首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The N-methyl-D-aspartate (NMDA) glutamatergic receptor is widely expressed in the brain during the early postnatal period and, among other functions is involved in cardiorespiratory control and in cell death by excitotoxic mechanisms. This study examined NMDA receptor-1 (NR1) expression in the human infant brainstem and assessed whether expression differed between non-SIDS and SIDS infants. NRI mRNA was identified using non-radioactive in situ hybridization and quantified by optical density. NRI protein was identified by immunohistochemistry and quantified by cellular counting. Eight nuclei of the mid-medulla and 2 nuclei of the rostral pons were studied. NRI mRNA and protein were expressed in all nuclei studied, confirming that the NMDA receptor is widely distributed in the human infant brainstem. Compared to non-SIDS infants (n = 10). SIDS infants (n = 15) had increased mRNA in 6 nuclei of the mid-medulla (p < 0.05 for all) while protein was increased in the dorsal motor nucleus of the vagus (p = 0.04) and decreased in the nucleus of the spinal trigeminal tract (p = 0.03). No differences were observed in the rostral pons. This preliminary study suggests that abnormalities of the glutamatergic system are present in SIDS victims. Further studies will be required to delineate these abnormalities and to investigate potential underlying mechanisms and sequelae.  相似文献   

2.
The immunoreactivity of the serotoninergic receptor subtype 1A (5HT1AR) was quantitatively analyzed in the human infant brainstem medulla (caudal and rostral levels). We hypothesized that immunoreactivity of 5HT1AR would be reduced in infants diagnosed with sudden infant death syndrome (SIDS). In particular that those infants with known clinical risk factors (including cigarette smoke exposure, bed sharing and sleep position) would have greater changes than those without clinical risks. Comparing SIDS (n = 67) to infants who died suddenly with another diagnosis (non-SIDS, n = 25), we found decreased 5HT1AR immunoreactivity in the majority of the nuclei studied at the rostral medulla level including dorsal motor nucleus of the vagus (DMNV), nucleus of the solitary tract, vestibular, and inferior olivary nucleus (ION). There was a significant relationship with all risk factors for 5HT1AR, especially for DMNV, suggesting that 5HT1ARs are highly vulnerable to various insults within the SIDS DMNV. This study not only provides further evidence of abnormalities within the brainstem serotoninergic system of SIDS infants, but also shows that these changes may be associated with exposure to clinical risk factors.  相似文献   

3.
We examined the immunohistochemical expression of caspase-3 (CASP3), active caspase-3 and TUNEL in the normal piglet brainstem at 13-14 days of age and evaluated the effects of exposure to 2 vs. 4 days of intermittent hypercapnic hypoxia (IHH) on their expression. Eight nuclei from the level of the caudal medulla were studied. In control piglets, CASP3 was present in approximately 45% of neurons while active caspase-3 and TUNEL were present in approximately 5%, indicating that approximately half the neuronal population of the piglet medulla express caspase-3 in a latent state and that only approximately 5% undergo 'normal' programmed cell death. After 2 days of IHH, CASP3 increased in the nucleus of the solitary tract (NTS), gracile and cuneate nuclei (P<0.05 for all). Active caspase-3 increased in the dorsal motor nucleus of the vagus (DMNV) (P<0.05) but decreased in the lateral reticular nucleus (LRt) (P<0.05), while TUNEL increased in both the DMNV and LRt (P<0.05 for both). After 4 days of IHH, CASP3 remained elevated in the cuneate nucleus (P<0.01) but decreased in the hypoglossal and DMNV (P<0.05) when compared to controls. Active caspase-3 levels were not changed, whereas TUNEL was increased in the DMNV, LRt, and inferior olivary nucleus (P<0.05 for all). These results show that IHH induces neuronal cell death within certain nuclei in the piglet caudal medulla that are functionally important in cardiorespiratory, sleep and arousal control. This could have important implications for clinical conditions including obstructive apnea and prone sleeping as a risk for SIDS.  相似文献   

