首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
胰岛素肠溶PLGA纳米粒的制备及体内外性质的评价   总被引:8,自引:0,他引:8  
目的制备肠溶胰岛素PLGA纳米粒,并对其理化性质、体外释药以及在正常大鼠体内的降血糖效果进行研究。方法采用改良的乳化溶剂扩散法分别制备了胰岛素PLGA纳米粒和肠溶胰岛素纳米粒(PLGA HP55 NP、PLGA HP50 NP)。通过激光粒度测定仪测定粒径大小,系统考察了肠溶材料HP55的用量及类型对纳米粒性质的影响,以及各种纳米粒在人工胃液、人工肠液中的释药行为和其在正常大鼠体内的降血糖作用,并与PLGA HP50 NP进行了比较。结果制得的最终处方的肠溶纳米粒(PLGA HP55)的粒径为(169±16)nm,胰岛素的载药量为(3.17±0.24)%。肠溶纳米粒在人工胃液中的释药速率明显低于PLGA纳米粒。PLGA纳米粒和肠溶PLGA HP50、PLGA HP55纳米粒均能显著降低正常大鼠的血糖浓度,其在正常大鼠体内24 h相对于皮下注射给药的相对生物利用度分别为(5.46±0.7)%、(6.31±0.64)%和(8.72±0.5)%。结论胰岛素肠溶纳米粒可以有效抑制胰岛素在人工胃液中的释放,与PLGA纳米粒相比显著降低正常大鼠的血糖浓度。其中PLGA HP55纳米粒的降糖作用显著高于PLGA HP50纳米粒。pH值高的纳米粒有望成为胰岛素口服给药的有效载体。  相似文献   

2.
The in vitro/in vivo characterization of antacid-insulin co-encapsulated poly(lactide-co-glycolide) (PLGA) nanoparticles is presented here. The optimized nanoparticle composition has 1% surfactant (didodecyl dimethylammonium bromide) and 2% antacid (magnesium hydroxide or zinc carbonate) in the size range ∼136–143 nm with ∼81–85% entrapment of insulin at a 4% (w/w) initial load to that of polymer. Molecular characterization using circular dichroism, fluorescence and Fourier transform infrared spectroscopy showed that the structural integrity of insulin was maintained during formulation. Furthermore, the encapsulated insulin was well protected under in vitro simulated gastric and intestinal fluids. Nanoparticle insulin results in six fold increase in oral bioavailability to that of plain insulin in healthy rats. In diabetic rats, a 120 IU/kg oral dose of insulin nanoparticles achieved an equivalent blood glucose lowering effect to a 20 IU/kg subcutaneous (sc) dose of insulin solution, the nadir in blood glucose concentration occurring 24 h and 1 h post-administration, respectively. Both sc insulin and oral nanoparticle insulin partially attenuated hyperglycemia-induced inflammation caused by tumor necrosis factor α, but not by interleukin-6 or C-reactive protein; on the other hand, subcutaneous insulin was found to be more effective on lipid profile measured in the form of high density lipoprotein, cholesterol and triglyceride. Successful oral insulin could be beneficial in type II complications.  相似文献   

3.
The use of compendial pH 6.8 phosphate buffer to assess dissolution of enteric coated products gives rise to poor in vitro-in vivo correlations because of the inadequacy of the buffer to resemble small intestinal fluids. A more representative and physiological medium, pH 6.8 bicarbonate buffer, was developed to evaluate the dissolution behaviour of enteric coatings. The bicarbonate system was evolved from pH 7.4 Hanks balanced salt solution to produce a pH 6.8 bicarbonate buffer (modified Hanks buffer, mHanks), which resembles the ionic composition and buffer capacity of intestinal milieu. Prednisolone tablets were coated with a range of enteric polymers: hypromellose phthalate (HP-50 and HP-55), cellulose acetate phthalate (CAP), hypromellose acetate succinate (HPMCAS-LF and HPMCAS-MF), methacrylic acid copolymers (EUDRAGIT® L100-55, EUDRAGIT® L30D-55 and EUDRAGIT® L100) and polyvinyl acetate phthalate (PVAP). Dissolution of coated tablets was carried out using USP-II apparatus in 0.1 M HCl for 2 h followed by pH 6.8 phosphate buffer or pH 6.8 mHanks bicarbonate buffer. In pH 6.8 phosphate buffer, the various enteric polymer coated products displayed rapid and comparable dissolution profiles. In pH 6.8 mHanks buffer, drug release was delayed and marked differences were observed between the various coated tablets, which is comparable to the delayed disintegration times reported in the literature for enteric coated products in the human small intestine. In summary, the use of pH 6.8 physiological bicarbonate buffer (mHanks) provides more realistic and discriminative in vitro release assessment of enteric coated formulations compared to compendial phosphate buffer.  相似文献   

