首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
两种数字乳腺X射线摄影系统的比较   总被引:3,自引:0,他引:3       下载免费PDF全文
目的探讨比较全视野数字乳腺X射线摄影系统(FFDM)与计算机乳腺X射线摄影系统(CRM)在影像质量与辐射剂量方面的差异。方法用FFDM对ALVIM乳腺摄影体模TRM进行自动曝光控制(AEC)摄影,再用CRM专用成像板(IP)在同一摄影机上用相同条件对体模摄影。固定AEC摄影时的kV值,选用曝光量数值14、16、18、22和24 mAs,在FFDM机上对模体摄影,记录上述摄影条件和入射皮肤剂量(ESD)及平均腺体剂量(AGD)。由5位影像科资深医师分别在相同条件下对所得影像进行软阅读,按照5分值判断法评判,然后绘制受试者工作特征曲线(ROC)曲线,计算出每种信号的判断概率值(Pdet),对所得数据进行统计学分析。结果在辐射剂量均为1.36 mGy时,FFDM对模体内钙化点和肿块灶Pdet值比CRM高,尤其是微小钙化点和小肿块灶,微小钙化点最大差值为0.215,小肿块灶最大差值为0.245。在相同的Pdet值下,FFDM的辐射剂量比CRM低,ESD的值降低了26%,腺体平均剂量降低了41%。在使用FFDM摄影时,当mAs值超过AEC值时,Pdet值没有明显改变。结论在相同曝光条件下,FFDM对乳腺钙化点和肿块灶的检出率高于CRM;在获得相似图像质量时,FFDM的辐射剂量明显低于CRM。  相似文献   

2.
目的 探讨并找出全数字乳腺摄影机(FFDM)的最佳曝光条件。方法 用全数字乳腺X 线摄影机对Fluke NA 18-220 乳腺模体进行自动曝光控制(AEC)摄影,记录曝光条件为29kV、40mAs,用手动调整不同的mAs值(24、28、32、36和45mAs)和kV (22、23、25、27和31kV)对模体曝光,由4位影像学家在相同条件下进行软阅读,并按照美国放射学会(ACR)的评分标准对模体中的钙化点、尼龙纤维、肿块灶进行打分,对所得数据进行方差分析(ANOVA)。结果 在相同的摄影电压29 kV下,手动曝光条件下32mAs和AEC的40mAs的影像信息的评价分值差异没有统计学意义(P>0.05),说明这2种摄影条件对乳腺摄影体模内容物的显示基本相同,但二者的辐射剂量确有明显的不同。在相同的摄影电流40mAs下,27kV和29kV的影像信息的评价分值没有统计学意义(P>0.05),说明这2种摄影条件对乳腺摄影体模内容物的显示基本相同,但二者的辐射剂量不相同。结论 在保证影像质量的前提下,自动曝光控制摄影条件初始设定水平的合理性应进行必要的检测来验证。  相似文献   

3.
目的 通过参照乳腺屏-片系统摄影自动曝光控制模式,对乳腺CR摄影自动曝光进行校正,从而实现影像质量与辐射剂量的最优化。方法 应用屏-片组合,28 kV条件下,对40 mm厚的有机玻璃进行自动曝光,以此所得曝光量(mAs)为基准,分10档分别采用±10 mAs的曝光量用CR进行曝光,选取LgM=2.0的曝光量作为基准,对CR的自动曝光模式进行校正。采用经校正后的CR自动曝光模式,分别采用26、28和30 kV对Fluke NA 18-220 乳腺模体进行摄影,模体采用自动曝光控制(AEC)模式进行摄影,记录曝光量数值(mAs),对CR影像进行处理。同时CR采用相同的kV和照射野及不同的曝光量对模体进行摄影,CR影像经后处理后请4位放射医师进行双盲阅片,按照美国放射学会(ACR)的评分标准评价打分。结果 采用稍高于传统屏-片组合的曝光量作为CR自动曝光校正基准值,可实现乳腺CR摄影自动曝光模式的校正,经校正后模体测试影像的评分均高于ACR的评分标准。结论 乳腺CR摄影自动曝光模式可根据CR特点进行校正,经校正后的乳腺CR摄影的自动曝光控制模式应用于临床既可明显降低病人辐射剂量,又可得到满足临床诊断需求的优质乳腺影像。  相似文献   