4.
Early studies that used older tracing techniques reported exceedingly few projections from the dorsal raphe nucleus (DR) to the brainstem. The present report examined DR projections to the brainstem by use of the anterograde anatomical tracer Phaseolus vulgaris leucoagglutinin (PHA-L). DR fibers were found to terminate relatively substantially in several structures of the midbrain, pons, and medulla. The following pontine and midbrain nuclei receive moderate to dense projections from the DR: pontomesencephalic central gray, mesencephalic reticular formation, pedunculopontine tegmental nucleus, medial and lateral parabrachial nuclei, nucleus pontis oralis, nucleus pontis caudalis, locus coeruleus, laterodorsal tegmental nucleus, and raphe nuclei, including the central linear nucleus, median raphe nucleus, and raphe pontis. The following nuclei of the medulla receive moderately dense projections from the DR: nucleus gigantocellularis, nucleus raphe magnus, nucleus raphe obscurus, facial nucleus, nucleus gigantocellularis-pars alpha, and the rostral ventrolateral medullary area. DR fibers project lightly to nucleus cuneiformis, nucleus prepositus hypoglossi, nucleus paragigantocellularis, nucleus reticularis ventralis, and hypoglossal nucleus. Some differences were observed in projections from rostral and caudal parts of the DR. The major difference was that fibers from the rostral DR distribute more widely and heavily than do those from the caudal DR to structures of the medulla, including raphe magnus and obscurus, nucleus gigantocellularis-pars alpha, nucleus paragigantocellularis, facial nucleus, and the rostral ventrolateral medullary area. A role for the dorsal raphe nucleus in several brainstem controlled functions is discussed, including REM sleep and its events, nociception, and sensory motor control. © Wiley-Liss, Inc.  相似文献   

5.
Regional loss of immunohistochemically identified neurons in serial sections through the brainstem of 4 patients with idiopathic Parkinson's disease was compared with equivalent sections from 4 age-matched control subjects. In the Parkinson brains, the catecholamine cell groups of the midbrain, pons, and medulla showed variable neuropathological changes. All dopaminergic nuclei were variably affected, but were most severely affected in the caudal, central substantia nigra. The pontine noradrenergic locus ceruleus showed variable degrees of degeneration. There was also a substantial loss of substance P-containing neurons in the pedunculopontine tegmental nucleus. However, the most severely affected cell group in the pons was the serotonin-synthesizing neurons in the median raphe. In the medulla, substantial neuronal loss was found in several diverse cell groups including the adrenaline-synthesizing and neuropeptide Y-containing neurons in the rostral ventrolateral medulla, the serotonin-synthesizing neurons in the raphe obscurus nucleus, the substance P-containing neurons in the lateral reticular formation, as well as the substance P-containing neurons in the dorsal motor vagal nucleus. Lewy bodies were present in immunohistochemically identified neurons in many of these regions, indicating that they were affected directly by the disease process. These widespread but region- and transmitter-specific changes help account for the diversity of motor, cognitive, and autonomic manifestations of Parkinson's disease.  相似文献   

6.
The location of neurons projecting by axonal collaterals to the rostral and caudal ventral respiratory group (VRG) regions was determined after discrete injections of Fast blue and Diamidino yellow into the physiologically identified rostral inspiratory VRG and the caudal expiratory VRG areas, respectively. In contrast with single fluorochrome labeled neurons found throughout the rostro-caudal extent of the medulla and pons (in a variety of areas known to have cardiorespiratory function), double-labeled neurons were located in discrete pontomedullary regions. The largest number of the double-labeled neurons was counted within the peripheral facial area, lateral paragigantocellular nucleus, and the VRG region, ipsi- and contralaterally to the injected side. Only a few double-labeled neurons were found within the ventrolateral and intermediate subnuclei of the solitary tract, medial parabrachial, and Kölliker-Fuse nuclei. The possible physiological implications of this neuronal network have also been emphasized.  相似文献   

7.
Objectives: As well known, the sudden infant death syndrome (SIDS) is characterized by the sudden death of a seemingly healthy infant during sleep, frequently resulted from a deficit in arousal phase. Awakening from sleep requires a fully developed and functioning neuronal respiratory network to modulate the ventilation as needed. The pontine Kölliker–Fuse nucleus (KFN) plays a pivotal role in breathing control, thanks to its interconnections with the widespread serotonin and noradrenaline neurons in the brainstem. Numerous studies to date have focused on the implication of orexin, a neuropeptide synthesized by neurons of the lateral hypothalamus, with major projections to the brainstem raphé nuclei and locus coeruleus, in arousal, a neurobiological process closely linked to breathing modifications. The aim of our research has been to demonstrate that also the KFN is a fundamental component of the orexin system, actively involved in arousal.

