angiotensin II in spontaneously hypertensive rats (SHR). METHODS: Rings of thoracic aorta from SHR and normotensive Wistar-Kyoto rats (WKY) were compared in terms of contractile responses and release of cysteinyl leukotrienes in response to angiotensin II. RESULTS: Pretreatment with the specific 5-lipoxygenase inhibitor AA861 10 microM reduced the efficacy of angiotensin II in intact and endothelium-denuded aorta from SHR (% inhibition vs. control: 65+/-12.6% with endothelium (n=6), P<0.05; 43+/-7.2% without endothelium (n=6), P<0.05) but not in aorta from WKY. In addition, in aorta from SHR, the CysLT(1) receptor antagonist MK571 1 microM reduced by 55+/-6.1% (n=6, P<0.05) the contractile effects of angiotensin II in rings with endothelium but not in endothelium-denuded rings. Angiotensin II induced a 8.6+/-2.1-fold increase in cysteinyl leukotriene production in aorta rings from SHR with endothelium which was prevented by the AT(1) receptor antagonist losartan 1 microM but not by the AT(2) receptor antagonist PD123319 0.1 microM. In aorta rings from WKY, cysteinyl leukotriene production remained unchanged after exposition to angiotensin II. The cysteinyl leukotrienes (up to 0.1 microM) induced contractions in aorta rings from SHR but not from WKY. CONCLUSIONS: These data suggest that cysteinyl leukotrienes, acting at least in part on endothelial CysLT(1) receptors, are involved in the contractile response to angiotensin II in isolated aorta from SHR but not from WKY.  相似文献   

3.
OBJECTIVE: To study the effects of long-term treatment with the type 1 angiotensin (AT1) receptor antagonist losartan and the angiotensin-converting enzyme (ACE) inhibitor enalapril, on cardiac adrenomedullin (ADM), atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) gene expression. METHODS: Spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were given losartan (15 mg/kg per day) or enalapril (4 mg/kg per day) orally for 10 weeks. The effects of drugs on systolic blood pressure, cardiac hypertrophy, ANP, BNP and ADM mRNA and immunoreactive-ANP (IR)-ANP, IR-BNP and IR-ADM levels in the left ventricle and atria were compared. RESULTS: Losartan and enalapril treatments completely inhibited the increase of systolic blood pressure occurring with ageing in SHR. The ratio of heart to body weight was reduced in both losartan- and enalapril-treated SHR and WKY rats. Treatment with losartan or enalapril reduced left ventricular ANP mRNA and IR-ANP in both strains, and ventricular BNP mRNA levels in SHR rats. Inhibition of ACE, AT1 receptor antagonism, changes in blood pressure or cardiac mass had no effect on left ventricular ADM gene expression in SHR and WKY rats. In addition, atrial IR-ANP and IR-ADM levels increased in SHR whereas IR-BNP levels decreased in WKY and SHR rats in response to drug treatments. CONCLUSIONS: Our results show that ventricular ADM synthesis is an insensitive marker of changes in haemodynamic load or cardiac hypertrophy. Furthermore, the expression of ADM, ANP and BNP genes is differently regulated both in the left ventricle and atria in response to AT1 receptor antagonism and ACE inhibition.  相似文献   

4.
5.
It has been suggested that proangiotensin-12 (proang-12), a novel angiotensin peptide recently discovered in rat tissues, may function as a component of the tissue renin-angiotensin system (RAS). To investigate the role of proang-12 in the production of angiotensin II (Ang II), we measured its plasma and tissue concentrations in Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats, with and without RAS inhibition. The 15-week-old male WKY and SHR rats were left untreated or were treated for 7 days with 30?mg?kg(-1) per day losartan, an angiotensin receptor blocker, or with 20?mg?kg(-1) per day imidapril, an angiotensin-converting enzyme (ACE) inhibitor. Both treatments increased renin activity and the concentrations of angiotensin I (Ang I) and Ang II in the plasma of WKY and SHR rats, but neither affected plasma proang-12 levels. In contrast to the comparatively low level of proang-12 seen in plasma, cardiac and renal levels of proang-12 were higher than those of Ang I and Ang II. In addition, despite activation of the RAS in the systemic circulation, tissue concentrations of proang-12 were significantly reduced following treatment with losartan or imidapril. Similar reductions were also observed in the tissue concentrations of Ang II in both strains, without a reduction in Ang I. These results suggest that tissue concentrations of proang-12 and Ang II are regulated independently of the systemic RAS in WKY and SHR rats, which is consistent with the notion that proang-12 is a component of only the tissue RAS.  相似文献   

