首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to clarify the mechanism of the inhibitory effect of forskolin on contraction, cytosolic Ca2+ level ([Ca2+]i), and Ca2+ sensitivity in guinea pig ileum. Forskolin (0.1 nM~10 µM) inhibited high K+ (25 mM and 40 mM)- or histamine (3 µM)-evoked contractions in a concentration-dependent manner. Histamine-evoked contractions were more sensitive to forskolin than high K+-evoked contractions. Spontaneous changes in [Ca2+]i and contractions were inhibited by forskolin (1 µM) without changing the resting [Ca2+]i. Forskoln (10 µM) inhibited muscle tension more strongly than [Ca2+]i stimulated by high K+, and thus shifted the [Ca2+]i-tension relationship to the lower-right. In histamine-stimulated contractions, forskolin (1 µM) inhibited both [Ca2+]i and muscle tension without changing the [Ca2+]i-tension relationship. In α-toxin-permeabilized tissues, forskolin (10 µM) inhibited the 0.3 µM Ca2+-evoked contractions in the presence of 0.1 mM GTP, but showed no effect on the Ca2+-tension relationship. We conclude that forskolin inhibits smooth muscle contractions by the following two mechanisms: a decrease in Ca2+ sensitivity of contractile elements in high K+-stimulated muscle and a decrease in [Ca2+]i in histamine-stimulated muscle.  相似文献   

2.
Group 1 metabotropic glutamate receptors (mGluRs) can positively affect postsynaptic neuronal excitability and epileptogenesis. The objective of the present study was to determine whether group 1 mGluRs might be involved in synaptically-induced intracellular free Ca2+ concentration ([Ca2+]i) spikes and neuronal cell death induced by 0.1 mM Mg2+ and 10 µM glycine in cultured rat hippocampal neurons from embryonic day 17 fetal Sprague–Dawley rats using imaging methods for Ca2+ and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays for cell survival. Reduction of extracellular Mg2+ concentration ([Mg2+]o) to 0.1 mM induced repetitive [Ca2+]i spikes within 30 sec at day 11.5. The mGluR5 antagonist 6-Methyl-2-(phenylethynyl) pyridine (MPEP) almost completely inhibited the [Ca2+]i spikes, but the mGluR1 antagonist LY367385 did not. The group 1 mGluRs agonist, 3,5-dihydroxyphenylglycine (DHPG), significantly increased the [Ca2+]i spikes. The phospholipase C inhibitor U73122 significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The IP3 receptor antagonist 2-aminoethoxydiphenyl borate or the ryanodine receptor antagonist 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate also significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The TRPC channel inhibitors SKF96365 and flufenamic acid significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The mGluR5 antagonist MPEP significantly increased the neuronal cell survival, but mGluR1 antagonist LY367385 did not. These results suggest a possibility that mGluR5 is involved in synaptically-induced [Ca2+]i spikes and neuronal cell death in cultured rat hippocampal neurons by releasing Ca2+ from IP3 and ryanodine-sensitive intracellular stores and activating TRPC channels.  相似文献   

3.

Aim:

Free fatty acid receptor 4 (FFA4; formerly known as GPR120) is the G protein-coupled receptor (GPCR) for omega-3 polyunsaturated fatty acids. FFA4 has been found to express in the small intestines and colons of mice and humans. In this study we investigate the effects of omega-3 polyunsaturated fatty acids on FFA4 in human colon epithelial cells in vitro.

Methods:

HCT116 and HT-29 human colon epithelial cell lines endogenously expressing FFA4 were used. Intracellular Ca2+ concentration ([Ca2+]i) was measured in fura 2-AM-loaded cells with fluorescence spectrophotometry. RT-PCR and immunohistochemistry were used to detect FFA4.

Results:

Ten to 100 μmol/L of omega-3 polyunsaturated fatty acids α-linolenic acid (αLA) or eicosapentaenoic acid (EPA) induced dose-dependent [Ca2+]i increase in HCT116 and HT-29 cells, whereas docosahexaenoic acid (DHA) had no effect. In addition, the omega-6 fatty acids linoleic acid and γ-linoleic acid also dose-dependently increase [Ca2+]i, but the mono-unsaturated fatty acid oleic acid and saturated fatty acids such as stearic acid and palmitic acid had no effect. In HCT116 and HT-29 cells, the αLA-induced [Ca2+]i increase was partially inhibited by pretreatment with EGTA, phospholipase C inhibitor edelfosine, cADPR inhibitors 8-bro-cADPR or DAB, and abolished by pretreatment with Ca2+ATPase inhibitor thapsigargin, but was not affected by Gi/o protein inhibitor PTX or IP3R inhibitor 2-APB.

