首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
V M Cassone  R F Lane  M Menaker 《Brain research》1983,289(1-2):129-134
Indoleamine levels in punches of the medial hypothalamus containing the suprachiasmatic nuclei (SCN) of 4-week-old cockerels were determined by HPLC-EC. Melatonin levels in punches were determined by radioimmunoassay (RIA). Daily rhythms of serotonin (5-HT) and of its metabolite 5-hydroxy-3-indoleacetic acid (5-HIAA) were observed; levels were higher at midnight than at midday. A daily rhythm with the same phase in punch melatonin content was also observed. Pinealectomy at 1 week after hatching abolished the 5-HIAA and melatonin rhythm in 4-week-old birds but did not abolish the 5-HT rhythm. Injections of melatonin (0.5 mg/kg) increased 5-HT, 5-HIAA and melatonin levels in the hypothalamic punches. These results indicate that circulating melatonin of pineal origin may act to increase 5-HT turnover and/or release in the SCN. They suggest a link between the circadian secretion of pineal melatonin and the regulation of 5-HT projections to the hypothalamus from the raphe nuclei in the brainstem of the chicken. We have previously shown that the rhythmic secretion of melatonin by the pineal is influenced by oscillators in the brain via the superior cervical ganglia. The results reported here indicate that melatonin in turn may regulate brain oscillators, suggesting a neuroendocrine loop within the avian circadian system.  相似文献   

2.
Sympathetic regulation of chicken pineal rhythms   总被引:1,自引:0,他引:1  
Adult hens were chronically cannulated and held in light-dark (LD) 12:12 h lighthing regimes or in constant darkness (DD). Periodic blood sampling for 5–9 days revealed circadian rhythms in plasma melatonin titres. Superior cervical ganglionectomy (SCG-X) performed 1 week after hatching had little or no effect on these rhythms in LD, but unlike normals. SCG-X birds did not sustain persistent rhythms in DD. In SCG-X birds, norepinephrine (NE) infusion for 12 h of each 24 h in DD significantly reduced plasma melatonin titres during the infusion and re-established a rhythm.After each experiment, hens were killed, their pineals were removed and assayed by HPLC-EC for NE. dopamine (DA). serotonin (5-HT) and 5-hydroxy-3-indole-acetic acid (5-HIAA). SCG-X resulted in a 90% depletion of pineal NE: DA content was reduced to undetectable levels. Pineal 5-HT and 5-HIAA were also reduced by SCG-X.The chicken pineal contains circadian oscillators which persist in vitro8.19.29. The results reported here suggest that noradrenergic fibres from the SCG regulate the pineal's inherent rhythmicity. NE normally released from sympathetic terminals during the bird's day may synchronize oscillators within the pineal by inhibiting melatonin synthesis.  相似文献   

3.
The effects of chronic oral nicotine administration on the pineal melatonin and brain transmitter monoamines were studied in male CBA mice, which possess a clear daily rhythm of melatonin secretion. On the 50th day of nicotine administration, pineal melatonin as well as cerebral dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), norepinephrine (NE), 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) concentrations were determined at various times. The chronic nicotine treatment did not alter the timing of the pineal melatonin peak, which occurred at 10 h after the light offset. However, in mice drinking nicotine solution, the nocturnal pineal melatonin levels were lower than in control mice drinking tap water. The chronic nicotine treatment increased the striatal DA, DOPAC, HVA and 5-HIAA levels, the hypothalamic NE, MHPG and 5-HIAA and the cortical MHPG. Most prominent effects of nicotine were found at 8 h after the light offset, when the striatal levels of DA and HVA, hypothalamic NE and MHPG as well as cortical MHPG were significantly elevated in the nicotine-treated mice compared with the control mice. No direct correlation between nicotine's effects on brain transmitter monoamines and on pineal melatonin levels was apparent. The results suggest that chronic nicotine treatment slightly suppresses the melatonin production but does not alter the daily rhythm of pineal melatonin in mice maintained on a light-dark cycle. However, the results indicate that nicotinic receptors might be involved in the regulation of pineal function.  相似文献   