6.
Fifty years since thiazide diuretics were introduced, they are established as first-line antihypertensive therapy. Because the thiazide dosing profile lessened, the blood pressure lowering mechanism may lie outside their diuretic properties. We evaluated this mechanism in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) by examining the effects of low-dose hydrochlorothiazide (HCTZ) administration on renin-angiotensin system components. The 7-day, 1.5 mg/kg per day HCTZ did not change systolic pressure (SBP) in WKY, but decreased SBP by 41 ± 2 mm Hg (P < .0001) in SHR, independent of increased water intake, urine output, or alterations in electrolyte excretion. HCTZ significantly increased the plasma concentrations of angiotensin I (Ang I) and angiotensin II (Ang II) in both WKY and SHR while reducing angiotensin-converting enzyme (ACE) activity and the Ang II/Ang I ratio (17.1 ± 2.9 before vs. 10.3 ± 2.9 after, P < .05) only in SHR. HCTZ increased cardiac ACE2 mRNA and activity, and neprilysin mRNA in WKY. Conversely in SHR, ACE2 activity was decreased and aside from a 75% increase in AT1 mRNA in the HCTZ-treated SHR, the other variables remained unaltered. Measures of cardiac mas receptor mRNA showed no changes in response to treatment in both strains, although it was significantly lower in untreated SHR. These data, which document for the first time the effect of low-dose thiazide on the activity of the ACE2/Ang-(1-7)/mas receptor axis, suggest that the opposing arm of the system does not substantially contribute to the antihypertensive effect of thiazides.  相似文献   

7.
Left ventricular hypertrophy is an adaptive response to long standing hypertension. However, the influence of left ventricular hypertrophy with hypertension on extent of infarct expansion has not been studied. We compared the effects of left ventricular hypertrophy with hypertension on infarct expansion in spontaneously hypertensive rats (SHR, n = 76), Wistar-Kyoto rats (WKY; n = 46) and spontaneously hypertensive rats treated with delapril, an angiotensin converting enzyme (ACE) inhibitor (SHRD; n = 39). The survival rates at 7 days after myocardial infarction were 41%, 24%, and 46% for WKY, SHR, and SHRD. The survival rate of SHR was significantly lower than those of both SHRD and WKY (P < .05). In the surviving rats (18 SHR, 19 WKY, 18 SHRD), both left ventricular cavity area (LCVA) and the infarct segment length per the noninfarct segment length (FW/IVS), measured as indices of left ventricular dilation, were significantly less in SHR and SHRD than in WKY, and the thickness of the left ventricular free wall (Wth), used as an index of left ventricular thinning, was significantly higher in both SHR and SHRD than in WKY (P < .01). However, there was no significant difference in FW/IVS, LCVA, and Wth between SHR and SHRD. Hemodynamic findings 1 week after coronary occlusion demonstrated that all rats were in heart failure, and there were no significant differences in hemodynamics among the three groups. In conclusion, our findings showed that hypertrophy with hypertension reduced infarct expansion, but that reduction of blood pressure by ACE inhibitor did not reduce infarct expansion more than hypertrophy did. However, this finding suggests that an ACE inhibitor may improve the rate of survival of patients with left ventricular hypertrophy with hypertension.  相似文献   

8.
Angiotensin (Ang)-(1-7) Ang-(1-7) is formed from angiotensin II by angiotensin-converting enzyme 2 (ACE2) and modulates the renin-angiotensin system. We evaluated whether the Ang-(1-7)-Mas axis in the rostral ventrolateral medulla (RVLM) contributes to neural mechanisms of blood pressure (BP) regulation. We microinjected Ang-(1-7), Ang-(1-7)-Mas receptor antagonist A-779, and ACE2 inhibitor DX600 into the RVLM of anesthetized Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHRs). Unilateral Ang-(1-7) microinjection induced a significantly greater increase in AP (arterial blood pressure) in SHR than in WKY. Bilateral A-779 microinjection induced a significantly greater decrease in AP and renal sympathetic nerve activity in SHR than in WKY. Bilateral DX600 microinjection induced a significantly greater decrease in AP in SHR than in WKY. Our results suggest that endogenous Ang-(1-7) in the RVLM contributes to maintain AP and renal sympathetic nerve activity both in SHR and WKY and that its activity might be enhanced in SHR.  相似文献   

