首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Summary Naturally occurring isoquinolines affected the monoamine metabolism in the rat striatum, as proved by in vivo microdialysis technique. By analysis of monoamines and their metabolites in the dialysate, dopamine-derived 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines were found to inhibit monoamine oxidase and catechol-O-methyltransferase activity. 1-Methyl- and 2-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline were found to inhibit activity of type A monoamine oxidase most markedly. To compare the structure-activity relationship, corresponding isoquinolines without a catechol structure were also examined. The inhibition by catechol isoquinolines was more manifest than those without a catechol structure. Among latter isoquinolines, N-methyl-isoquinolinium ion was the most potent inhibitor of monoamine oxidase. In addition, catechol isoquinolines increased monoamine levels in the brain. The number and the site of the methyl group are essentially required for the inhibition of monoamine oxidase and a catechol structure for that of catechol-O-methyl-transferase. These results are discussed in relation to possible involvement of these isoquinolines to the clinical features of some neuro-psychiatric diseases, such as alcoholism or in L-DOPA therapy.  相似文献   

2.
Recently, an endogenous catechol isoquinoline, 1(R),2(N)-;6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline [N-methyl(R)salsolinol], was proved to be a neurotoxin specific for dopamine neurons by in vivo and in vitro experiments. This N-methyl(R)salsolinol was found to increase significantly in the cerebrospinal fluid of untreated parkinsonian patients, suggesting its possible involvement in the pathogenesis of Parkinson's disease. To clarify the mechanism of the increase, the activity of enzymes related to the metabolism of the neurotoxin was examined in lymphocytes prepared from parkinsonian patients and controls. In patients with Parkinson's disease, the activity of a neutral N-methyltransferase, measured by using (R)salsolinol as a substrate, was found to increase significantly (100.2 ± 81.8 pmol/min/mg of protein) in comparison with that in controls (18.9 ± 15.0 pmol/min/mg of protein). The distribution of the activity was bimodal in the parkinsonian patients, whereas it was singular in controls. The activity of other related enzymes, an alkaline N-methyltransferase and N-methyl(R)salsolinol oxidase, in parkinsonian lymphocytes was the same as in controls. Increase of the neutral N-methyltransferase may be an endogenous factor in the pathogenesis of Parkinson's disease.  相似文献   

3.
Dopamine-derived 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol, Sal) and related compounds were examined for their selective neurotoxicity to dopamine neurons by injection into the rat striatum. Among salsolinol analogs examined, only N-methyl-(R)-salsolinol (NM(R)Sal) induced behavioral changes very similar to those in Parkinson's disease: hypokinesia, stiff tail, limb twitching at rest and postural abnormality. Biochemical analysis showed that after NM(R)Sal injection, NM(R)Sal itself and its oxidation product, 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion (DMDHIQ+) accumulated in the striatum, and also in the substantia nigra definite amount of DMDHIQ+ was detected. Dopamine and noradrenaline were reduced in the striatum and more markedly in the substantia nigra, whereas serotonin and its metabolite were not affected. Morphological analysis revealed selective reduction of tyrosine hydroxylase (TH)-containing neurons in the substantia nigra after continuous NM(R)Sal administration in the striatum. These results demonstrate the selective cytotoxicity of NM(R)Sal to the dopamine neurons in the substantia nigra, and the possible involvement of this 6,7-dihydroxyisoquinoline in the pathogenesis of Parkinson's disease is discussed.  相似文献   