4.
Poorly water soluble basic drugs are very sensitive to pH changes and following dissolution in the acidic stomach environment tend to precipitate upon gastric emptying, which leads to compromised or erratic oral bioavailability. In this work, we show that the oral bioavailability of a model poorly soluble basic drug (cinnarizine) can be improved by drug encapsulation within highly pH-responsive microparticles (Eudragit L). The latter was prepared by emulsion solvent evaporation which yielded discrete spherical microparticles (diameter of 56.4 ± 6.8 μm and a span of 1.2 ± 0.3). These Eudragit L (dissolution threshold pH 6.0) microparticles are expected to dissolve and release their drug load at intestinal conditions. Thus, the enteric microparticles inhibited the in vitro release of drug under gastric conditions, despite high cinnarizine solubility in the acidic medium. At intestinal conditions, the particles dissolved rapidly and released the drug which precipitated out in the dissolution vessel. In contrast, cinnarizine powder showed rapid drug dissolution at low pH, followed by precipitation upon pH change. Oral dosing in rats resulted in a greater than double bioavailability of Eudragit L microparticles compared to the drug powder suspension, although Cmax and Tmax were similar. The higher bioavailability with microparticles contradicts the in vitro results. Such an example highlights that although in vitro results are an indispensable tool for formulation development, an early in vivo assessment of formulation behaviour can provide better prediction for oral bioavailability.  相似文献   

5.
The modulating effect of estrogen on glucose homeostasis remains a controversial issue at present. In this study, we sought to determine the beneficial effect of 17β-estradiol (E2) on hyperglycemia and islet β-cell functions in streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats were injected i.p. with STZ to induce a relatively mild diabetic condition. The rats were then treated with E2 orally at 500 μg/kg body weight/day for 15 days to evaluate the modulating effect on hyperglycemia, insulin secretion, and islet β-cell proliferation. E2 administration for 10 days significantly lowered plasma glucose levels, increased plasma insulin levels, and improved glucose tolerance by attenuating insulin response to oral glucose loading. These beneficial effects of E2 were accompanied by increases in islet number and volume, rate of islet cell proliferation, and the amount of insulin secreted. The growth-stimulatory effect of E2 on islet cells was linked to the functions of the estrogen receptor α. Notably, these protective effects of E2 on diabetic conditions were basically not observed when the STZ-treated rats had a more severe degree of islet damage and hyperglycemia. Taken together, we conclude that E2 can promote the regeneration of damaged pancreatic islets by stimulating β-cell proliferation in diabetic rats, and this effect is accompanied by improvements in glucose tolerance and a decrease in plasma glucose levels. These findings suggest that oral administration of E2 may be beneficial in diabetic patients with an accelerated loss of islet β-cells.  相似文献   