4.
Pyridoxine deficiency causes physiologically significant decrease in brain serotonin (5-HT) due to decreased decarboxylation of 5-hydroxytryptophan (5-HTP). We have examined the effect of pyridoxine deficiency on indoleamine metabolism in the pineal gland, a tissue with high indoleamine turnover. Adult male Sprague-Dawley rats were fed either a pyridoxine-supplemented or pyridoxine-deficient diet for 8 weeks. Pyridoxine deficiency did not alter the pattern of circadian rhythm of pineal 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), N-acetylserotonin (NAS), and melatonin. However the levels of these compounds were significantly lower in the pineal glands of pyridoxine-deficient animals. Pineal 5-HTP levels were consistently higher in the pyridoxine-deficient animals and a conspicuous increase was noticed at 22.00 h. Increase in pineal NAS and melatonin levels caused by isoproterenol (5 mg/kg at 17.00 h) were significantly lower (P less than 0.05) in the pyridoxine-deficient animals. Treatment of pyridoxine-deficient rats with pyridoxine restored the levels of pineal 5-HT, 5-HIAA, NAS, and melatonin to values seen in pyridoxine-supplemented control animals. These results suggest that 5-HT availability could be an important factor in the regulation of the synthesis of pineal NAS and melatonin.  相似文献   

5.
Effects of neonatal Borna disease virus infection (BDV) on the postnatal development of brain monoaminergic systems in rats were studied. Tissue content of norepinephrine (NE), dopamine (DA) and its metabolite, 3,4-dihydroxyphenol acetic acid (DOPAC), and serotonin (5-HT) and its metabolite, 5-hydroxyindole-3-acetic acid (5-HIAA) were assayed by means of HPLC-EC in frontal cortex, cerebellum, hippocampus, hypothalamus and striatum of neonatally BDV-infected and sham-inoculated male Lewis rats of 8, 14, 21, 60 and 90 days of age. Both NE and 5-HT concentrations were significantly affected by neonatal BDV infection. The cortical and cerebellar levels of NE and 5-HT were significantly greater in BDV-infected rats than control animals at postnatal days (PND) 60 and 90. Tissue content of NE in hippocampus was unaffected. In hippocampus, neonatally BDV-infected rats had lower 5-HT levels at PND 8 and significantly elevated levels at PND 21 and onwards. Neither striatal levels of 5-HT nor hypothalamic levels of 5-HT and NE were affected by neonatal BDV infection, suggesting that the monoamine systems in the prenatally maturing brain regions are less sensitive to effects of neonatal viral infection. 5-HIAA/5-HT ratio was not altered in BDV-infected rats indicating no changes in the 5-HT turnover in the brain regions damaged by the virus. Neither DA nor DOPAC/DA ratio was affected by neonatal BDV infection in any of the brain regions examined. The present data demonstrate significant and specific alterations in monoaminergic systems in neonatally BDV-infected rats. This pattern of changes is consistent with the previously reported behavioral abnormalities resulting from neonatal BDV infection.  相似文献   

6.
The effects of parathion on male rat pineal N-acetyltransferase (NAT) activity, hydroxyindole-O-methyltransferase (HIOMT) activity and pineal and serum melatonin levels at the end of light period (2000 h) and at night (2300 h and 0100 h) were studied. Additionally, pineal levels of 5-hydroxytryptophan (5-HTP), serotonin (5-HT), and 5-hydroxyindole acetic acid (5-HIAA) were estimated. Parathion was administered intragastrically at total doses (over 6 days) of either 6.5 or 13 mg/kg. Control rats received vehicle (corn oil) only. During the study, the rats were exposed to light:dark cycles of 14:10 with light off at 2100 h. Pineal NAT activity was increased at 0100 h following parathion administration at both doses, but HIOMT activity was unaffected. Pineal and serum melatonin levels were increased at night (2300 h and 0100 h) after the 13 mg/kg dose of parathion while the lower dose increased pineal melatonin only at 0100 h. Also, both doses decreased 5-HTP at 2000 h while the lower dose increased it at 2300; 5-HT was significantly decreased at 2300 h and 5-HIAA levels were lower but only significantly so for the 13 mg/kg dose at 2000 h. The results indicate that parathion has significant effects on pineal melatonin synthesis by mechanisms which remain unknown.  相似文献   