Methods: We have evaluated the expression and distribution of the orexin receptors (orexin-1 and orexin-2 receptors) particularly in the rostral pons, where the KFN is located, of 25 SIDS cases and 18 controls.

Results: An intense orexin-1 innervation around the KF neurons has been detected in almost all the controls and only in 20% of SIDS cases.

Discussion: On the basis of these results, we believe that: (1) the KFN plays a leading role not only in providing a regular breathing rhythm but also in the coordination of the sleep-to-wake transition; (2) a defective orexin expression in the KFN could prevent arousal, thus assuming a crucial importance in causing SIDS.  相似文献   

8.
Fos immunocytochemistry was combined with immunolabeling for dopamine-beta-hydroxylase (DBH) to examine neuronal activation in the medulla and pons after administration of polyethelene glycol (PEG), which produces volume depletion without altering arterial blood pressure. Increased Fos immunoreactivity was observed in the area postrema, nucleus of the solitary tract, rostral ventrolateral medulla, lateral parabrachial nucleus, and the dorsomedial pons at the level of the locus coeruleus. Fos immunolabeling in the caudal nucleus of the solitary tract, rostral ventrolateral medulla, and the dorsomedial pons occurred primarily in neurons that did not contain DBH. Thus, PEG activates non-catecholaminergic neurons in medullary and pontine areas associated with cardiovascular and body fluid regulation.  相似文献   

9.
Little neuropathology has been documented in sudden infant death syndrome (SIDS) infants. Two hypotheses predict abnormalities in the hypoglossal nucleus and dorsal motor nucleus of the vagus: first, that upper airways are obstructed as a result of abnormal innervation (principally the hypoglossal nerve), and second, that they are obstructed as a result of abnormal cardiorespiratory control (the vagus nerve). A quantitative morphometric analysis was carried out to test these hypotheses in SIDS infants and controls (who died in accidents). The following nuclei dimensions were analyzed; length, volume, density, and estimated total cell number. In addition, cell size was analyzed. There were no differences in the anatomical distribution, site, or number of neurons between the groups. The most significant difference between the SIDS and control infants was the neuronal size: control infants had significantly larger neurons. In many other variables, there were trends suggesting a difference between the groups: the volume occupied by the neuronal populations was smaller in the SIDS infants, and therefore the neuronal density was increased. These values suggest differences in the development of these nuclei between SIDS and control infants.  相似文献   

10.
11.
We sought to identify the brain areas that might contribute to the increased autonomic activity seen during morphine withdrawal by mapping neuronal expression of c-fos protein (Fos) and Fos-related antigens. Rats were implanted with morphine pellets or placebo pellets over a 5 day regimen and injected on day 6 with either saline or naltrexone (100 mg/kg). After a standard PAP immunocytochemical protocol, Fos-like immunoreactivity (Fos-LIR) was observed in medullary nuclei including the NTS (nucleus of the solitary tract), caudal (CVL) and rostral ventrolateral medulla (RVL). Although some Fos-LIR was seen in these areas in control rats (either morphine-implanted, saline injected, or placebo-implanted, saline or naltrexone injected), a significantly higher number of Fos-LIR-positive cells in NTS, CVL and RVL were seen after morphine withdrawal. Large numbers of Fos-like immunoreactive cells were also seen in the A5 area, the parabrachial nuclei of the pons and the locus coeruleus. Increased Fos-LIR was also detected in the paraventricular nucleus of the hypothalamus and the amygdala of morphine withdrawn rats. The Fos-LIR was co-localized with tyrosine hydroxylase immunoreactivity in many of the cells in caudal and rostral ventrolateral medulla, A5 and locus coeruleus. These data support the conclusion that autonomic areas in brain and noradrenergic/adrenergic cells in these areas are activated during morphine withdrawal and may contribute to the autonomic symptoms of opiate withdrawal.  相似文献   