4.
目的比较散射线滤除模板及常规滤线栅对数字X射线影像进行散射线校正所成影像质量与辐射剂量差异。方法 以对比度-细节体模(CDRAD 2.0)及ROC统计学体模(ALVIM TRS)为成像对象,分别使用散射线滤除模板技术和常规滤线栅技术,获取经散射线校正的体模数字X射线影像,比较两种散射线滤除方法所得的体模影像图像质量因子(IQF)和信号检出概率,分析两种方法图像质量及体模表面入射剂量差别。结果 在不同体模表面照射剂量条件下,应用散射线滤除模板技术和常规滤线栅技术,消除散射线后的数字影像其图像质量因子(IQF)和信号检出概率(Pdet)差异均有统计学意义(P<0.05)。结论 数字X射线摄影时,应用散射线滤除模板技术(SFTT)可以有效滤除散射线。与滤线栅相比,相同照射条件下SFTT能够明显改善图像质量;在获得相同图像质量前提下,应用SFTT,体模表面入射剂量比使用滤线栅降低30%;SFTT为数字X射线摄影中有效滤除散射线、提高X射线图像质量、降低患者剂量的可选择方法。  相似文献   

5.
目的 研究数字化X射线胸部高千伏摄影曝光剂量与图像质量的关系,确定数字化X射线摄影最佳曝光剂量。方法 选择胸部高千伏摄影管电压120 kV,摄影mAs从1 mAs逐档增加至25 mAs,对模拟人体胸部厚度摄影体模与CDRAD 2.0对比度细节体模进行摄影,测量体模表面X射线入射剂量,由5位观察者独立阅读体模影像,比较任意两曝光条件组之间的图像质量因子(IQF),确定高千伏胸部摄影最佳条件。比较4和10 mAs条件下正常人体胸部摄影图像质量评分。结果 胸部高千伏摄影体模曝光条件从1 mAs增加到25 mAs,体模表面X射线入射剂量从0.067 mGy增加至1.468 mGy。随着X射线入射剂量的增加,影像质量影响因子IQF值不断减小,观察者阅读体模信号的IQF差异有统计学意义(F=31.00,P<0.05),曝光剂量条件选择在1~4 mAs时所对应的IQF均值差异有统计学意义(F=15.3,P<0.05),4~10 mAs时所对应的IQF差异无统计学意义,10~25 mAs时所对应的IQF均值差异有统计学意义(F=9.74,P<0.05)。曝光剂量条件选择4和10 mAs所对应的体模表面入射剂量为0.250和0.606 mGy,两种条件下胸部图像质量的综合评分分别为(24.8±1.64)、(25.8±2.05)分,差异无统计学意义。结论 随着数字化X射线摄影剂量的增加所获得图像信息量增加。满足临床诊断的标准人体胸部高千伏数字化X摄影最佳剂量为0.250 mGy左右。  相似文献   

6.
目的 探讨全数字乳腺摄影系统、计算机乳腺摄影系统及屏/片系统在乳腺摄影中影像质量、辐射剂量的差异.方法 用Giotto 乳腺摄影机对乳腺模体进行屏/片摄影,摄影选用自动曝光控制模式(AEC),曝光采用2档,记录摄影条件和辐射剂量,然后在FFDM上用相同剂量的摄影条件对模体进行摄影,记录摄影条件.并用FFDM对CRM IP进行摄影,记录摄影条件.固定屏/片系统摄影条件的29 kV不变,变动mAs为70、65、60、55 mAs对模体进行摄影摄取模体影像,记录屏/片系统的辐射剂量.固定FFDM摄影条件的29 kV不变,变动mAs为28、32、36、45 mAs对模体进行摄影摄取模体影像,记录屏/片系统的辐射剂量.由4位影像学医师在相同条件下对上述模体影像进行软阅读,并按照美国放射学会(ACR)的评分标准对模体中的钙化点、尼龙纤维、肿块灶进行评分,对所得数据进行方差分析(ANOVA)检验统计.结果 在相同表面入射剂量下,FFDM及SFM影像质量高于CRM的影像质量(P<0.05);在3种乳腺摄影系统的影像质量相同时,FFDM较CRM表面入射剂量低35%,SFM较CRM辐射剂量低29%.FFDM较CRM腺体平均剂量低38%,SFM较CRM腺体平均剂量低27%.结论 全数字乳腺摄影系统和屏/片系统在AEC条件下,影像质量优于计算机乳腺摄影系统.在辐射剂量相同时,全数字乳腺摄影系统的影像质量优于屏/片系统及计算机乳腺摄影系统.  相似文献   