7.
Rats submitted to regular 12 h cycles of light and darkness for three weeks were sacrificed at various times of the day. 5-HT, 5-HIAA and tryptophan levels were estimated in the fronto-parietal cerebral cortex. Tyrosine and free and total tryptophan levels in serm were estimated in parallel. Significant circadian variations in 5-HT and 5-HIAA levels were found in cerebral tissues. The peaks of 5-HT and 5-HIAA levels were detected during the light and dark periods respectively, the maximal fluctuations being seen between 17.00 h and 21.00 h, two times separating the light off. Important significant circadian variations in free and total serum tryptophan levels were also observed. In both cases, the maximal levels were found during the middle of the dark phase after the peak of 5-HIAA levels. The circadian rhythm of tyrosine levels in serum was in opposite phase with that of tryptophan (free or total). The diurnal changes in tryptophan content in cerebral tissues seemed thus related to those found in serum. Taking in consideration results obtained in previous studies16,17 carried out in similar experimental conditions, it was concluded that the parallel increase in serum free tryptophan and in tissues 5-HIAA levels seen during the night were not related to a stimulation of 5-HT turnover. Indeed 5-HT synthesis is minimal at this time16.  相似文献   

8.
We recently determined that melatonin stimulated serotonin (5-HT) secretion from rat pineal glands by increasing 5-HT release from the pinealocytes (μM melatonin concentrations) and by inhibiting 5-HT uptake in the pineal sympathetic nerve endings (mM melatonin concentrations). The present study investigated whether a single melatonin injection could alter the content of indoleamines in the rat pineal gland, as well as its possible dependence on the daytime of administration. Melatonin (150 μg/kg) was i.p. injected at 8 time points (11.00 h, 14.00 h, 17.00 h, 20.00 h, 23.00 h, 02.00 h, 05.00 h and 08.00 h) to rats kept in 12:12 h light:dark cycle (lights on at 07.00 h). Melatonin injections in the afternoon (17:00 h) and late in the nighttime (02.00 h and 05.00 h) decreased pineal 5-HT content 90 min later. The levels of 5-hydroxyindoleacetic acid (5-HIAA) were also decreased 90 min after the melatonin treatment at 14.00 h, 17.00 h and 02.00 h. The effect of melatonin on 5-HT content was a long-lasting effect (still evident after 180 min) only when injected at 02.00 h, whereas 5-HIAA levels were found to be decreased 180 min after melatonin treatment at 14.00 h and 23.00 h. No changes in these compounds were detected 240 min after melatonin treatment. Moreover, melatonin did not change 5-hydroxytryptophan levels at any of the daytime points studied. By contrast, 90 min after the injection of melatonin at 20.00 h, an increased content of pineal N-acetylserotonin was observed. This effect of melatonin could be mediated through a phase alteration of the pineal N-acetyltransferase activity rhythm by acting on the suprachiasmatic clock, althought a direct melatonin effect on the pineal rhythmic function cannot be excluded. The effects of the hormone on 5-HT and 5-HIAA contents agree with previous findings on the inhibitory effect of pharmacological doses of melatonin on pineal 5-HT uptake, which presumably would result in a decreased intraneuronal content of 5-HT and its acid metabolite. These data point to an acute regulatory action of exogenous melatonin on the pineal melatonin synthesis pathway which seems to be limited to two daytime phases: the afternoon-early evening period and the second half of the night.  相似文献   

9.
The levels of the monoamines dopamine (DA), serotonin (5-HT) and norepinephrine (NE) and the monoaminergic metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were measured with HPLC-ECD in 42 samples from human brain putamen. The influence of gender and of age was investigated and correlations between the monoamines were established. The DAergic system shows a significant difference between males and females, with females having lower DA and higher DOPAC levels and a higher DOPAC/DA ratio than males. No gender-related differences of 5-HT and its metabolites were observed, nor of NE. Three different age groups (group 1: 0–9.9 years; group 2: 10–59.9 years; group 3: 60 years and older) were defined according to previous studies on ontogenesis and senescence in human brain. An increase in 5-HT levels, decrease in 5-HIAA levels a d a decrease in the 5-HIAA/5-HT ratio were observed after the first decade of life. Changes in the DAergic system were seen in senescence, with decreasing DA levels and an increase in the HVA/DA ratio. DOPAC, HVA and the DOPAC/DA ratio are unaffected. NE is similar in all age groups. The analysis of the relation of the levels of the three monoamines proved a strong correlation between the DAergic and 5-HTergic systems. The nature of this relationship might have an impact on neuro-psychiatric disorders and brain function.  相似文献   