12.
The aim of the present study was to demonstrate the morphology and distribution of the serotonergic neurons in the brainstem of the New Zealand white rabbit by using a highly specific immunocytochemical procedure. It was possible to divide the serotonergic neurons into a rostral group, which is situated in the mesencephalon and the rostral part of the pons containing four serotonergic nuclei, and a caudal group, which is located in the medulla and the caudal part of the pons containing five serotonergic nuclei. The localization of the serotonergic neurons is presented in a detailed brainstem atlas, and the distribution of the serotonergic neurons is in accordance with results obtained by other authors in different species. Special emphasis was given to the fact that many of the serotonergic neurons were distributed in more lateral parts of the brainstem. The laterally orientated neurons, which were large and multipolar, were morphologically different from the serotonergic neurons in the midline, which were mostly small and relatively nonpolar. The serotonergic system of the New Zealand white rabbit has undergone a major lateralization, like the serotonergic system of man and higher primates, and it may therefore be excellently suited for experimental procedures directed towards the serotonergic system. The difference between serotonergic neurons localized in the midline and those situated laterally may reflect functional differences based on dissimilarity in connectivity and morphology, and this possible subspecialization of the serotonergic system is discussed in the context of present knowledge of serotonergic anatomy and function. J. Comp. Neurol. 380:507–519, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
The adaptation to hypoxia and hypercapnia requires the activation of several anatomical structures along the neuraxis. In this study, using Fos immunoreactivity, we sought to map neuronal populations involved in chemoreflex networks activated during the responses to moderate hypoxia (O(2) 11%), and hypercapnia (CO(2) 5%) in the brainstem and the hypothalamus of the rat. In the medulla, hypoxia elicited marked and significant staining in the nucleus of the solitary tract (NTS), and in parapyramidal neurons located near the ventral surface, whereas hypercapnia evoked significantly c-fos only near the ventral surface in paraolivar neurons. In contrast, within pontine and suprapontine structures, both hypoxia and hypercapnia evoked similarly Fos immunoreactivity in the lateral parabrachialis area, the central grey, the caudal hypothalamus (dorsomedial and posterior hypothalamic nuclei), and in a ventro-lateral hypothalamic area, extending from the rostral limit of the mammillary nuclei to the retrochiasmatic area. More rostrally, labelling was observed in the paraventricular nucleus of the hypothalamus in response to hypercapnia, and in the supraoptic nucleus in response to hypoxia. These results support the hypothesis that chemoreflexes pathways are not only restricted to medulla and pons but also involved mesencephalic and hypothalamic regions. The parabrachialis area and the central grey may be key relays between caudal and ventral hypothalamic neurons, and medullary neurons involved in the response to hypoxia and hypercapnia.  相似文献   

14.
The commissural subnucleus (COM) of the nucleus of the solitary tract (NTS) is known to receive primary afferents from the lungs and other viscera innervated by the vagus nerve, and thus to participate in central autonomic and respiratory control. The aim of the present study was to identify the areas of terminal arborizations of COM neurons in order to examine brainstem sites which may be involved in reflex responses mediated by these neurons. The projections were studied in cats, using biocytin as an anterograde tracer. Labeled fibers and terminal boutons were visualized by horseradish-peroxidase histochemistry, 2-3 days after microinjection of the tracers into the COM 1-2 mm caudal to the obex. Labeled axons were examined in the brainstem from the rostral pons to the caudal medulla and were found bilaterally, with an ipsilateral predominance, mainly in the following regions: (1) The dorsolateral rostral pons. Terminal boutons were observed in the lateral and medial parabrachial nuclei, K?lliker-Fuse nucleus, and around the mesencephalic trigeminal tract. This area corresponds to the pontine respiratory group also known as the "pneumotaxic center." (2) The pontine area dorsolateral to the superior olivary nucleus. This region contains the A5 noradrenergic cell group; (3) Near the ventral surface, below the facial nucleus. This area overlaps with the 'retrotrapezoid nucleus.' (4) Respiration-related areas of the medulla, including the dorsal and ventral respiratory groups, and the B?tzinger complex. (5) The dorsal motor nucleus of the vagus. These results suggest that the COM is involved in reflex arcs, which have both respiratory functions and autonomic functions. The pathway to the dorsolateral pons, which has been identified in our recent electrophysiological study is likely to play a role in mediating respiratory responses from pulmonary rapidly adapting receptors. Other pathways may represent additional projections from second-order neurons receiving input from this group of lung receptors, or projections from as yet unidentified neurons that relay information from different afferents terminating in the COM.  相似文献   