7.
CR与非晶体硅DR胸部摄影曝光剂量优化的探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 比较CR与非晶体硅DR在胸部摄影中入射剂量的差异,探讨两者最优化曝光剂量。方法 应用CR、DR分别对胸部模体行不同入射剂量曝光成像,记录模体表面入射剂量,用CDRAD2.0评估软件计算模体影像图像质量因子反数值IQFinv。CR组、DR组图像IQFinv差异用两独立样本t 检验;CR组、DR组各自图像IQFinv与入射剂量的关系应用pearson相关;应用ROC曲线分析获取两组最佳图像IQFinv值,并换算曝光剂量。结果 CR和DR组入射剂量和图像质量IQFinv值之间呈明显的正相关(r =0.893、0.848, P<0.01),并存在线性回归。CR和DR组IQFinv值差异有统计学意义(t =5.455, P<0.05)。ROC曲线分析(曲线下面积AUC=0.893, P<0.001),最佳IQFinv值为3.55。结论 CR、DR系统对于低对比度细节的检测能力均随着入射剂量的增加而增加。入射剂量相同时,DR系统对于低对比度细节的检测能力优于CR;在获得相同的图像质量时,与CR相比应用DR可大大降低被检者辐射剂量。  相似文献   

8.
目的 研究胸部数字X射线摄影(DR)中,不同管电压对影像质量以及受检者辐射剂量的影响。方法 管电压在80~130 kV范围内间隔10 kV变化,每种管电压设置下自动曝光控制(AEC)范围在-4~4对成人胸部模体进行曝光。测量模体表面的皮肤入射剂量,计算相对噪声值和对比度噪声比(CNR),并估算每次曝光时受检者的有效剂量。结果 皮肤入射剂量为(0.062 9±0.027 4)mGy,有效剂量为(0.012 7±0.004 5)mSv,有效剂量随着皮肤入射剂量的增加而呈线性增加,两者呈正相关关系(r=0.912,P<0.01)。随着有效剂量的增加,相同管电压下,相对噪声与有效剂量呈负相关关系(r=-0.967、-0.969、-0.968、-0.969、-0.968、-0.970, P<0.01);CNR与有效剂量呈正相关关系(r=0.987、0.987、0.986、0.987、0.988、0.989,P<0.01)。AEC不变时,随着kV值增加,皮肤入射剂量和有效剂量均降低,最大可降低50%和20%;相对噪声值降低,最大可降低23%;CNR增加,最大可增加8%。结论 胸部DR摄影中,在满足影像质量要求的前提下,高kV值可有效降低受检者辐射剂量。  相似文献   

9.
目的 研究和探讨射波刀脊柱追踪影像引导放疗中X射线曝光条件与错误节点比率的关系。方法 利用脊柱追踪放疗计划,采用不同X射线曝光条件对体模进行影像引导定位,观察脊柱追踪错误节点比率及体模表面吸收剂量的变化规律,确定X射线曝光条件与脊柱追踪错误节点比率之间是否存在优化曝光剂量。结果 脊柱追踪错误节点比率随着X射线曝光条件增加而降低,初期明显,但随着曝光条件的增加到一定水平,脊柱追踪错误节点比率不再降低;体模表面吸收剂量随着X射线曝光条件增加而增加;在≤5%的错误节点标准范围内,当平均错误节点为2.77%、1.07%、1.0%时,体模表面吸收剂量分别为0.11、0.26、0.31~0.46 mGy,相差1~3倍。结论 在射波刀影像引导放疗中,X射线曝光条件与脊柱追踪错误节点之间存在优化曝光剂量,使用最优X射线影像曝光剂量可大幅降低患者辐射剂量,对放疗患者的辐射防护具有非常重要的意义。  相似文献   