4.
Naoi M  Maruyama W  Nagy GM 《Neurotoxicology》2004,25(1-2):193-204
Salsolinol, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, is an endogenous catechol isoquinoline detected in humans by M. Sandler. In human brain, a series of catechol isoquinolines were identified as the condensation products of dopamine or other monoamines with aldehydes or keto-acids. Recently selective occurrence of the (R)enantiomers of salsolinol derivatives was confirmed in human brain, and they are synthesized by enzymes in situ, but not by the non-enzymatic Pictet-Spengler reaction. A (R)salsolinol synthase catalyzes the enantio-specific synthesis of (R)salsolinol from dopamine and acetaldehyde, and (R)salsolinol N-methyltransferase synthesizes N-methyl(R)salsolinol, which is further oxidized into 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion by non-enzymatic and enzymatic oxidation. The step-wise reactions, N-methylation and oxidation, induce the specified distribution of the N-methylated and oxidized derivatives in the human nigro-striatum, suggesting that these derivatives may be involved in the function of dopamine neurons under physiological and pathological conditions. As shown by in vivo and in vitro experiments, salsolinol derivatives affect the levels of monoamine neurotransmitters though the inhibition of enzymes related in the metabolism of catechol- and indoleamines. In addition, the selective neurotoxicity of N-methyl(R)salsolinol to dopamine neurons was confirmed by preparation of an animal model of Parkinson's disease in rats. The involvement of N-methyl(R)salsolinol in the pathogenesis of Parkinson's disease was further indicated by the increase in the N-methyl(R)salsolinol levels in the cerebrospinal fluid and that in the activity of its synthesizing enzyme, a neural (R)salsolinol N-methyltransferase, in the lymphocytes prepared from parkinsonian patients. N-methyl(R)salsolinol induces apoptosis in dopamine neurons, which is mediated by death signal transduction in mitochondria. In addition, salsolinol was found to function as a signal transmitter for the prolactin release in the neuro-intermediate lobe of the brain. These results are discussed in relation to role of dopamine-derived endogenous salsolinol derivatives as the regulators of neurotransmission, dopaminergic neurotoxins and neuro-hormonal transmitters in the human brain.  相似文献   

5.
Summary. Endogenous tetrahydroisoquinolines, such as 1,2,3,4-tetrahydroisoquinoline (TIQ) and 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), were tested for their interaction with motor effects of amphetamine and morphine in C57BL/6 mice. TIQ binding to cortical adrenergic α1, α2 and β receptors, striatal dopamine D1 and D2 receptors and cortical L-type calcium channels in the Wistar rat was also studied. Both compounds in high doses reduced the mouse locomotor activity, and in doses not affecting activity inhibited the motor stimulation induced by amphetamine, 2 or 3 mg/kg ip, but facilitated the hyperactivity induced by 10 mg/kg of morphine. TIQ did not displace ligands that are antagonists for several receptor sites (including D1 and D2 receptors), but displaced an agonist of α2-adrenoceptor, clonidine. It is proposed that TIQ and salsolinol specifically antagonize the agonistic conformation of dopamine receptor and that endogenous 1,2,3,4-tetrahydroisoquinolines may play a role of natural feedback regulators of the activity of dopaminergic system. Received September 20, 2000; accepted December 6, 2000  相似文献   

6.
Summary. The mechanism of the cytotoxicity of endogenous dopaminederived (R)-1,2-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline [(R)-N-methylsalsolinol] to differentiated human dopaminergic neuroblastoma SH-SY5Y cells was studied using a reduction-oxidation indicator, Alamar Blue. N-Methylsalsolinol and its oxidation product, 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion, were found to inhibit oxidative phosphorylation, as shown by the Redox capacity. Antioxidants, such as reduced glutathione, catalase, Tris and n-propyl gallate, reduced the cytotoxicity of N-methylsalsolinol, suggesting that hydroxyl radical was the major reactive oxygen species for the cytotoxicity. Deprenyl also protected the cells from the decrease of the Redox capavity by N-methylsalsolinol. However, antioxidants did not protect the cells from the cytotoxicity of the catechol isoquinolinium ion. The results suggest that oxidative stress induced by hydroxyl radical may be involved in the cell death of dopaminergic neurons by N-methylsalsolinol. Accepted February 12, 1998; received November 19, 1997  相似文献   

7.
Prolactin is secreted from the anterior lobe of the pituitary gland in response both to suckling and to stress. We recently observed that 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), produced in the neurointermediate lobe of the pituitary gland, as well as in the medial basal hypothalamus, can selectively release prolactin from the anterior pituitary. Therefore, it has been proposed that salsolinol is a putative endogenous prolactin-releasing factor (PRF). Here, we report that one structural analogue of salsolinol, 1-methyl-3,4-dihydroisoquinoline (1MeDIQ), can block salsolinol-induced release of prolactin, but does not affect prolactin release in response to thyrotropin releasing hormone (TRH), alpha-methyl-p-tyrosine (alpha MpT) (an inhibitor of tyrosine hydroxylase), domperidone (a D(2) dopamine receptor antagonist), or 5-hydroxytryptophan (5-HTP), a precursor of serotonin). 1MeDIQ profoundly inhibited suckling-, immobilization-, as well as formalin-stress induced prolactin release without any influence on corticosterone secretion. The 1MeDIQ-induced reduction in prolactin response to immobilization stress was dose-dependent. These results suggest that salsolinol can play a pivotal role in the regulation of prolactin release induced by either physiological (suckling) or environmental (stress) stimuli.  相似文献   