10.
Levels of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) were measured in hypothalamic and limbic nuclei of ovariectomized rats after various doses of estradiol and at various intervals after estradiol administration. Of 13 areas examined, time- and dose-dependent effects of estrogen on monoamine content were restricted to only a few, discrete areas which concentrate estradiol. Subcutaneous administration of 1-50 micrograms of estradiol benzoate (EB) and measurement of monoamines 24 h later was associated with dose-dependent increases of NE in the medial preoptic nucleus, diagonal band nucleus and periventricular area of the anterior hypothalamus, and increased levels of DA in the periventricular area of the preoptic area. No changes were found in 5-HT levels, but dose-dependent increases in the level of the 5-HT metabolite, 5-hydroxyindole acetic acid (5-HIAA), were measured in the lateral portion of the ventromedial nucleus. Effects of 5 micrograms of EB were evaluated at 1.5, 6, 12 and 45 h after administration. No changes were noted at 1.5 h, but 5-HIAA in the ventromedial nucleus was elevated at 6 and 12 h. NE levels were elevated at 12 and 45 h in the diagonal band and preoptic nuclei and at 45 h in the lateral septum and periventricular area of the hypothalamus. DA levels decreased in the arcuate-median eminence area 45 h after estrogen. Intravenous administration of 10 micrograms of estrogen and measurement of monoamines 1 h later was not associated with altered levels of any monoamine suggesting that the estrogen-dependent changes are consistent with the genomic model for steroid hormone action.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Concentrations of the neurotransmitters, serotonin (5-HT), dopamine (DA), and norepinephrine (NE) were measured in the developing rat brain at 12, 19, 26 and 42 days of age. The amino acid precursors, tryptophan (TRP) and tyrosine (TYR) were measured along with the 5-HT and DA metabolites, 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA), in brain and cerebrospinal fluid (CSF) at the above ages. This first report of CSF HVA levels in the developing rat shows that it, like 5-HIAA, declines with age. In contrast, the ontogeny of the compounds in brain are dissimilar, with 5-HIAA remaining relatively constant with age while HVA declines markedly. Possible reasons for the differences and similarities in the ontogeny of 5-HIAA and HVA levels in brain and CSF are discussed. The persistence of the ontogenetic pattern for the neurotransmitters and acid metabolites after central DA depletion is also reported.  相似文献   

12.
Summary Five experiments were carried out on the control of melatonin levels in the pineal gland of a diurnal species, the Eastern chipmunk (Tamias striatus). We confirmed that the exposure of chipmunks to fluorescent white light of 3,981–4,304 lux during the normal dark period does not prevent the rise in pineal melatonin levels normally associated with darkness. Also, the administration of propranolol (20mg/kg) at 8 p.m. did not block the rise in pineal melatonin in animals exposed to either dark or light at night. Similarly, if chipmunks received propranolol 4 hours into the dark phase, pineal melatonin levels were not depressed 2 hours later. When animals were superior cervical ganglionectomized, however, the pineal content of melatonin remained low regardless of whether the animals were exposed to darkness or light at night. The exposure of chipmunks acutely to light at midnight (4 hours after darkness onset) had only a slight depressive effect on pineal melatonin 30 min later; by comparison, when chipmunks were acutely exposed to light at 3 a.m. (7 hours after darkness onset) daytime pineal melatonin levels were reached within 15 min after light onset. These findings in a diurnal species, the Eastern chipmunk, differ markedly when compared to previously reported observations on nocturnal laboratory rodents.  相似文献   

13.
1. Clorgyline increased pineal melatonin and N-acetylserotonin (NAS) and decreased 5-hydroxyindoleacetic add (5-HIAA) content in 3 and 12 months of age male Sprague-Dawley rats kept under 12:12 h light: dark schedule. Exposure to light for 24 h before Clorgyline administration resulted in additonal elevation of NAS and melatonin.NAS and melatonin levels after clorgyline injections were significantly higher while 5-HIAA levels were significantly lower in young than in middle-aged rats.

2.The 5-HIAA/5-HT ratio (index of monoamine oxidase activity) was higher in middle-aged than in young rats suggesting the lesser degree of clorgyline-induced inhibition of MAO-A in old than in young rats.