10.
计算机X射线摄影条件与影像质量相关性的研究   总被引:3,自引:3,他引:0       下载免费PDF全文
目的通过比较计算机X射线摄影(computed radiography,cR),不同kV、曝光剂量及曝光等级的组合对对比.细节检出指数和影像质量的影响,探讨CR摄影中合理使用曝光剂量及曝光等级组合的原则。方法根据阈值对比度.细节检测能力(TCDD)技术,用55、65和75kv,分别结合3种不同的曝光剂量与曝光等级组合对体模TO.16进行摄影,请3位观察者采用双盲法对所得影像进行观察评分,计算阈值检测指数HT(A);同时结合临床分别对膝关节、胸部、腰椎进行不同组合的投照,请3位放射专家进行双盲阅片,评价影像质量。结果相对低的kV采用增加曝光剂量、减小曝光等级的组合所得探测指数提高幅度高于高的kV;在kV值相同的情况下,对比度好的部位可明显降低曝光剂量,提高曝光等级。结论根据疾病诊断需要和受检部位对比度情况,合理使用曝光等级既能明显降低患者的辐射,又不影响疾病的诊断。  相似文献   

11.
目的不同摄影源像距对小儿胸部数字X线技术(DR)辐射剂量、图像质量的影响。方法选取我院2017至2018年收治的60例行胸部X线(DR)检查的患儿为研究对象开展回顾性分析,首先进行体模预实验曝光,采用同一管电压和不同摄影源像距(SID)(80~150 cm),其中10 cm为1组,记录每次曝光的毫安秒和入射体表剂量(ESD)。选取体模预实验中ESD相对低剂量和剂量适中的2组(90 cm和110 cm)开展临床试验。所有患儿住院期间采用同一X线机对同一患儿进行胸部DR的初查和复查,并分为初查组和复查组,初查组采用SID=110 cm,复查组采用SID=90 cm,由3位影像学专家采用5分法对图像质量进行打分。结果通过影像学专家评判,80~150 cm的DR曝光图像质量无差异,且不同的SID下实施胸部体模DR,得到的毫安秒与辐射剂量不相同,同一体模在相同曝光指数下,随着SID的增大,毫安秒与辐射剂量均逐渐增大;初查组的图像质量评分为(4.9±1.0)分,复查组的图像质量评分为(4.9±1.0),2组的图像质量评分比较差异无统计学意义(P>0.05)。结论患儿DR胸部摄影中不同SID,其体表辐射剂量具有明显差异,SID为90 cm时能够大幅度地降低X线管的输出剂量,减少体表辐射剂量,延长X线管的使用寿命。  相似文献   