Conclusion:

Omega-3 and omega-6 long-chain polyunsaturated fatty acids (C18-20) induce Ca2+ mobilization responses in human colonic epithelial cells in vitro through activation of FFA4 and PTX-insensitive Gi/o protein, followed by Ca2+ release from thapsigargin-sensitive Ca2+ stores and Ca2+ influx across the plasma membrane.  相似文献   

4.

Background and Purpose

Quercetin is a natural polyphenolic flavonoid that displays anti-diabetic properties in vivo. Its mechanism of action on insulin-secreting beta cells is poorly documented. In this work, we have analysed the effects of quercetin both on insulin secretion and on the intracellular calcium concentration ([Ca2+]i) in beta cells, in the absence of any co-stimulating factor.

Experimental Approach

Experiments were performed on both INS-1 cell line and rat isolated pancreatic islets. Insulin release was quantified by the homogeneous time-resolved fluorescence method. Variations in [Ca2+]i were measured using the ratiometric fluorescent Ca2+ indicator Fura-2. Ca2+ channel currents were recorded with the whole-cell patch-clamp technique.

Key Results

Quercetin concentration-dependently increased insulin secretion and elevated [Ca2+]i. These effects were not modified by the SERCA inhibitor thapsigargin (1 μmol·L−1), but were nearly abolished by the L-type Ca2+ channel antagonist nifedipine (1 μmol·L−1). Similar to the L-type Ca2+ channel agonist Bay K 8644, quercetin enhanced the L-type Ca2+ current by shifting its voltage-dependent activation towards negative potentials, leading to the increase in [Ca2+]i and insulin secretion. The effects of quercetin were not inhibited in the presence of a maximally active concentration of Bay K 8644 (1 μmol·L−1), with the two drugs having cumulative effects on [Ca2+]i.

Conclusions and Implications

Taken together, our results show that quercetin stimulates insulin secretion by increasing Ca2+ influx through an interaction with L-type Ca2+ channels at a site different from that of Bay K 8644. These data contribute to a better understanding of quercetin''s mechanism of action on insulin secretion.  相似文献   

5.
In the present report, we investigated the effects of methanol on canine basilar cerebral arterial rings. Our data indicate that acute methanol exposure (5–675 mM) induces potent contractile responses of cerebral arteries in a concentration-dependent manner. Pharmacological antagonists, such as propranolol, phentolamine, haloperidol, methysergide, naloxone, diphenhydramine, and cimetidine, did not exert any effects on these methanol-induced contractions. Likewise, a potent antagonist of cyclo-oxygenase, and subsequent synthesis of prostanoids (i.e., indomethacin), failed to exert any effect on methanol-induced contractions. No differences in responsiveness to methanol in canine cerebral arteries were found in vessel segments with or without endothelial cells. Removal of extracellular Ca2+([Ca2+]o) partially attenuated methanol-induced contractions, while withdrawal of extracellular Mg2+([Mg2+]o) potentiated the contractions. In the complete absence of [Ca2+]o, 10 mM caffeine and 400 mM methanol induced similar, transient contractions followed by relaxation in K+-depolarized cerebral vascular tissues. Methanol-induced contractions were, however, completely abolished by pretreatment of tissue with 10 mM caffeine. Our results indicate that (1) methanol causes contractile responses of cerebral arterial smooth muscle (independent of amine, prostanoid, or opioid mediation; (2) in addition to a need for [Ca2+]o, an intracellular release of Ca2+is required for methanol-induced contractions; and (3) Mg deficiency potentiates the contractile responses of methanol on these brain vessels. The data presented in the study suggest that methanol-induced contractions occur via an sarcoplasmic reticulum-releasable store of [Ca2+]i; via mediation of either ryanodine–caffeine type receptors or a caffeine-releasable intracellular store of Ca2+.  相似文献   