3. It is suggested that melatonin response to a single dose of the selective MAO-A inhibitor might be used for the assessment of the aging changes of the rat (and human) pineals.  相似文献   


14.
无先兆偏头痛患者血单胺类递质变化的研究   总被引:4,自引:0,他引:4  
目的 了解5-羟色胺(5-TH)、5-羟吲哚乙酸(5-HIAA)、多巴胺(DA)、去甲肾上腺素(NE)在无先兆偏头痛发病中的作用。方法 用荧光分光光度法检测35例无先兆偏头痛患者(发作期16例、间歇期19例)和23例正常人血浆及血小板5-HT、5-HIAA、DA、NE含量。结果 无先兆偏头痛患者发作期组血浆5-HT含量低于对照组(P<0.05),而5-HIAA含量高于对照组(P<0.01);间歇期组5-HT含量高于发作期组,而5-HIAA含量低于发作期组(P<0.01);发作期组血浆DA、NE含量均低于对照组(P<0.01)间歇期组血浆DA与发作期组相比亦有显著性差异(P<0.01)。无先兆偏头痛患者发作期组血小板5-HT含量高于对照组和间歇期组,而5-HIAA含量低于对照组和间歇期组(P<0.01);而发作期组血小板NE含量高于对照组和间歇期组(P<0.01);DA含量则低于对照组和间歇期组(P<0.01)。结论 单胺类递质对偏头痛的发生可能有重要意义。  相似文献   

15.
The involvement of dopaminergic (DA) and serotonergic (5-HT) systems in circling was assessed by determining the neurochemical correlates of circling induced and maintained by two different schedules of water reinforcement. The conditioned circling paradigm was employed in an attempt to replicate reports that levels of DA and 3,4-dihydroxyphenylacetic acid (DOPAC) were increased in the striatum and nucleus accumbens septi (NAS) contralateral to the direction of circling. Rats trained to circle using a continuous schedule of reinforcement did not exhibit any changes in concentrations of DA, DOPAC, or homovanillic acid (HVA). Bilateral increases in 5-HT concentrations were observed in the striatum. Use of an intermittent schedule of reinforcement (FR-2) produced higher rates of circling. In rats maintained on the FR-2 schedule, no changes in DA or its metabolites were observed in the striatum. The ratio of HVA to DA was, however, increased bilaterally, suggesting a bilateral augmentation of DA utilization. Concentrations of DA were lower in the NAS contralateral to direction of turning. While NAS levels of HVA were elevated bilaterally when compared to non-circling controls, HVA was lower in the NAS contralateral to the direction of circling. DA utilization, as estimated by HVA: DA ratios, was increased bilaterally in the NAS. None of the measures of DA activity within the olfactory tubercle (OT) were influenced by circling. Turnover of 5-HT, as estimated by the ratio of 5-HT to 5-hydroxyindoleacetic acid (5-HIAA), was increased bilaterally in the striatum, NAS, and OT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Differential circadian rhythms in 5-HT levels were found in the hypothalamus and pineal (but not in the cortex, hippocampus or midbrain) in ferrets kept in either long (14 h light/10 h dark) or short (8 h light/16 h dark) photoperiods. 5-HT decreased during the first 6 h of illumination in all areas examined from animals kept in short photoperiods. In long photoperiods, 5-HT in the hypothalamus (particularly the anterior region) increased during the first 6 h after onset of light and levels in the pineal became arrhythmic. There were no differential effects of light on 5-HIAA/5-HT ratios. Removal of the pineal or the superior cervical ganglia abolished these differential rhythms, as did subcutaneous implants of oestradiol (releasing about 5 micrograms/day). Melatonin (1 mg/day) injected 8 h after the onset of light into animals kept in long photoperiods resulted in circadian 5-HT rhythms resembling those from animals exposed to short photoperiods, whereas melatonin given at 14 h after onset of light did not have this effect. It is suggested that 5-HT containing neural systems may play a role in the way the pineal transmits information about the duration of the photoperiod to the neural structures controlling the pituitary.  相似文献   