6.
目的制备肠溶包衣的胰岛素壳聚糖复合物纳米粒,并对其理化性质、体外释药以及在糖尿病模型大鼠体内的降血糖效果进行研究。方法采用离子交联法制备胰岛素壳聚糖复合物纳米粒,使用羟丙基甲基纤维素酞酸酯(HP55)对其进行肠溶包衣;通过扫描电子显微镜观察其表观形态,用激光粒度测定仪测定其粒径大小,用Zeta电势测定仪测定其Zeta电势,使用HPLC法测定离心上清夜中胰岛素浓度,计算包封率。结果制备得到的纳米粒均匀、圆整,包衣前后粒径分别为(281±10)nm和(328±13)nm,Zeta电势分别为(30.4±6.97)mV和(33.7±6.69)mV,包封率分别为78.5%和74.3%;肠溶包衣纳米粒在人工胃液和肠液中的释药速率均明显低于未包衣纳米粒,突释效应显著减小;未包衣复合物纳米粒能够显著降低糖尿病模型大鼠的血糖浓度,其降糖效果能持续20 h以上,肠溶包衣后,降糖效果明显增强;肠溶包衣前后在模型大鼠体内24 h相对生物利用度分别为11.12%和16.29%。结论肠溶包衣胰岛素壳聚糖复合物纳米粒可以有效抑制胰岛素的突释,促进其吸收,显著降低模型大鼠的血糖浓度,能够作为胰岛素口服给药的有效载体。  相似文献   

7.
The alginate-chitosan microspheres with narrow size distribution were prepared by membrane emulsification technique in combination with ion (Ca2+) and polymer (chitosan) solidification. The preparation procedure was observed, and the physical properties (particle size distribution, surface morphology, chitosan distribution, zeta potential) of the microspheres were characterized. Subsequently, the microspheres were employed to load model peptide of insulin. The effect of loading ways on the loading efficiency and immunological activity of insulin were investigated. It was shown that the higher loading efficiency (56.7%) and remarkable activity maintenance (99.4%) were obtained when the insulin was loaded during the chitosan solidification process (Method B). Afterward, the release profile in vitro for the optimal insulin-loaded microspheres was investigated. Under the pH conditions of gastrointestinal environment, only 32% of insulin released during the simulated transit time of drug (2 h in the stomach and 4 h in the intestinal). While under the pH condition of blood environment, insulin release was stable and sustained for a long time (14 days). Furthermore, the chemical stability of insulin released from the microspheres was well preserved after they were treated with the simulated gastric fluid containing pepsin for 2 h. Finally, the blood glucose level of diabetic rats could be effectively reduced and stably kept for a long time (∼60 h) after oral administration of the insulin-loaded alginate-chitosan microspheres. Therefore, the alginate-chitosan microspheres were found to be promising vectors showing a good efficiency in oral administration of protein or peptide drugs.  相似文献   

8.

Background and Purpose

G-protein coupled receptor (GPR)55 is a novel lipid sensing receptor activated by both cannabinoid endogenous ligands (endocannabinoids) and other non-cannabinoid lipid transmitters. This study assessed the effects of various GPR55 agonists on glucose homeostasis.

Experimental Approach

Insulin secretion and changes in intracellular Ca2+ and cAMP in response to glucose and a range of GPR55 agonists [endogenous ligands (OEA, PEA), chemically synthetic cannabidiol (CBD) analogues (Abn-CBD, 0–1602), an analogue of rimonabant (AM-251) and antagonist (CBD)] were investigated in clonal BRIN-BD11 cells and mouse pancreatic islets. Cytotoxicity was assessed by LDH release, cellular localization by double-staining immunohistochemistry and in vivo effects assessed in mice.

Key Results

The most potent and selective GPR55 agonist was the synthetic CBD analogue, Abn-CBD (pEC50 10.33), maximum stimulation of 67% at 10−4 mol·L−1 (P < 0.001) in BRIN-BD11 cells. AM-251 (pEC50 7.0), OEA (pEC50 7.0), 0–1602 (pEC50 7.3) and PEA (pEC50 6.0) stimulated insulin secretion. Results were corroborated by islet studies, with no cytotoxic effects. Concentration-dependent insulin secretion by GPR55 agonists was glucose-sensitive and accompanied by elevations of [Ca2+]i (P < 0.01–P < 0.001) and cAMP (P < 0.05–P < 0.01). GPR55 agonists exhibited insulinotropic and glucose lowering activity in vivo. GPR55 was expressed on BRIN-BD11 cells and confined to islet beta cells with no distribution on alpha cells.