6.
In this study, we prepared cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha, and investigated the effect of CE-WIB801C on collagen-induced human platelet aggregation. CE-WIB801C dose-dependently inhibited collagen-induced platelet aggregation, and its IC50 value was 175 μg/ml. CE-WIB801C increased cAMP level more than cGMP level, but inhibited collagen-elevated [Ca2+]i mobilization and thromboxane A2 (TXA2) production. cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS increased the CE-WIB801C-downregulated [Ca2+]i level in a dose dependent manner, and strongly inhibited CE-WIB801C-induced inositol 1, 4, 5-trisphosphate receptor (IP3R) phosphorylation. These results suggest that the inhibition of [Ca2+]i mobilization by CE-WIB801C is resulted from the cAMP/A-kinase-dependent phosphorylation of IP3R. CE-WIB801C suppressed TXA2 production, but did not inhibit the activities of cyclooxygenase-1 (COX-1) and TXA2 synthase (TXAS). These results suggest that the inhibition of TXA2 production by WIB801C is not resulted from the direct inhibition of COX-1 and TXAS. In this study, we demonstrate that CE-WIB801C with cAMP-dependent Ca2+-antagonistic antiplatelet effects may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.  相似文献   

7.
8.
Phenolic compounds affect intracellular free Ca2+ concentration ([Ca2+]i) signaling. The study examined whether the simple phenolic compound octyl gallate affects ATP-induced Ca2+ signaling in PC12 cells using fura-2-based digital Ca2+ imaging and whole-cell patch clamping. Treatment with ATP (100 µM) for 90 s induced increases in [Ca2+]i in PC12 cells. Pretreatment with octyl gallate (100 nM to 20 µM) for 10 min inhibited the ATP-induced [Ca2+]i response in a concentration-dependent manner (IC50=2.84 µM). Treatment with octyl gallate (3 µM) for 10 min significantly inhibited the ATP-induced response following the removal of extracellular Ca2+ with nominally Ca2+-free HEPES HBSS or depletion of intracellular Ca2+ stores with thapsigargin (1 µM). Treatment for 10 min with the L-type Ca2+ channel antagonist nimodipine (1 µM) significantly inhibited the ATP-induced [Ca2+]i increase, and treatment with octyl gallate further inhibited the ATP-induced response. Treatment with octyl gallate significantly inhibited the [Ca2+]i increase induced by 50 mM KCl. Pretreatment with protein kinase C inhibitors staurosporin (100 nM) and GF109203X (300 nM), or the tyrosine kinase inhibitor genistein (50 µM) did not significantly affect the inhibitory effects of octyl gallate on the ATP-induced response. Treatment with octyl gallate markedly inhibited the ATP-induced currents. Therefore, we conclude that octyl gallate inhibits ATP-induced [Ca2+]i increase in PC12 cells by inhibiting both non-selective P2X receptor-mediated influx of Ca2+ from extracellular space and P2Y receptor-induced release of Ca2+ from intracellular stores in protein kinase-independent manner. In addition, octyl gallate inhibits the ATP-induced Ca2+ responses by inhibiting the secondary activation of voltage-gated Ca2+ channels.  相似文献   

9.

Aim:

To identify the mechanisms underlying the elevation of intracellular Ca2+ level ([Ca2+]i) induced by lowering extracellular glucose in rat hypothalamic arcuate nucleus NPY neurons.

Methods:

Primary cultures of hypothalamic arcuate nucleus (ARC) neurons were prepared from Sprague-Dawley rats. NPY neurons were identified with immunocytochemical method. [Ca2+]i was measured using fura-2 AM. Ca2+ current was recorded using whole-cell patch clamp recording. AMPK and GSK3β levels were measured using Western blot assay.

Results:

Lowering glucose level in the medium (from 10 to 1 mmol/L) induced a transient elevation of [Ca2+]i in ARC neurons, but not in hippocampal and cortical neurons. The low-glucose induced elevation of [Ca2+]i in ARC neurons depended on extracellular Ca2+, and was blocked by P/Q-type Ca2+channel blocker ω-agatoxin TK (100 nmol/L), but not by L-type Ca2+ channel blocker nifedipine (10 μmol/L) or N-type Ca2+channel blocker ω-conotoxin GVIA (300 nmol/L). Lowering glucose level increased the peak amplitude of high voltage-activated Ca2+ current in ARC neurons. The low-glucose induced elevation of [Ca2+]i in ARC neurons was blocked by the AMPK inhibitor compound C (20 μmol/L), and enhanced by the GSK3β inhibitor LiCl (10 mmol/L). Moreover, lowering glucose level induced the phosphorylation of AMPK and GSK3β, which was inhibited by compound C (20 μmol/L).