15.
It has been suggested that the defect underlying the sudden infant death syndrome (SIDS) lies in brain stem nuclei involved in cardiac and respiratory function. However, most studies have not used rigorous quantitative techniques to assess brain stem nuclear volumes and neuronal numbers. We have measured the volume, neuronal numbers and position of brain stem nuclei in 11 SIDS and 11 aged-matched control infants. Using serial sagittal sections, nuclei involved in maintaining airway patency (hypoglossal, ambiguus and retro-ambiguus), heart rate (dorsal vagal) and generation of respiratory rhythm (ambiguus and dorsal vagal) were studied. No significant differences were found in nuclear volume increase with age, total neuronal number or nuclear position between SIDS and control cases. These findings support the hypothesis that the nervous system in SIDS may be normal until the final event that kills these infants.  相似文献   

16.
Alterations of sleep are reported to occur in sudden infant death syndrome (SIDS). It is well established that the hypothalamus mediates the onset, maintenance, and timing of sleep, and does so via serotonergic and cholinergic mechanisms. We have investigated serotonergic and cholinergic synaptic markers in the hypothalamus from eight SIDS infants and six age-matched non-SIDS infants between 3 and 7 months of age. By use of established methods, we observed a number of chemical alterations in SIDS hypothalamus: (1) tryptophan content was increased and serotonin content was decreased, (2) serotonin binding was increased and imipramine binding was unchanged, (3) monoamine oxidase-A activity was increased without an effect on monoamine oxidase-B, and (4) choline acetyltransferase activity was decreased and acetylcholinesterase activity was unchanged.  相似文献   

17.
The sudden infant death syndrome (SIDS) is postulated to result from a failure of homeostatic responses to life-threatening challenges (e.g. asphyxia, hypercapnia) during sleep. The ventral medulla participates in sleep-related homeostatic responses, including chemoreception, arousal, airway reflex control, thermoregulation, respiratory drive, and blood pressure regulation, in part via serotonin and its receptors. The ventral medulla in humans contains the arcuate nucleus, in which we have shown isolated defects in muscarinic and kainate receptor binding in SIDS victims. We also have demonstrated that the arcuate nucleus is anatomically linked to the nucleus raphé obscurus, a medullary region with serotonergic neurons. We tested the hypothesis that serotonergic receptor binding is decreased in both the arcuate nucleus and nucleus raphé obscurus in SIDS victims. Using quantitative autoradiography, 3H-lysergic acid diethylamide (3H-LSD binding) to serotonergic receptors (5-HT1A-D and 5-HT2 subtypes) was measured blinded in 19 brainstem nuclei. Cases were classified as SIDS (n = 52), acute controls (infants who died suddenly and in whom a complete autopsy established a cause of death) (n = 15), or chronic cases with oxygenation disorders (n = 17). Serotonergic binding was significantly lowered in the SIDS victims compared with controls in the arcuate nucleus (SIDS, 6 +/- 1 fmol/mg tissue; acutes, 19 +/- 1; and chronics, 16 +/- 1; p = 0.0001) and n. raphé obscurus (SIDS, 28 +/- 3 fmol/mg tissue; acutes, 66 +/- 6; and chronics, 59 +/- 1; p = 0.0001). Binding, however, was also significantly lower (p < 0.05) in 4 other regions that are integral parts of the medullary raphé/serotonergic system, and/or are derived, like the arcuate nucleus and nucleus raphé obscurus, from the same embryonic anlage (rhombic lip). These data suggest that a larger neuronal network than the arcuate nucleus alone is involved in the pathogenesis of SIDS, that is, a network composed of inter-related serotonergic nuclei of the ventral medulla that are involved in homeostatic mechanisms, and/or are derived from a common embryonic anlage.  相似文献   