Conclusion and Implications

These results demonstrate GPR55 is distributed in pancreatic beta cells and is a strong activator of insulin secretion, with glucose-lowering effects in vivo. Development of agents agonizing the GPR55 receptor may have therapeutic potential in the treatment of type 2 diabetes.  相似文献   

9.
Amifostine is the first FDA approved cytoprotective and chemoprotective agent in the treatment of cancer. However, it is not used widely because of its ineffectiveness when administered orally. The objective of this study was to prepare and evaluate the radioprotective efficacy of orally active amifostine enteric microcapsules (amifostine mc). The microcapsules were prepared by spray drying technique using Eudragit L100-55, and the yield was more than 80%. The particle size and surface morphology were determined by particle analyzer and scanning electron microscopy. Thermal characterization and infrared spectroscopy were evaluated as well. In vitro release assay found that more than 60% amifostine was released during the first 4 h and the cumulative release ratio was up to approximately 90% in 24 h at 37 °C. The radioprotective efficacy was determined by 30-day survival study in mice acutely exposed to 6 Gy γ-ray irradiation. The results showed that all dose groups of amifostine microcapsules could significantly improve survival animal numbers and time. Furthermore, tissue distribution studies indicated the concentrations of the active metabolite WR-1065 in mice tissues of microcapsule group were higher than that of oral amifostine group at 180 min (p < 0.01). These results demonstrated that oral administration of amifostine microcapsules provided effective radioprotection compared to the bulk drug.  相似文献   

10.
Weakly basic drugs and their salts exhibit a decrease in aqueous solubility at higher pH, which can result in pH-dependent or even incomplete release of these drugs from extended release formulations. The objective of this study was to evaluate strategies to set-off the very strong pH-dependent solubility (solubility: 80 mg/ml at pH 2 and 0.02 mg/ml at pH 7.5, factor 4000) of a mesylate salt of weakly basic model drug (pKa 6.5), in order to obtain pH-independent extended drug release. Three approaches for pH-independent release were investigated: (1) organic acid addition in the core, (2) enteric polymer addition to the extended release coating and (3) an enteric polymer subcoating below the extended release coating. The layering of aspartic acid onto drug cores as well as the coating of drug cores with an ethylcellulose/Eudragit L (enteric polymer) blend were not effective to avoid the formation of the free base at pH 7.5 and thus failed to significantly improve the completeness of the release compared to standard ethylcellulose/hydroxypropyl cellulose (EC/HPC)-coated drug pellets. Interestingly, the incorporation of an enteric polymer layer underneath the EC/HPC coating decreased the free base formation at pH 7.5 and thus resulted in a more complete release of up to 90% of the drug loading over 18 h. The release enhancing effect was attributed to an extended acidification through the enteric polymer layer. Flexible release patterns with approximately pH-independent characteristics were successfully achieved.  相似文献   

11.
Context: Pravastatin sodium (PVS) is a freely water-soluble HMG-CoA inhibitor that suffers from instability at gastric pH, extensive first pass metabolism, short elimination half-life (1–3?h) and low oral bioavailability (18%). Objective: To overpower these drawbacks and to maximize drug absorption at its main site of absorption at the duodenum, enteric surface-coated PVS-loaded nanocubosomal dispersions were presented. Materials and methods: Glyceryl monooleate (GMO)-based dispersions were developed by the fragmentation or the liquid precursor methods using Pluronic® F127 or Cremophor® EL as surfactants. As a challenging enteric-coating approach, the promising dispersions were surface-coated via lyophilization with Eudragit® L100-55; a duodenum-targeting polymer. The drug content, particle size, zeta potential, morphology and release studies of PVS-loaded dispersions were evaluated before and after surface-coating. Compared to an aqueous PVS solution, the pharmacokinetics of the best achieved system (E-F8) was evaluated (UPLC-MS/MS) in rats. Results: The enteric surface-coated nanocubosomal dispersions were more or less spherical in shape and showed high drug-loading, negative zeta potential values and fine-tuned biphasic drug-release patterns characterized by retarded (2?h) and sustained (10?h) phases in pH 1.2 and pH 6.8, respectively. E-F8 system showed significantly (p<?0.05) higher oral bioavailability, delayed Tmax and prolonged MRT0?∞ following oral administration in rats. Conclusions: The duodenum-triggering potential and the controlled-release characteristics of the best achieved system for smart PVS delivery were revealed.  相似文献   