Conclusion:

Lowering glucose level enhances the activity of P/Q type Ca2+channels and elevates [Ca2+]i level in hypothalamic arcuate nucleus neurons via inhibition of GSK3β.  相似文献   

10.
Summary The modes by which Endothelin-1 (ET) induces Ca2+-influx and the relative functional importance of the different sources of Ca2+ for ET-induced contraction were studied using fura 2-loaded and unloaded rat aortic strips. ET caused an increase in the cytosolic free Ca2+ level ([Ca2+]i) followed by a tonic contraction in Ca2+-containing solution, and produced a transient elevation of [Ca2+]i followed by a small sustained contraction in Ca2+-free medium. ET also stimulated 45Ca influx into La2+-inaccessible fraction significantly. With the same change of [Ca2+]i, ET caused a larger tension than that induced by high K. ET-induced contraction and [Ca2+]i elevation were not significantly inhibited by 0.1–0.3 M nicardipine which nearly abolished the contraction and [Ca+]i elevation produced by high K. During treatment of the strips with high K, addition of ET induced further increases in [Ca2+]i and muscle tension, and vice versa. In Ca2+-free medium, ET-induced contraction was influenced neither by ryanodine-treatment nor by high K-treatment, although the former attenuated and the latter potentiated the [Ca2+]i transient induced by ET. Further, the ET-induced sustained contraction under Ca2+-free conditions began to develop after the [Ca2+]i level returned to the baseline. Thus, it seems that the Ca2+ released from the ryanodine-sensitive and -insensitive Ca2+ stores by ET may provide only a minor or indirect contribution, if any, to the tension development. ET might cause a contraction mainly by stimulating Ca2+-influx through Ca2+ channel(s) other than voltage-dependent Ca2+ channels in character, and by increasing the sensitivity of the contractile filaments to Ca2+ or activating them Ca2+-independently.Visiting from Zun Yi Medical College, China Send offprint requests to I. Takayanagi at the above address  相似文献   

11.
2-Benzyloxybenzaldehyde (CCY1a) inhibited the formyl-Met-Leu-Phe (fMLP)-induced elevation of cytosolic [Ca2+] ([Ca2+]i) in rat neutrophils. The late plateau phase, but not the initial Ca2+ spike, of the fMLP-induced [Ca2+]i change was inhibited by CCY1a. In the absence of external Ca2+, CCY1a had no appreciable effect on either the fMLP- or cyclopiazonic acid (CPA)-induced [Ca2+]i elevation. CCY1a failed to inhibit [Ca2+]i changes induced by N-ethylmaleimide, GEA3162, ionomycin or sphingosine, but slightly inhibited the Ca2+ signals elicited by ATP or interleukin-8 (IL-8). In a classical Ca2+ readdition protocol, addition of CCY1a after cell activation strongly inhibited the [Ca2+]i response to fMLP, whilst that to CPA was only slightly reduced. CCY1a nearly abrogated the fMLP-stimulated Mn2+ influx but was less effective on the CPA-induced response. CCY1a attenuated the levels of tyrosine-phosphorylated bands in the 70–85 kDa molecular mass range. CCY1a had no effect on the basal [Ca2+]i level, the pharmacologically isolated plasma membrane Ca2+-ATPase activity or on the mitochondrial membrane potential. Thus, CCY1a blocks fMLP-induced Ca2+ entry into neutrophils probably by blocking the relevant Ca2+ channel directly or, alternatively, indirectly through the attenuation of tyrosine phosphorylation of some cellular proteins.  相似文献   