12.
CARE Dose 4D 技术降低成人胸部扫描剂量的临床价值   总被引:3,自引:2,他引:1       下载免费PDF全文
目的 探讨CARE Dose 4D技术在成人胸部CT扫描中降低辐射剂量及提高图像质量价值.方法 选取胸部CT扫描病例100例,随机分为低剂量组及对照组各50例,低剂量组使用CARE Dose 4D技术.记录每位患者胸部扫描时自动显示的有效毫安秒(mAs)、容积CT剂量指数(CTDI vol)及剂量长度乘积(DLP)和每幅图像上的mAs值.取每例患者肺尖部、主动脉弓下缘水平、左房中部水平及肺底部4幅图像,共400幅.由两位副主任医师按优、良、差3级双盲法评判,测量相应部位图像噪声.结果 在设置质量参考80 mAs时,低剂量组比对照组最大下降44 mAs,平均下降9.60 mAs(12.0%);CTDIvol值最大下降4.75 mGy,平均下降0.95 mGy(11.0%);DLP值平均下降14.88 mGy·cm(7.5%).图像主观评判低剂量组平均优良率为99.5%,对照组为98.0%;肺尖及肺底水平低剂量组高于对照组,左房中部水平低于对照组,主动脉弓下缘水平两组相近.图像噪声测量结果显示低剂量组肺尖及肺底部低于对照组(t=6.299、2.332,P<0.05),左房中部水平高于对照组(t=3.078,P<0.05),主动脉弓下缘水平两组相似(t=1.191,P>0.05).结论 CARE Dose4D技术具有实时在线调节mAs作用,既可提高射线利用效率、降低辐射剂量,又能提高图像质量,在胸部CT扫描中具有一定临床应用价值.
Abstract:
Objective To investigate the value of CARE Dose 4D technique in decreasing radiation dose and improving image quality of multi-slice spiral CT in adult chest scanning.Methods 100patients of chest CT scanning were equally divided into study group and control group randomly.CARE Dose 4D Technique was used in study group.Effective mAs value,volume CT dose index (CTDIvol) and dose length product (DLP) were displayed automatically in machine while chest scanning; those values and actual mAs value of every image were recorded respectively.The image quality at apex of lung,lower edge of aorta arch,middle area of left atrium and base of lung on every image of 400 images was judged and classified as three level (excellent,good,poor) by two deputy chief physicians with double blind method,the image noise at corresponding parts was measured.Results While setting 80 mAs for quality reference mAs,the effective mAs value in study group most decreased 44 mAs than control group with an average decrease of 9.60( 12.0% ) ,CTDIvol with 4.75 mGy with an average decrease of 0.95 mC y( 11.0% ) ,DLP 99.50% in study group,with 98.0% in control group.But it was higher at apex of lung and base of lung,lower at middle area of left atrium,and similar at lower edge of aorta arch in study group than contrast group.The image noise were lower at apex of lung and base of lung in study group than control group (t =6.299 and 2.332,all P < 0.05 ) ,higher at middle area of left atrium in study group than control group (t=3.078,P <0.05) and similar at lower edge of aorta arch in study group than control group (t =1.191,P >0.05).Conclusions CARE Dose 4D technique provides a function regulated mAs real-time on line,it not only raises utilization rate of radiation and decreases radiation dose,but also promises and increases image quality in chest CT scanning,and has some clinical significance.  相似文献   

13.
目的 通过对不同部位直接摄影(DR)检查的医学数字成像和传输(DICOM)文件信息中的患者剂量信息的统计,调查不同投照部位DR摄片的照射剂量分布范围,分析影响DR检查照射剂量的因素。方法 随机选取浙江省某三甲医院2009年1月至4月5160次DR摄片,包括胸部、胸椎及腰椎正、侧位、腹部前后位及骨盆正位。应用软件自动提取每例患者检查中DICOM信息文件中的剂量面积乘积(DAP),并结合照射野的范围,计算各部位DR检查的入射表面剂量(ESD)。结果 腹部前后位、腰椎侧位、胸椎正侧位的变异系数在60%以下;胸部正侧位、腰椎正位、骨盆正位的变异系数为60%~80%。各个部位的DAP最大值与最小值比值,除腹部前后位较小为3倍,其余部位差异较大。其中,腰椎正位最大差别为46倍、腰椎侧位30倍,胸椎侧位、胸部正位、侧位、骨盆正位、胸椎正位分别为23、23、18、16、11倍。通过计算得到ESD值选择75%分位点与现行普通摄片诊断参考水平(DRL)比较后发现,胸部正、侧位分别下降75%和73%;腰椎正侧位下降66%和77%;胸椎正侧位下降85%和84%;骨盆正位下降88%;腹部前后位下降88%。结论 DR检查中各个部位的DAP与ESD值存在较大变动,ESD值与现行的常规摄片的DRL相比有较大下降;有必要回顾分析DR摄片的患者照射剂量,对患者照射剂量与图像质量进行质量管理。  相似文献   