12.
Extracellular nucleotides and their receptor antagonists have therapeutic potential in disorders such as inflammation, brain disorders, and cardiovascular diseases. Pancreatic β cells express several purinergic receptors, and reported nucleotide effects on insulin secretion are contradictory. We studied the effect of P2Y receptors on insulin secretion and cell death in MIN6, mouse pancreatic β cells. Expression of P2Y1 and P2Y6 receptors was revealed by total mRNA analysis using RT-PCR. MIN6 cells were stimulated in the presence of 16.7 mM glucose with or without P2Y1 and P2Y6 agonists, 2-MeSADP and Up3U, respectively. Both the agonists increased insulin secretion with EC50 values of 44.6 ± 7.0 nM and 30.7 ± 12.7 nM respectively. The insulin secretion by P2Y1 and P2Y6 agonists was blocked by their selective antagonists MRS2179 and MRS2578, respectively. Binding of the selective P2Y1 receptor antagonist radioligand [125I]MRS2500 in MIN6 cell membranes was saturable (KD 4.74 ± 0.47 nM), and known P2Y1 ligands competed with high affinities. Inflammation and glucose toxicity lead to pancreatic β cell death in diabetes. Flow cytometric analysis revealed that Up3U but not 2-MeSADP protected MIN6 cells against TNF-α induced apoptosis. Overall, the results demonstrate that selective stimulation of P2Y1 and P2Y6 receptors increases insulin secretion that accompanies intracellular calcium release, suggesting potential application of P2Y receptor ligands in the treatment of diabetes.  相似文献   

13.
In vitro metabolism of bisphenol A (BPA), an weak estrogen, was studied with cryopreserved hepatocytes from rat, monkey and human, and was compared with in vivo metabolism reported. The metabolites identified include a major metabolite, BPA glucuronide (BPAG) and BPA sulfate (BPAS). The metabolic rates of bisphenol A at 20 μM by the hepatocytes (BPAG plus BPAS, nmol/106 cells/h) followed the order of rats (48 + 12) > monkeys (18 + 4) > humans (8.6 + 0.8), respectively. The rate of BPAG formation was much higher than that of BPAS formation in all these species. For the BPAG formation, we have determined the apparent Km (μM) of rats (3), monkeys (7), and humans (5). Vmax (nmol/106 cells/h) in hepatocytes followed the order of rats (55) > monkeys (22) > humans (11). The total CLH for the hepatic formation of BPAG plus BPAS (L/h/kg BW) estimated by well-stirred model with low fB value followed the order of rats (3.0) > monkeys (0.68) > humans (0.27), correlating well with in vivo studies of BPA subcutaneously injected rats and monkeys. This study showed that the cryopreserved hepatocytes could be a useful tool for assessing BPA metabolism and predicting systemic exposure of BPA.  相似文献   

14.
The effects of linogliride fumarate (0.1 mmol/liter) and tolbutamide sodium (0.5 mmol/liter) on insulin secretion and glucose utilzation were directly compared in isolated perifused rat islets. Both compounds potentiated glucose-primed (5.5 mmol/liter) insulin release. The insulin secretory response at the concentration chosen was qualitatively different for the two agents. In the presence of glucose, the insulin secretory effect of tolbutamide was biphasic, whereas linoglirde predominantly increased second-phase insulin secretion. In the absence of exogenous glucos, tolbutamide stimulated first-phase insulin release wherease linogliride was ineffective without glucose in the perifusion medium. Neither linogliride (0.1 mmol/liter) nor tolbutamide (0.5 mmol/liter) stimulated islet cell glucose usage as measured by conversion of [5?3H]-glucose to 3H2O. The insulin secretagogue effect of linogliride was completely abolished when islet cell glucose usage was partially blocked (22% reduction) by mannoheptulose (MH) (10 mmol/liter). When glucose usage was significantly inhibited (55%) by 2-deoxyglucose (2DG) (10 mmol/liter), linogliride-stimulated insulin secretion was not significantly reduced. In contrast, tolbutamide-stimulated first-phase insulin release was not inhibited when glucose usage was reduced by either MH or 2-DG, wherease secondphase insulin release was significantly inhibited. In summary, linogliride potentiates insulin secretion in isolated islets by a glucose-dependent process, but with a kinetic profile and response to metabolic inhibitors different from that of tolbutamide.  相似文献   