12.
Green tea has been receiving considerable attention as a possible preventive agent against cancer and cardiovascular disease. Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea. Using digital calcium imaging and an assay for [3H]-inositol phosphates, we determined whether EGCG increases intracellular [Ca2+] ([Ca2+]i) in non-excitable human astrocytoma U87 cells. EGCG induced concentration-dependent increases in [Ca2+]i. The EGCG-induced [Ca2+]i increases were reduced to 20.9% of control by removal of extracellular Ca2+. The increases were also inhibited markedly by treatment with the non-specific Ca2+ channel inhibitors cobalt (3 mM) for 3 min and lanthanum (1 mM) for 5 min. The increases were not significantly inhibited by treatment for 10 min with the L-type Ca2+ channel blocker nifedipine (100 nM). Treatment with the inhibitor of endoplasmic reticulum Ca2+-ATPase thapsigargin (1 µM) also significantly inhibited the EGCG-induced [Ca2+]i increases. Treatment for 15 min with the phospholipase C (PLC) inhibitor neomycin (300 µM) attenuated the increases significantly, while the tyrosine kinase inhibitor genistein (30 µM) had no effect. EGCG increased [3H]-inositol phosphates formation via PLC activation. Treatment for 10 min with mefenamic acid (100 µM) and flufenamic acid (100 µM), derivatives of diphenylamine-2-carboxylate, blocked the EGCG-induced [Ca2+]i increase in non-treated and thapsigargin-treated cells but indomethacin (100 µM) did not affect the increases. Collectively, these data suggest that EGCG increases [Ca2+]i in non-excitable U87 cells mainly by eliciting influx of extracellular Ca2+ and partly by mobilizing intracellular Ca2+ stores by PLC activation. The EGCG-induced [Ca2+]i influx is mediated mainly through channels sensitive to diphenylamine-2-carboxylate derivatives.  相似文献   

13.

Aim:

Intracellular Ca2+ ([Ca2+]i) overload occurs in myocardial ischemia. An increase in the late sodium current (INaL) causes intracellular Na+ overload and subsequently [Ca2+]i overload via the reverse-mode sodium-calcium exchanger (NCX). Thus, inhibition of INaL is a potential therapeutic target for cardiac diseases associated with [Ca2+]i overload. The aim of this study was to investigate the effects of ketamine on Na+-dependent Ca2+ overload in ventricular myocytes in vitro.

Methods:

Ventricular myocytes were enzymatically isolated from hearts of rabbits. INaL, NCX current (INCX) and L-type Ca2+ current (ICaL) were recorded using whole-cell patch-clamp technique. Myocyte shortening and [Ca2+]i transients were measured simultaneously using a video-based edge detection and dual excitation fluorescence photomultiplier system.

Results:

Ketamine (20, 40, 80 μmol/L) inhibited INaL in a concentration-dependent manner. In the presence of sea anemone toxin II (ATX, 30 nmol/L), INaL was augmented by more than 3-fold, while ketamine concentration-dependently suppressed the ATX-augmented INaL. Ketamine (40 μmol/L) also significantly suppressed hypoxia or H2O2-induced enhancement of INaL. Furthermore, ketamine concentration-dependently attenuated ATX-induced enhancement of reverse-mode INCX. In addition, ketamine (40 μmol/L) inhibited ICaL by 33.4%. In the presence of ATX (3 nmol/L), the rate and amplitude of cell shortening and relaxation, the diastolic [Ca2+]i, and the rate and amplitude of [Ca2+]i rise and decay were significantly increased, which were reverted to control levels by tetrodotoxin (TTX, 2 μmol/L) or by ketamine (40 μmol/L).

Conclusion:

Ketamine protects isolated rabbit ventricular myocytes against [Ca2+]i overload by inhibiting INaL and ICaL.  相似文献   

14.

Aim:

To investigate the reverse mode function of Na+/Ca2+ exchangers NCX1.1 and NCX1.5 expressed in CHO cells as well as their modulations by PKC and PKA.

Methods:

CHO-K1 cells were transfected with pcDNA3.1 (+) plasmid carrying cDNA of rat cardiac NCX1.1 and brain NCX1.5. The expression of NCX1.1 and NCX1.5 was examined using Western blot analysis. The intracellular Ca2+ level ([Ca2+]i) was measured using Ca2+ imaging. Whole-cell NCX currents were recorded using patch-clamp technique. Reverse mode NCX activity was elicited by perfusion with Na+-free medium. Ca2+ paradox was induced by Ca2+-free EBSS medium, followed by Ca2+-containing solution (1.8 or 3.8 mmol/L CaCl2).

Results:

The protein levels of NCX1.1 and NCX1.5 expressed in CHO cells had no significant difference. The reverse modes of NCX1.1 and NCX1.5 in CHO cells exhibited a transient increase of [Ca2+]i, which was followed by a Ca2+ level plateau at higher external Ca2+ concentrations. In contrast, the wild type CHO cells showed a steady increase of [Ca2+]i at higher external Ca2+ concentrations. The PKC activator PMA (0.3-10 μmol/L) and PKA activator 8-Br-cAMP (10-100 μmol/L) significantly enhanced the reverse mode activity of NCX1.1 and NCX1.5 in CHO cells. NCX1.1 was 2.4-fold more sensitive to PKC activation than NCX1.5, whereas the sensitivity of the two NCX isoforms to PKA activation had no difference. Both PKC- and PKA-enhanced NCX reverse mode activities in CHO cells were suppressed by NCX inhibitor KB-R7943 (30 μmol/L).