14.
In this study, we evaluated the performance of a digital chest imaging system using a contrast-detail (C-D) phantom. In the initial step, 76 sample images of the C-D phantom were produced by changing the doses from 0.5, 0.75, 1.0, 1.25, 1.5, to 2.0 times the dose for a screen-film (S/F) system. The sample images were analyzed by five radiological technologists and two medical physicists, and the image quality figure (IQF) was determined. The quality of each image was examined, and appropriate doses were determined from the calculated IQF to obtain the same image quality for other digital chest imaging systems. The method of determining IQF from C-D phantom analysis was very useful for comparing image quality and determining radiographic techniques.  相似文献   

15.
The use of the posteroanterior (PA) technique as a means of dose reduction has been used effectively in radiology departments for chest and abdominal examinations. The aim of this investigation was to establish if the PA lumbar spine projection offers any advantages over the traditional anteroposterior (AP) view in terms of radiation dose and image quality. The contribution of tissue displacement to any dose reduction was also evaluated. The first part of the study involved the use of an anthropological phantom where entrance surface and an internal dose were measured for both the PA and AP projections. Entrance surface doses for both projections were then measured on randomly allocated female patients. Resultant image quality was assessed using CEC quality criteria. Anterior to posterior patient diameter was also recorded. The results demonstrated that with the PA compared with the AP projection, reductions of 38.6 % (p = 0.016) and 38.9 % (p = 0.02) in patient entrance surface dose and internal phantom dose, respectively. No significant differences in image quality were noted between the two projections. Patient diameter decreased by 1.8 cm with the PA view. The authors conclude that tissue displacement is the main factor for the patient dose reduction and recommend employment of the PA procedure for routine lumbar spine examinations. Received: 3 August 1999; Revised: 5 November 1999; Accepted: 9 November 1999  相似文献   

16.
《Radiography》2023,29(1):240-246
IntroductionDual-energy subtraction (DES) imaging can obtain chest radiographs with high contrast between nodules and healthy lung tissue, and evaluating of chest radiography and evaluating exposure conditions is crucial to obtain a high-quality diagnostic image. This study aimed to investigate the effect of the dose allocation ratio of entrance surface dose (ESD) between high- and low-energy projection in low-contrast resolution of soft-tissue images for two-shot DES imaging in digital radiography using a contrast-detail phantom (CD phantom).MethodsA custom-made phantom mimicking a human chest that combined a CD phantom, polymethylmethacrylate square plate, and an aluminum plate (1–3 mm) was used. The tube voltage was 120 kVp (high-energy) and 60 kVp (low-energy). The ESD was changed from 0.1 to 0.5 mGy in 0.1 mGy increments. Dose allocation ratio of ESD between 120 kVp and 60 kVp projection was set at 1:1, 1:2, 1:3, and 2:1. Inverse image quality figure (IQFinv) was calculated from the custom-made phantom images.ResultsWhen the total ESD and aluminum thickness were constant, no significant difference in IQFinv was observed under most conditions of varied dose allocation ratio. Similarly, when the total ESD and the dose allocation ratio were constant, there was no significant difference in IQFinv based on the aluminum plate thickness.ConclusionUsing IQFinv to evaluate the quality of the two-shot DES image suggested that dose allocation ratio did not have a significant effect on low-contrast resolution of soft-tissue images.Implications for practiceThe present results provide useful information for determining exposure conditions for two-shot DES imaging.  相似文献   

17.

Objective:

The purpose of this study was to examine the correlation between the quality of visually graded patient (clinical) chest images and a quantitative assessment of chest phantom (physical) images acquired with a computed radiography (CR) imaging system.

Methods:

The results of a previously published study, in which four experienced image evaluators graded computer-simulated postero-anterior chest images using a visual grading analysis scoring (VGAS) scheme, were used for the clinical image quality measurement. Contrast-to-noise ratio (CNR) and effective dose efficiency (eDE) were used as physical image quality metrics measured in a uniform chest phantom. Although optimal values of these physical metrics for chest radiography were not derived in this work, their correlation with VGAS in images acquired without an antiscatter grid across the diagnostic range of X-ray tube voltages was determined using Pearson’s correlation coefficient.