8.
It has been recently observed that salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline), a putative endogenous prolactin-releasing factor is a potent inhibitor of stress-induced release of epinephrine and norepinephrine. The prolactin release caused by salsolinol was inhibited by 1-methyl-3,4-dihydroisoquinoline (1MeDIQ). Therefore, the aim of our present studies was to investigate the effect of 1MeDIQ on plasma catecholamine levels. It has been found that 1MeDIQ is able to induce a massive increase in plasma catecholamine levels. Pretreatment of the animals with a ganglionic blocker, chlorisondamine, could completely abolish the effect of 1MeDIQ on plasma norepinephrine, and plasma epinephrine levels were only significantly attenuated. Spinal cord transection between cervical and thoracic segments eliminated 1MeDIQ induced increase in epinephrine, whereas increase in plasma norepinephrine was not affected. Hence, this effect of 1MeDIQ on sympathoadrenal system activity is most probably mediated through the level of sympathetic ganglia or partially at more centrally located sites of the nervous system. These results suggest that elevation of plasma catecholamines is involved in the mechanism of action of 1MeDIQ inhibiting the biological effect of salsolinol.  相似文献   

9.
Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline), the endogenous dopamine-derived catechol isoquinolines whose structure is similar with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), may be a possible candidate of dopaminergic neurotoxins to elicit Parkinson’s disease (PD). Catechol isoquinolines can selectively target dopaminergic neurons, leading to dopaminergic neuronal death. However, the formation and nosogenesis of these toxins remains unclear. Salsolinol synthase is a novel enzyme which condensate dopamine and acetaldehyde to salsolinol. It is the first key enzyme in the metabolic pathway of catechol isoquinolines which directly affects salsolinol and its derivative metabolism in vivo. It is also one kind of Pictet-Spenglerase, which has been little studied and need more characterization. PC12 cells and rat brains were performed to illustrate the existence of salsolinol synthase in our study. The results indicate that salsolinol synthase is a low molecular weight protein, showing enhanced activity with increase in dopamine concentration. It is suggested that salsolinol synthase is sensitive to strong acid and stable to high-temperature. In this research, existence of salsolinol synthase was confirmed in vivo, and also provided some new evidences to elucidate the endogenous catechol isoquinoline neurotoxin substances involved in the pathogenesis of PD.  相似文献   

10.
Using a microdialysis-HPLC technique in conscious rats, we examined the action of (R)-1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, (R)-salsolinol (R-Sal), a possible endogenous metabolite of alcohol, on serotonin (5-HT) and dopamine (DA) metabolism in four regions of the brain: the striatum, the substantia nigra, the hippocampus and the hypothalamus. Following 1 mM R-Sal perfusion, the dialysate level of 5-HT in the striatum markedly increased from non-detectable levels to 4259.2 ± 617.5nM, while DA increased from 3.4 ± 0.9nM to206.0 ± 56.5nM. The increase was one order of magnitude larger in 5-HT than in DA. Conversely, the output of 5-hydroxyindoleacetic acid decreased markedly to non-detectable levels, while 3,4-dihydroxyphenylacetic acid and homovanillic acid outputs decreased below 40% of basal levels. These effects were dose-related to R-Sal (1 μM to 1 mM) and were confirmed also in 3 other brain regions. The R-Sal-induced responses in the striatum were observed even after pretreatment of 2 μM tetrodotoxin, a blocker of nerve-firing activity, via the dialysis membrane. The repetitive perfusion with 1 mM R-Sal into the striatum induced the reproducible response of 5-HT and DA. Furthermore, the potencies of 1 mM R-Sal to increase the output of 5-HT and DA were approximately 783.0-fold and 2.6-fold stronger, respectively, than those of the same dose of methamphetamine. The results suggest that R-Sal acts to stimulate a release of monoamines, 5-HT preferentially, with inhibition of monoamine oxidase and catechol-O-methyltransferase activities.  相似文献   