Conclusion:

Both NCX1.1 and NCX1.5 are functional in regulating and maintaining stable [Ca2+]i in CHO cells and differentially regulated by PKA and PKC. The two NCX isoforms might be useful drug targets for heart and brain protection.  相似文献   

15.
Liu H  Jia X  Luo Z  Guan H  Jiang H  Li X  Yan M 《Toxicology letters》2012,208(3):254-261
Elevated intracellular Ca2+ content is implicated in ethanol-induced hepatocyte apoptosis and necrosis. Extracellular Ca2+ influx has been suggested to play a role in this process. However, the exact Ca2+-permeable channel involved in the plasma membrane is still unclear. This study investigated the role of store-operated calcium entry (SOCE) in ethanol-induced cytosolic free Ca2+ concentrations ([Ca2+]i) increase and hepatotoxicity. Ethanol (25-800 mM) dose-dependently increased [Ca2+]i content and hepatocyte damage in HepG2 cells. 2-aminoethoxydiphenyl borate (2-APB), the proved efficient antagonist of SOCs, dose-dependently suppressed the ethanol (200 nM)-increased [Ca2+]i content and protected against ethanol-induced viability loss and transaminase leakage. Exposure to 200 mM ethanol for 24 h significantly upregulated the mRNA and protein expression of calcium release-activated calcium channel protein 1 (CRACM1, Orai1) and stromal interaction molecule 1 (STIM1), the two main molecular constituents of SOCs, which was sustained for at least 72 h. In addition, small interfering RNA knockdown of STIM1 attenuated the ethanol-increased [Ca2+]i content and hepatotoxicity. Taken together, these data indicate that the Ca2+ channel of SOCE may be involved in the pathogenesis of ethanol-induced intracellular Ca2+ elevation and consequent hepatocyte damage.  相似文献   

16.

Background and Purpose

N-arachidonoyl glycine (NAGly) is a lipoamino acid with vasorelaxant properties. We aimed to explore the mechanisms of NAGly''s action on unstimulated and agonist-stimulated endothelial cells.

Experimental Approach

The effects of NAGly on endothelial electrical signalling were studied in combination with vascular reactivity.

Key Results

In EA.hy926 cells, the sustained hyperpolarization to histamine was inhibited by the non-selective Na+/Ca2+ exchanger (NCX) inhibitor bepridil and by an inhibitor of reversed mode NCX, KB-R7943. In cells dialysed with Cs+-based Na+-containing solution, the outwardly rectifying current with typical characteristics of NCX was augmented following histamine exposure, further increased upon external Na+ withdrawal and inhibited by bepridil. NAGly (0.3–30 μM) suppressed NCX currents in a URB597- and guanosine 5′-O-(2-thiodiphosphate) (GDPβS)-insensitive manner, [Ca2+]i elevation evoked by Na+ removal and the hyperpolarization to histamine. In rat aorta, NAGly opposed the endothelial hyperpolarization and relaxation response to ACh. In unstimulated EA.hy926 cells, NAGly potentiated the whole-cell current attributable to large-conductance Ca2+-activated K+ (BKCa) channels in a GDPβS-insensitive, paxilline-sensitive manner and produced a sustained hyperpolarization. In cell-free inside-out patches, NAGly stimulated single BKCa channel activity.

Conclusion and Implications

Our data showed that NCX is a Ca2+ entry pathway in endothelial cells and that NAGly is a potent G-protein-independent modulator of endothelial electrical signalling and has a dual effect on endothelial electrical responses. In agonist pre-stimulated cells, NAGly opposes hyperpolarization and relaxation via inhibition of NCX-mediated Ca2+ entry, while in unstimulated cells, it promotes hyperpolarization via receptor-independent activation of BKCa channels.  相似文献   