15.
A sensitive and specific LC-MS assay for DT-13 in rat plasma was developed. DT-13 is an active steroidal saponin present in Liriopes Radix and is developed as an anti-tumor drug candidate. The samples were extracted by acetonitrile-mediated plasma protein precipitation. The chromatographic separation was carried out using a Ultimate C18 column (250 mm × 4.6 mm, i.d., 5 μm) with a mobile phase composed of acetonitrile: 5 mmol/L aqueous ammonium acetate (60:40, v:v). The method was validated and the specificity, linearity (r2 = 0.9980 within 10-1000 ng/mL), lower limit of quantitation (LLOQ, 10 ng/mL), precision (intra- and inter-day <12.3%), accuracy (93.4-106.3%), recovery (91.0 ± 4.7%) and stability were determined. The method was applied to the pharmacokinetic study of DT-13 in rat plasma after intravenous and intragastric administration. The results showed DT-13 underwent a prolonged absorption and slow elimination with a low oral bioavailability (5.51%) in rats.  相似文献   

16.
ATP-sensitive P2X7 receptors are localized on cells of immunological origin including peripheral macrophages and glial cells in the CNS. Activation of P2X7 receptors leads to rapid changes in intracellular calcium concentrations, release of the pro-inflammatory cytokine IL-1β, and following prolonged agonist exposure, the formation of cytolytic pores in plasma membranes. Data from gene knockout studies and recently described selective antagonists indicate a role for P2X7 receptor activation in inflammation and pain. While several species selective P2X7 antagonists exist, A-804598 represents a structurally novel, competitive, and selective antagonist that has equivalent high affinity at rat (IC50 = 10 nM), mouse (IC50 = 9 nM) and human (IC50 = 11 nM) P2X7 receptors. A-804598 also potently blocked agonist stimulated release of IL-1β and Yo-Pro uptake from differentiated THP-1 cells that natively express human P2X7 receptors. A-804598 was tritiated ([3H]A-804598; 8.1 Ci/mmol) and utilized to study recombinant rat P2X7 receptors expressed in 1321N1 cells. [3H]A-804598 labeled a single class of high affinity binding sites (Kd = 2.4 nM and apparent Bmax = 0.56 pmol/mg). No specific binding was observed in untransfected 1321N1 cells. The pharmacological profile for P2X antagonists to inhibit [3H]A-804598 binding correlated with their ability to block functional activation of P2X7 receptors (r = 0.95, P < 0.05). These data demonstrate that A-804598 is one of the most potent and selective antagonists for mammalian P2X7 receptors described to date and [3H]A-804598 is a high affinity antagonist radioligand that specifically labels rat P2X7 receptors.  相似文献   

17.
Symplocos cochinchinesis is used in Indian system of traditional medicine to treat diabetes mellitus. The present study investigates the in vitro antioxidant, antidiabetic and antilipidemic activities of S. cochinchinensis bark methanolic extract (SCBe) in streptozotocin (STZ) induced diabetic rats. In in vitro studies SCBe showed very good scavenging activity on 2,2-diphenyl-picrylhydrazyl (DPPH) (IC50 820.34 ± 1.74 μg/ml), hydroxyl (IC50 884.19 ± 0.45 μg/ml) and nitric oxide (IC50 860.21 ± 1.18 μg/ml) radicals, as well as high reducing power. SCBe (250 and 500 mg/kg) was administered to STZ (40 mg/kg) induced diabetic rats for 28 days. SCBe showed a significant decrease in blood glucose and significant increase in plasma insulin and liver glycogen levels in treated diabetic rats. Further, SCBe showed antilipidemic activity as evidenced by significant decrease in serum TC, TG, LDL-C levels and significant increase in HDL-C level in treated diabetic rats. SCBe also restored the altered plasma enzymes (SGOT, SGPT and ALP), total protein, urea and creatinine levels to near normal. The action of SCBe was comparable to the antidiabetic drug glibenclamide. Results of this experimental study indicated that SCBe possessed antioxidant, antidiabetic and antilipidemic activities.  相似文献   