9.
10.
Some evidence suggests that long-term angiotensin-converting enzyme (ACE) inhibition may become less effective, thereby increasing angiotensin II levels, which could be inhibited by the addition of an angiotensin receptor blocker. We conducted a meta-analysis of randomized trials with searches of MEDLINE, EMBASE, and Cochrane databases. Overall, the combination of an ACE inhibitor and an angiotensin receptor blocker reduced ambulatory blood pressure by 4.7/3.0 mm Hg (95% confidence interval [CI], 2.9 to 6.5/1.6 to 4.3) compared with ACE inhibitor monotherapy and 3.8/2.9 mm Hg (2.4 to 5.3/0.4 to 5.4) compared with angiotensin receptor blocker monotherapy. Clinic blood pressure was reduced by 3.8/2.7 mm Hg (0.9 to 6.7/0.8 to 4.6) and 3.7/2.3 mm Hg (0.4 to 6.9/0.2 to 4.4) compared with ACE inhibitor and angiotensin receptor blocker, respectively. However, the majority of these studies used submaximal doses or once-daily dosing of shorter-acting ACE inhibitors and, when a larger dose of shorter-acting ACE inhibitor was given or a longer-acting ACE inhibitor was used, there was generally no additive effect of the angiotensin receptor blocker on blood pressure. Proteinuria was reduced by the combination compared with ACE inhibitor and angiotensin receptor blocker monotherapy, an effect that was independent of blood pressure in several studies, suggesting that the combination could have benefits in proteinuric nephropathies. None of the studies was of sufficient size and duration to determine whether there may be safety concerns. In conclusion, although there is a small additive effect on blood pressure with an ACE inhibitor-angiotensin receptor blocker combination, the routine use of this combination in uncomplicated hypertension is not recommended until more carefully controlled studies are performed.  相似文献   

11.
Angiotensin converting enzyme (ACE) activity was examined in large arteries and veins of rats and found to be present in most of the arteries and to a lesser extent in the veins, except for the femoral vessels which showed higher ACE activity in the vein than in the artery. For the aorta and all its branches, ACE activity was higher in the aorta and its branches in spontaneously hypertensive rats (SHR) than in age-matched normotensive Wistar-Kyoto rats (WKY), with the exception of the hepatic, pulmonary and basilar arteries where the levels were similar for SHR and WKY. For the vena cava and brachial vein, ACE activity was also higher in SHR than WKY but for most other veins the activity was the same with the exception of the pulmonary vein where ACE activity was higher in WKY. The acute treatment of SHR with cilazapril, an ACE inhibitor (0.3 and 3 mg/kg orally, for 4h) decreased aortic blood pressure and ACE activity in arterial and venous mesenteric and renal vessels in a dose-dependent fashion. Cilazapril, at the threshold hypotensive dose, markedly decreased ACE activity in each pair of aortic segments, carotid, pulmonary, subclavian, brachial and femoral vessels to a degree which was equivalent to that caused by the high dose. The effect outlasted a fall in blood pressure 24 h later. This was associated with a marked decrease in plasma angiotensin II and III and accumulation of angiotensin 1 at 4 h. No increase in plasma bradykinin or kallidin levels was detected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Goto K  Fujii K  Onaka U  Abe I  Fujishima M 《Hypertension》2000,36(4):575-580
Angiotensin-converting enzyme (ACE) inhibitor improves the impaired hyperpolarization and relaxation to acetylcholine (ACh) via endothelium-derived hyperpolarizing factor (EDHF) in arteries of spontaneously hypertensive rats (SHR). We tested whether the angiotensin type 1 (AT(1)) receptor antagonist also improves EDHF-mediated responses and whether the combined AT(1) receptor blockade and ACE inhibition exert any additional effects. SHR were treated with either AT(1) receptor antagonist TCV-116 (5 mg. kg(-1). d(-1)) (SHR-T), enalapril (40 mg. kg(-1). d(-1)) (SHR-E), or their combination (SHR-T&E) from 8 to 11 months of age. Age-matched, untreated SHR (SHR-C) and Wistar Kyoto (WKY) rats served as controls (n=8 to 12 in each group). Three treatments lowered blood pressure comparably. EDHF-mediated hyperpolarization to ACh in mesenteric arteries in the absence or presence of norepinephrine was significantly improved in all treated SHR. In addition, the hyperpolarization in the presence of norepinephrine was significantly greater in SHR-T&E than in SHR-E (ACh 10(-5) mol/L with norepinephrine: SHR-C -7; SHR-T -19; SHR-E -15; SHR-T&E -22; WKY -14 mV). EDHF-mediated relaxation, assessed in the presence of indomethacin and N:(G)-nitro-L-arginine, was markedly improved in all treated SHR. Hyperpolarization and relaxation to levcromakalim, a direct opener of ATP-sensitive K(+)-channel, were similar in all groups. These findings suggest that AT(1) receptor antagonists are as effective as ACE inhibitors in improving EDHF-mediated responses in SHR. The beneficial effects of the combined AT(1) receptor blockade and ACE inhibition appears to be for the most part similar to those of each intervention.  相似文献   