17.
High concentrations of ATP induce membrane blebbing. However, the underlying mechanism involved in epithelial cells remains unclear. In this study, we investigated the role of the P2X7 receptor (P2X7R) in membrane blebbing using Par C5 cells. We stimulated the cells with 5 mM of ATP for 1~2 hrs and found the characteristics of membrane blebbing, a hallmark of apoptotic cell death. In addition, 500 µM Bz-ATP, a specific P2X7R agonist, induced membrane blebbing. However, 300 µM of Ox-ATP, a P2X7R antagonist, inhibited ATP-induced membrane blebbing, suggesting that ATP-induced membrane blebbing is mediated by P2X7R. We found that ATP-induced membrane blebbing was mediated by ROCK I activation and MLC phosphorylation, but not by caspase-3. Five mM of ATP evoked a biphasic [Ca2+]i response; a transient [Ca2+]i peak and sustained [Ca2+]i increase secondary to ATP-stimulated Ca2+ influx. These results suggest that P2X7R plays a role in membrane blebbing of the salivary gland epithelial cells.  相似文献   

18.
Summary Potassium (K+) channel openers decrease intracellular free Ca2+ concentrations ([Ca2+]i) by hyperpolarizing the membrane and deactivating the Ca2+-channels. To examine whether the hyperpolarization produced by K+-channel openers has other effects on the mechanical activity of vascular smooth muscle, we investigated the effects of levcromakalim (BRL 38227) on membrane potential, [Ca2+]i, as measured with fura-2, and force of contraction induced by 30 mmol/l KCl-physiological salt solution (PSS), in canine coronary arteries. BRL 38227 hyperpolarized the membrane and reduced increases in [Ca2+]i and in contractile force induced by 30 mmol/l KCl-PSS. The [Ca2+]i-contractile force curve, determined in the presence of BRL 38227, was located to the right of the control curve determined by decreasing extracellular Ca2+ concentrations ([Ca2+]o) in 30 mmol/l KCl-PSS. The [Ca2+ i-contractile force curve, determined by decreasing extracellular K+ concentrations ([K+]o), was also located to the right of that determined by decreasing [Ca2+]o in 30 mmol/l KCl-PSS. The effect of BRL 38227, a reduction in the Ca 2+-sensitivity of contractile elements, was antagonized by the ATP-sensitive K+-channel blocker, glibenclamide (10–6 or 10–5 mol/1). These results suggest that the membrane hyperpolarization induced by BRL 38227, or the repolarization caused by reducing ([K+]o), decreases the Ca2+-sensitivity of contractile elements of vascular smooth muscle.Correspondence to T. Yanagisawa at the above address  相似文献   

19.
Summary Arginine-vasopressin (AVP) caused a marked shape change reaction and rise in [Ca2+]i in human blood platelets only when the extracellular buffer contained Mg2+ or Ca2+. At physiological concentrations of the cations the potency of AVP was higher in the presence of Mg2+ than of Ca2+. The amplitude of the shape change reaction was also greater with Mg2+ than with Ca2+, although the [Ca2+]i-rise was slightly more marked with extracellular Ca2+. The concentration of Mg2+ at which AVP showed half of its maximal effects was below the physiological plasma level of the cation, whereas the corresponding value for Ca2+ was higher. Addition of Ca2+ to the Mg2+ containing medium did not further enhance the action of AVP on platelet shape. In platelet-rich plasma the potency and efficacy of AVP in causing a shape change were similar in the presence and absence of EGTA, whereas with EDTA in the medium AVP had no effect. In conclusion, Mg2+ has an essential physiological role in AVP-induced platelet activation, which is brought about partly by release of intracellular calcium and partly by some other intracellular mechanism.  相似文献   

20.
The effect of calmidazolium on cytosolic free Ca2+ concentrations ([Ca2+]i) and viability has not been explored in human hepatoma cells. This study examined whether calmidazolium altered [Ca2+]i and caused cell death in HA59T cells. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and WST-1, respectively. Calmidazolium at concentrations ≥1 μM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 1.5 μM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Calmidazolium induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was insensitive to L-type Ca2+ entry blockers, but was inhibited partly by enhancing or inhibiting protein kinase C activity. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), calmidazolium-induced [Ca2+]i rises were largely inhibited; and conversely, calmidazolium pretreatment totally suppressed thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 μM U73122 did not change calmidazolium-induced [Ca2+]i rises. At concentrations between 1 and 15 μM, calmidazolium induced apoptosis-mediated cell death. Collectively, in HA59T hepatoma cells, calmidazolium induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx via protein kinase C-regulated Ca2+ entry pathway. Calmidazolium caused cytotoxicity via apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号