11.
We carried out behavioral, pathological, and biochemical studies in order to determine whether the stereo-structure of 1-methyl-1,2,3,4-tetrahydroisoquinoline (1-MeTIQ) affects the onset of Parkinson’s disease-like symptoms, which are induced by 1,2,3,4-tetrahydroisoquinoline (TIQ) in mice. Pretreatment with (R)-1-MeTIQ or its racemate (RS)-1-MeTIQ prevented the TIQ-induced bradykinesia. Pretreatment with a combination of L-DOPA and carbidopa significantly prevented subsequent TIQ-induced bradykinesia. Furthermore, the pathological study demonstrated that either (R)-1-MeTIQ or its racemate protected against TIQ-induced loss of tyrosine hydroxylase-positive cells of the substantia nigra pars compacta. (R)-1-MeTIQ and its racemate also prevented the TIQ-induced reduction in the levels of dopamine and its metabolites in the striatum. Serotonin and its metabolite were not affected by repeated administration of (RS)-1-MeTIQ or its derivatives. On the other hand, (S)-1-MeTIQ induced moderate but significant bradykinesia, whereas (R)-1-MeTIQ did not induce this behavioral abnormality at all. In addition, (S)-enantiomer prevented the onset of TIQ-induced bradykinesia, though to a lesser extent than did either (R)-enantiomer or its racemate. However, (S)-enantiomer did not prevent the loss of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta. We concluded that (R)-1-MeTIQ, and not (S)-enantiomer, plays a crucial role in protection against TIQ-induced parkinsonism, a fact which suggests that enantiomeric biochemical events such as 1-MeTIQ biosynthesis may participate in the pathogenesis of Parkinson’s disease.  相似文献   

12.
The endogenous neurotoxin, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), has been considered a potential neurotoxin in the etiology of Parkinson's disease (PD). Salsolinol and N-methyl(R)-salsolinol were identified in the brains and cerebrospinal fluid (CSF) of PD patients. Oxidative stress is known to be one of the major contributing factors in the cascade that may finally leads to the cell death in PD. The present study was undertaken to understand the role of salsolinol in oxidative-mediated neuronal toxicity in dopaminergic SH-SY5Y cells, and the neuroprotective effects of metallothionein (MT) against salsolinol toxicity in MT overexpressing (MT(trans)) fetal mesencephalic cells. Salsolinol increased the production of reactive oxygen species (ROS) and significantly decreased glutathione (GSH) levels and cell viability in SH-SY5Y cells. Salsolinol also decreased intracellular ATP levels and induced nuclear condensation in these cells. Salsolinol-induced depletion in cell viability was completely prevented by N-acetylcysteine in SH-SY5Y cells, and also prevented by MT in MT(trans) fetal mesencephalic cells compared to control(wt) cells. The extent of nuclear condensation and caspase activation was also less in MT(trans) cells than control(wt) cells. These results suggest that salsolinol causes oxidative stress by decreasing the levels of GSH and by increasing ROS production, and these events may lead to the death of dopaminergic cell. Furthermore, MT overexpression may protect dopaminergic neurons against salsolinol-induced neurotoxicity, most probably by the inhibition of oxidative stress and apoptotic pathways including caspase-3 activation.  相似文献   

13.
Summary The diastereomers of 3,N,N-trimethyl-2-phenyl-1,4-piperazine dihydrochloride (TPP) were tested for their effects on NA, DA and 5-HT uptake in synaptosomes prepared from hypothalamus, corpus striatum, and frontal cortex, respectively. The diastereomers differed with respect to their inhibitory properties. (2R, 3R)-TPP was more potent than the other diastereomers on NA and DA uptake, whereas (2S, 3S)-TPP was least potent. In contrast, the (2S, 3S)- and (2 S, 3R)-diastereomers of TPP were more potent than (2R, 3R)- and (2R, 3S)-TPP as inhibitors of 5-HT uptake. None of the diastereomers affected monoamine oxidase activity. The findings show that the diastereomers of TPP interact stereoselectively with neuronal mechanisms for monoamine uptake, and that the (S)-configuration at the 2 carbon is important for inhibitory actions of TPP on 5-HT uptake.  相似文献   