17.
Because of the likelihood that androgen-induced sex specific brain differentiation is mediated by various neurotransmitters, their concentrations were measured in the mid-term human fetal hypothalamus, cortex and cerebrospinal fluid (CSF). Tissue was collected from 32 hysterotomy specimens aged from 10 to 23 weeks, immediately frozen in liquid nitrogen, and stored at -20 degrees C. 5-Hydroxytryptamine (5-HT), 5-hydroxy indole acetic acid (5-HIAA), norepinephrine (NE) and dopamine (DA) levels were measured by a fluorometric assay. Cord serum testosterone levels were measured by radioimmunoassay. In the male fetuses, hypothalamic concentrations of 5-HT, 5-HIAA and NE were all significantly increased in comparison to those in the cortex. Because the number of female fetuses was small, only the 5-HIAA levels were seen to be significantly higher in the hypothalamus than in the cortex. In the CSF from fetuses of both sexes, the DA levels were greatly raised. Concentrations of NE were significantly higher in male fetuses aged from 14-16 weeks, a time when plasma testosterone levels are also elevated. It is hypothesized that the raised plasma testosterone and hypothalamic NE concentrations are inter-related.  相似文献   

18.
The levels of serotonin (5-HT), 5 hydroxyindoleacetic acid (5-HIAA), dopamine (DA), homovanillic acid (HVA), norepinephrine (NE), and tyrosine hydroxylase (TH) activity were measured in the focus (spiking) and nonfocus (nonspiking) regions of the temporal neocortex of 20 patients with intractable complex partial seizures. The levels of 5-HT, DA, 5-HIAA, and HVA were higher in the focus when compared to the nonfocus. Values for NE and TH activity were not different when focus and nonfocus were compared. The ratios of metabolite to precursor for 5-HT and DA were not significantly different between the focus and the nonfocus, suggesting that the changes observed were the result of a modification in the synthesis and release of these amines. Such changes in the epileptic focus could be caused by altered transsynaptic regulatory processes, which occur as a result of neuronal loss, gliosis, or neuronal sprouting.  相似文献   

19.
Summary. The effect of age and cold acclimatization on the regional distribution of monoamines in duckling spinal cord was studied. In thermoneutral controls (TN), the high dopamine (DA) to norepinephrine (NE) ratios (0.25 at 4 weeks of age and 0.15 at 6 weeks of age) suggest the presence of specific (non precursor) dopaminergic pools in cervical spinal cord. DA levels and the ratio of DA to NE were lowered by age and cold exposure in the cervical cord. In TN ducklings, serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) showed a decline with age in the spinal cord, indicating that this system is affected with development, whereas cold exposure prevents this decrease. The contents of 5-HT (+58%), 5-HIAA (+93%) and the ratio of 5-HIAA to 5-HT (+50%) are higher in the cervical spinal cord of cold acclimated than in TN ducklings. These results indicate that central monoaminergic systems are markedly affected by age and cold exposure. Received November 11, 1999; accepted March 6, 2000  相似文献   

20.
When Richardson's ground squirrels were kept under light:dark cycles of 14:10 h there was no nocturnal rise in pineal hydroxyindole-O-methyltransferase (HIOMT) activity. Conversely, the 10 h dark period was associated with large nocturnal rises in both pineal serotonin-N-acetyltransferase (NAT) activity and radioimmunoassayable melatonin levels. The nighttime rises in pineal NAT and melatonin were not suppressed by the exposure of the animals to a light irradiance of 925 mu W/cm2 during the normal dark period. On the other hand, when the light irradiance was increased to 1850 mu W/cm2 the rise in pineal NAT activity was eliminated while the melatonin rise was greatly reduced. When ground squirrels were acutely exposed to a light irradiance of 1850 mu W/cm2 for 30 min beginning at 5.5 h after lights out, pineal NAT activity and melatonin levels were reduced to daytime values within 30 min. The half-time (t 1/2) for each constituent was less than 10 min. Exposure to a light irradiance of either 5 s or 5 min (beginning at 5.5 h into dark period) was equally as effective as 30 min light exposure in inhibiting pineal NAT activity and melatonin levels. When animals were returned to darkness after a 30 min exposure to a light irradiance of 1850 mu W/cm2 at night, both pineal NAT activity and melatonin levels were restored to high nighttime levels within 2 h of their return to darkness. The results indicate that the pineal gland of the wild-captured, diurnal Richardson's ground squirrel is 9000 X less sensitive to light at night than is the pineal gland of the laboratory raised, nocturnal Syrian hamster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号