Results:

Clinical and physical image quality metrics increased with decreasing tube voltage. Statistically significant correlations between VGAS and CNR (R=0.87, p<0.033) and eDE (R=0.77, p<0.008) were observed.

Conclusion:

Medical physics experts may use the physical image quality metrics described here in quality assurance programmes and optimisation studies with a degree of confidence that they reflect the clinical image quality in chest CR images acquired without an antiscatter grid.

Advances in knowledge:

A statistically significant correlation has been found between the clinical and physical image quality in CR chest imaging. The results support the value of using CNR and eDE in the evaluation of quality in clinical thorax radiography.Chest radiography is one of the most frequently performed diagnostic radiographic examinations in the UK. A Health Protection Agency report [1] in 2010 showed that chest radiographs represented 19.6% of all radiographic examinations (albeit the contribution to collective dose was small at about 0.5%), so optimisation of radiation dose and image quality in chest radiography is an important research area, especially in the era of digital imaging. It is also a legal requirement in the UK under the Ionising Radiation (Medical Exposure) Regulations 2000 [2] to optimise all medical exposures.Many investigators [312] have shown that it is not the system (including quantum) noise that is the limiting factor in chest radiography, but rather the projected patient anatomy or “anatomical noise”. It therefore follows that any images used to optimise a digital radiographic system for chest radiography must contain clinically realistic anatomical features and noise. The assessment of image quality of digital systems is typically undertaken with physical quality metrics, such as modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE), contrast-to-noise ratio (CNR) and threshold contrast measurements [1319]. Although these parameters describe the inherent performance of the imaging detector extremely well, it is difficult to link them to clinical image quality (i.e. the adequacy of patient images) [20] and therefore it is difficult to use them in any optimisation exercise. Furthermore, recent work by Samei et al [21,22] has shown that these metrics are not only detector centric but also not measured under typical clinical conditions. An alternative metric, the effective DQE (eDQE), was therefore proposed by the authors of that work. This new metric was designed to provide a measure of the signal-to-noise transfer characteristics of a digital imaging system measured under clinical conditions, using a phantom designed for a specific examination type, e.g. chest radiography. More recently, the same group argued that, although the eDQE provides a more clinically realistic measure of DQE, it does not take into account the radiation risk to the patient; hence, the concept of effective dose efficiency (eDE) was proposed [23], which is the effective noise equivalent quanta (eNEQ) normalised to the effective dose. However, a link between eDE and clinical image quality had not been established.Although there is a lack of work demonstrating a link between the physical and clinical image quality, De Crop et al [24] have recently established a correlation between a contrast detail phantom and clinical chest image quality by grading radiographs of embalmed cadavers and comparing the results with those derived from the phantom. However, only three cadavers were used, limiting the statistical significance of their findings, and no pathology of interest, such as lung nodules, was available.In this study, the results of a previous optimisation study performed by our group [25] using computer-simulated postero-anterior (PA) chest images have been used to investigate their correlation with the physical image quality metrics, eDE and CNR, across the diagnostic energy range (50–125 kV). The simulated images of the previous study contained clinically realistic projected anatomy and lung nodules (simulated images were used to avoid the obvious ethical issues associated with experimenting on real patients). We have chosen CNR, as this is a simple measure of image quality that is easy to use and understand, and it is often used to obtain practical measures of object detectability. However, CNR can only really be used to assess large area contrast sensitivity, as it does not include the system MTF or any noise variations with spatial frequency. Conversely, the eDE does include system resolution and noise properties as a function of spatial frequency, so this alternative more complex metric has also been investigated. It should be noted that the physical image quality metrics described in this work are not being optimised in themselves (i.e. optimal values of CNR and eDE for chest imaging are not being investigated) but are being used to predict, using a simple phantom, how the radiographic technique affects the clinical image quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号