13.
Brief periods (a few seconds) of cyclic coronary occlusions applied early in reperfusion induce a cardioprotection against infarct size, called postconditioning (PostC) in which B2-bradykinin receptors play a pivotal role. Since angiotensin-converting enzyme (ACE) inhibitors reduce degradation of kinins, we studied the effects of PostC on infarct size and postischemic myocardial dysfunction in both normotensive (WKY) and spontaneously hypertensive rats (SHR) acutely or chronically treated with the ACE inhibitor Captopril. Isolated hearts from SHR and WKY rats were subjected to the following protocols: (a) ischemia for 30- and 120-min reperfusion (I/R); (b) I/R + PostC protocol (5-cycles 10-s I/R); (c) pretreatment with Captopril for 4-weeks before to subject the hearts to I/R with or without PostC maneuvers. Some SHR hearts were treated with Captopril during the 20- or 40-min early reperfusion with or without PostC maneuvers. Cardiac function was assessed in vivo with echocardiography. Left ventricular pressure and infarct size were measured ex vivo. Chronic Captopril significantly reduced left ventricular hypertrophy in SHR, and reduced infarct size in both WKY and SHR hearts. PostC maneuvers significantly reduced infarct size in WKY, but not in SHR hearts. Yet, PostC slightly improved postischemic systolic function in untreated SHR. Captopril given in reperfusion was unable to limit I/R injury in SHR hearts. Data show that PostC protection against infarct size is blunted in SHR and that PostC is unable to add its protective effect to those of chronic Captopril, which per se reduces cardiac hypertrophy and heart susceptibility to I/R insult.  相似文献   

14.
15.
高血压左心室肥厚与血管紧张素Ⅱ受体的关系   总被引:4,自引:0,他引:4  
目的探讨自发性高血压大鼠(SHR)左心室肥厚和血管紧张素Ⅱ(AngⅡ)受体的关系。 方法雄性SHR自10周龄始,给予依那普利[enalapril20mg/(kg  相似文献   

16.
目的观察不同月龄自发性高血压大鼠(SHR)肾脏血管紧张素转换酶2(ACE2) mRNA转录及其蛋白表达,初步探讨ACE2在高血压发生、发展过程中的可能作用。方法雄性SHR1月龄组(S1)、2月龄组(S2)、3月龄组(S3)、6月龄组(S6)和9月龄组(S9)共5组,每组各6只,各组均有相应月龄匹配的Wistar-Kyoto(WKY)大鼠作对照。采用RBP-Ⅰ型大鼠血压心率测定仪测量大鼠尾动脉收缩压(SBP);逆转录聚合酶链式反应(RT-PCR)法检测肾脏ACE2 mRNA的转录水平;免疫组化染色结合计算机图像分析方法测定肾脏ACE2蛋白的表达水平。结果1)SHR的SBP随着月龄的增加而上升,6月龄后趋于稳定。2)SHR和WKY肾脏ACE2蛋白和 mRNA水平均随着月份的增加而增加,3月龄时达高峰,6月龄后趋于稳定;且SHR肾脏ACE2蛋白和 mRNA水平均低于同龄的WKY。S1肾脏髓质内侧部ACE2免疫染色阳性面积百分比较皮质和髓质外侧部高,与1月后的分布相反。结论1)SHR肾脏ACE2 mRNA和蛋白的表达水平比WKY大鼠低。2)大鼠肾脏ACE2 mRNA和蛋白的表达具有时间和部位分布上的差异。  相似文献   