18.
Diphenyl diselenide [(PhSe)2], an organoselenium compound, presents pharmacological and toxicological properties in rodents. The aim of this study was to carry out the determination and quantification of (PhSe)2 in plasma after oral administration (p.o.) of this compound (500 mg/kg), dissolved in canola oil, in rats and mice. The second objective was to verify the involvement of different routes of administration ((p.o.), intraperitoneal (i.p.) and subcutaneous (s.c.)) and vehicle solutions (canola oil and dimethyl sulfoxide (DMSO)) in the appearance of seizure episodes and in the plasmatic levels of (PhSe)2 in rats and mice. Analysis of (PhSe)2 in blood samples was performed by gas chromatography/flame ionized detector system (GC/FID). Rat and mouse peak plasma (PhSe)2 levels were 13.13 and 10.11 μg/ml (Cmax), respectively, and occurred at 0.5 h (Tmax) post-dosing. The use of different administration routes (p.o., i.p. and s.c.) and vehicle solutions (canola oil or DMSO) in rats and mice indicated that the appearance of seizures and (PhSe)2 plasmatic levels are dependent of administration routes (i.p. > p.o. > s.c.), vehicle solutions (DMSO > canola oil) and animal species (mice > rat).  相似文献   

19.
The purpose of this research was to develop a sensitive and reproducible UPLC–MS/MS method to analyze matrine, an anticancer compound, and to use it to investigate its biopharmaceutical and pharmacokinetic behaviors in rats. A sensitive and fast UPLC–MS/MS method was successfully applied to determine matrine in rat plasma, intestinal perfusate, bile, microsomes, and cell incubation media. The absolute oral bioavailability of matrine is 17.1 ± 5.4% at a dose of 2 mg/kg matrine. Matrine at 10 μM was shown to have good permeability (42.5 × 10−6 cm/s) across the Caco-2 cell monolayer, and the ratio of PA–B to PB–A was approximately equal to 1 at two different concentrations (1 and 10 μM). Perfusion study showed that matrine displayed significant differences (P < 0.05) in permeability at different intestinal regions. The rank order of permeability was ileum (highest, Pw = 6.18), followed by colon (Pw = 2.07), duodenum (Pw = 0.61) and jejunum (Pw = 0.52). Rat liver microsome studies showed that CYP and UGTs were not involved in matrine metabolism. In conclusion, a sensitive and reliable method capable of measuring matrine in a variety of matrixes was developed and successfully used to determine absolute oral bioavailability of matrine in rats, transport across Caco-2 cell monolayers, absorption in rat intestine, and metabolism in rat liver microsomes.  相似文献   

20.
The objective of this study was to formulate and evaluate the lansoprazole (LPZ)-loaded microparticles to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease (GERD). The microparticulate delivery system was prepared by solvent evaporation method using Eudragit RS100 as a matrix polymer followed by enteric coated with Eudragit S100 and hydroxypropyl methylcellulose phthalate HP55 using spray drying method. The enteric coated microparticles were stable in gastric pH condition. In vivo pharmacokinetic and pharmacodynamic studies in male Wistar rats demonstrated that enteric coated microparticles sustained release of LPZ and promoted ulcer healing activity. In other words, the microparticulate dosage form provided effective drug concentration for a longer period as compared to conventional extended release dosage form, and showed sufficient anti-acid secretion activity to treat acid related disorders including the enrichment of nocturnal acid breakthrough event based on a once daily administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号