18.
An isolated brainstem-spinal cord preparation of the newborn rat is described in which brainstem stimulation inhibits a spinal reflex of slow time course possibly associated with nociception. The inhibition-producing area is localized in the rostral medulla and caudal pons. Perusion of the preparation with phentolamine or strychnine antagonizes the inhibition, suggesting the involvement of α-adrenergic and glycine-mediated inhibitory mechanisms. Results are discussed in relation to descending inhibition of nociception.  相似文献   

19.
The activation of neurosecretory neurons that express corticotropin-releasing hormone (CRH) in response to increased circulating levels of interleukin-1beta (IL-1beta) depends on prostaglandin E(2) (PGE(2)) acting locally within the brain parenchyma. To identify potential central targets for PGE(2) relevant to pituitary-adrenal control, the distribution of mRNA encoding the PGE(2) receptor subtype EP3 (EP3R) was analyzed in rat brain. Hybridization histochemistry revealed prominent labeling of cells in discrete portions of the olfactory system, iso- and hippocampal cortices, and subcortical telencephalic structures in the septal region and amygdala. Labeling over the midline, intralaminar, and anterior thalamic groups was particularly prominent. EP3R expression was enriched in the median preoptic nucleus and adjoining aspects of the medial preoptic area (MPO) implicated in thermoregulatory/febrile responses and sleep induction. EP3R-expressing cells were also prominent in brainstem cell groups involved in nociceptive information processing/modulation (periaqueductal gray, locus coeruleus (LC), parabrachial nucleus (PB), caudal raphé nuclei), arousal and wakefulness (LC, midbrain raphé and tuberomammillary nuclei); and in conveying interoceptive input, including systemic IL-1 signals, to the endocrine hypothalamus (nucleus of the solitary tract (NTS) and rostral ventrolateral medulla [VLM]). Combined hybridization histochemical detection of EP3R mRNA with immunolocalization of IL-1beta-induced Fos protein expression identified cytokine-sensitive, EP3R-positive cells in the medial NTS, rostral VLM, and, to a lesser extent, aspects of the MPO. These findings are consistent with the view that increased circulating IL-1 may stimulate central neural mechanisms, including hypothalamic CRH neurons, through an EP3R-dependent mechanism involving PGE(2)-mediated activation of cells in the caudal medulla and/or preoptic region.  相似文献   

20.
The rate of the sudden infant death syndrome (SIDS) among American Indian infants in the Northern Plains is almost 6 times higher than in U.S. white infants. In a study of infant mortality among Northern Plains Indians, we tested the hypothesis that receptor binding abnormalities to the neurotransmitter serotonin (5-HT) in SIDS cases, compared with autopsied controls, occur in regions of the medulla oblongata that contain 5-HT neurons and that are critical for the regulation of cardiorespiration and central chemosensitivity during sleep, i.e. the medullary 5-HT system. Tritiated-lysergic acid diethylamide binding to 5-HT(1A-D) and 5-HT2 receptors was measured in 19 brainstem nuclei in 23 SIDS and 6 control infants using tissue receptor autoradiography. Binding in the arcuate nucleus, a part of the medullary 5-HT system along the ventral surface, in the SIDS infants (mean age-adjusted binding 7.1 +/- 0.8 fmol/mg tissue, n = 23) was significantly lower than in controls (mean age-adjusted binding 13.1 +/- 1.6 fmol/mg tissue, n = 5) (p = 0.003). Binding also demonstrated significant diagnosis x age interactions (p < 0.04) in 4 other nuclei that are components of the 5-HT system. These data suggest that medullary 5-HT dysfunction can lead to sleep-related, sudden death in affected SIDS infants, and confirm the same binding abnormalities reported by us in a larger dataset of non-American Indian SIDS and control infants. This study also links 5-HT abnormalities in the arcuate nucleus with exposure to adverse prenatal exposures, i.e. cigarette smoking (p = 0.011) and alcohol (p = 0.075), during the periconceptional period or throughout pregnancy. Prenatal exposure to cigarette smoke and/or alcohol may contribute to abnormal fetal medullary 5-HT development in SIDS infants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号