17.
We have evaluated the effects of an ACE inhibitor, enalapril (ENA) and of an angiotensin II receptor blocker, losartan (LOS), administered either at hypotensive or non-hypotensive dosage, on the cardiac and renal structure of spontaneously hypertensive rats (SHR). Forty-eight rats were included in the study: eight SHR were treated with low-dose (ld, 1 mg/kg/day) ENA; eight with low-dose (ld, 0.5 mg/kg/day) LOS; eight with high-dose (hd, 25 mg/kg/day) ENA; eight with high-dose (hd, 15 mg/kg/day) LOS; while eight Wistar-Kyoto (WKY) and eight SHR were kept untreated (unt). Treatment was given from the 4th to the 12th week of age. Systolic blood pressure (SBP) was measured non-invasively every week. The left ventricular weight to body weight (RLVM) and the left + right kidney weight (RKW) to body weight was measured, and the cardiac and glomerular interstitial collagen content was evaluated using sirius red staining and image analysis. In addition, cardiac metalloproteinases activity (43 kDa MMP, MMP-2, and MMP-9) was evaluated by zymography. A significant reduction in RLVM was observed in SHR given ENA hd or LOS hd. Cardiac collagen was significantly reduced in SHR ENA hd and SHR LOS hd as well as in SHR LOS ld, but not in SHR ENA ld. The 43 kDa MMP collagenase activity was greater in WKY unt compared with SHR unt, being normalized only in SHR ENA hd. The gelatinase activity of MMP-9 showed a trend similar to 43 kDa MMP, but differences between SHR and WKY unt were only of borderline statistical significance. No difference among groups was observed in MMP-2 activity. No significant differences in RKW was observed between groups. However, the collagen content in the glomerular perivascular space was significantly reduced in all treated groups, including those given ld, compared with SHR unt. In conclusion, LOS and ENA showed a similar preventive effect on the increase of RLVM in SHR, but, at least in part, different effects on the extracellular matrix in different organs, being cardiac collagen less sensitive to low dose (ld) ACE inhibition.  相似文献   

18.
19.
The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Because this interaction may be perturbed in genetic hypertension, we studied D1 dopamine and AT1 angiotensin receptors in immortalized renal proximal tubule (RPT) and A10 aortic vascular smooth muscle cells. In normotensive Wistar-Kyoto (WKY) rats, the D1-like agonist fenoldopam increased D1 receptors but decreased AT1 receptors. These effects were blocked by the D1-like antagonist SCH 23390 (10(-7) mol/L per 24 hours). In spontaneously hypertensive rat (SHR) RPT cells, fenoldopam also decreased AT1 receptors but no longer stimulated D1 receptor expression. Basal levels of AT1/D1 receptor coimmunoprecipitation were greater in WKY RPT cells (29+/-2 density units, DU) than in SHR RPT cells (21+/-2 DU, n=7 per group, P<0.05). The coimmunoprecipitation of D1 and AT1 receptors was increased by fenoldopam (10(-7) mol/L per 24 hours) in WKY RPT cells but decreased in SHR RPT cells. The effects of fenoldopam in RPT cells from WKY rats were similar in aortic vascular smooth muscle cells from normotensive BD IX rats, that is, fenoldopam decreased AT1 receptors and increased D1 receptors. Our studies show differential regulation of the expression of D1 and AT1 receptors in RPT cells from WKY and SHR. This regulation and D1/AT1 receptor interaction are different in RPT cells of WKY and SHR. An altered interaction of D1 and AT1 receptors may play a role in the impaired sodium excretion and enhanced vasoconstriction in hypertension.  相似文献   

20.
Sugita M  Sugita H  Kaneki M 《Hypertension》2004,44(4):484-489
Insulin resistance is associated with cardiovascular disease. Impaired insulin receptor substrate (IRS)-mediated signal transduction is a major contributor to insulin resistance. Recently, IRS-1 phosphorylation at serine 307 by stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) has been highlighted as a molecular event that causes insulin resistance. We investigated IRS-1-mediated insulin signaling, IRS-1 phosphorylation at serine 307, and SAPK/JNK activation status in the aorta of spontaneously hypertensive rats (SHR) by immunoprecipitation and immunoblotting. Insulin-stimulated tyrosine phosphorylation of insulin receptor and IRS-1 in SHR was decreased to 55% (P<0.01) and 40% (P<0.01) of the levels in Wistar-Kyoto rats (WKY), respectively. Insulin-stimulated IRS-1-associated phosphatidylinositol 3-kinase activation in SHR was reduced to 28% of the level in WKY (P<0.0001). Immunoblot analysis revealed that phosphorylated IRS-1 at serine 307 in SHR was increased to 261% (P<0.001) of the level in WKY. Phosphorylated (activated) SAPK/JNK in SHR was increased to 223% of the level in WKY (P<0.01). Serine-phosphorylated IRS-1 that was immunoprecipitated from the aorta of SHR was capable of inhibiting in vitro tyrosine phosphorylation by recombinant insulin receptor compared with WKY-derived IRS-1. These findings demonstrate that insulin resistance in the aorta of SHR was associated with elevated IRS-1 phosphorylation at serine 307 and increased SAPK/JNK activation. The present study suggests that increased SAPK/JNK activation may play an important role in the pathogenesis of vascular insulin resistance via inhibitory serine phosphorylation of IRS-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号