14.
Summary. Endogenous N-methyl(R)salsolinol, which caused parkinsonism in rats by injection in the striatum, was found to induce apoptosis in dopaminergic neuroblastoma SH-SY5Y cells. After 12-h incubation with 500 μM N-methyl(R)salsolinol, almost all the cells died with apoptosis and necrotic cell death was negligible. N-Methyl(R)salsolinol was much more potent to induce apoptosis than the (S)-enantiomer. The mechanism of apoptosis was studied in relation to changes in mitochondrial membrane potential, ΔΨm, using a fluorescent indicator, JC-1. Red fluorescence of J-aggregates representing hyperpolarized ΔΨm was found to decrease significantly within 60 min after incubation with N-methyl(R)salsolinol, but not by the (S)-enantiomer at the same concentration. It suggests that mitochondria may recognize the stereo-chemical structure of N-methyl(R)salsolinol. Aliphatic propargylamines, (R)-N-(2-heptyl)-N-methylpropargyl-amine and (R)-N-(2-heptyl)propargylamine, were found to prevent ΔΨm loss and subsequent apoptosis induced by N-methyl(R)salsolinol. These results suggest that mitochondria play a key role in the induction of apoptosis by the neurotoxin and the prevention by aliphatic propargylamines. Received April 4, 2000; accepted July 17, 2000  相似文献   

15.
Inhibition of monoamine oxidase is one way to treat depression and anxiety. The information now available on the pharmacokinetics of flavonoids and of the components of tobacco prompted an exploration of whether a healthy diet (with or without smoking) provides active compounds in amounts sufficient to partially inhibit monoamine oxidase. A literature search was used to identify dietary monoamine oxidase inhibitors, the levels of these compounds in foods, the pharmacokinetics of the absorption and distribution, and tissue levels observed. An estimated daily intake and the expected tissue concentrations were compared with the measured efficacies of the compounds as inhibitors of monoamine oxidases. Norharman, harman and quercetin dietary presence, pharmacokinetics, and tissue levels were consistent with significant levels reaching neuronal monoamine oxidase from the diet or smoking; 1,2,3,4-tetrahydroisoquinoline, eugenol, 1-piperoylpiperidine, and coumarin were not. Quercetin was equipotent with norharman as a monoamine oxidase A inhibitor and its metabolite, isorhamnetin, also inhibits. Total quercetin was the highest of the compounds in the sample diet. Although bioavailability was variable depending on the source, a healthy diet contains amounts of quercetin that might give sufficient amounts in brain to induce, by monoamine oxidase A inhibition, a small decrease in neurotransmitter breakdown.  相似文献   

16.
1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) is present in the human and rodent brain as a mixture of stereospecific (R)- and (S)-1MeTIQ enantiomers. The racemate, (R,S)-1MeTIQ, exhibits neuroprotective activity as shown in the earlier study by the authors, and In addition, it was suggested to play a crucial physiological role in the mammalian brain as an endogenous regulator of dopaminergic activity. In this article, we investigated the influence of stereospecific enantiomers of 1MeTIQ, (R)- and (S)-1MeTIQ (50 mg/kg i.p.) on rotenone-induced (3 mg/kg s.c.) behavioral and neurochemical changes in the rat. In behavioral study, in order to record dynamic motor function of rats, we measured locomotor activity using automated locomotor activity boxes. In biochemical studies, we analyzed in rat striatum the concentration of dopamine (DA) and its metabolites: intraneuronal DOPAC, extraneuronal 3-MT, and final HVA using HPLC with electrochemical detection. Otherwise, DA release was estimated by in vivo microdialysis study. The behavioral study has demonstrated that both acute and repeated (3 times) rotenone administration unimportantly depressed a basic locomotor activity in rat. (R)- and (S)-1MeTIQ stereoisomers (50 mg/kg i.p.) produced a modest behavioral activation both in naïve and rotenone-treated rats. The data from ex vivo neurochemical experiments have shown stereospecificity of 1MeTIQ enantiomers in respect of their effects on DA catabolism. (R)-1MeTIQ significantly increased both the level of the final DA metabolite, HVA (by about 70%), and the rate of DA metabolism (by 50%). In contrast to that, (S)-1MeTIQ significantly depressed DOPAC, HVA levels (by 60 and 40%, respectively), and attenuated the rate of DA metabolism (by about 60%). On the other hand, both the enantiomers increased the concentrations of DA and its extraneuronal metabolite, 3-MT in rat striatum. In vivo microdialysis study has shown that repeated but not acute administration of rotenone produced a deep and significant functional impairment of striatal DA release. Both (R)- and (S)- stereospecific enantiomers of 1MeTIQ antagonized rotenone-induced suppression of DA release; however, the effect of (R)-1MeTIQ was more strongly expressed in microdialysis study. In conclusion, we suggest that both chiral isomers of 1MeTIQ offer neuroprotection against rotenone-induced disturbances in the function of dopaminergic neurons and (R,S)-1MeTIQ will be useful as a drug with marked neuroprotective activity in the brain.  相似文献   

17.
The endogenous neurotoxin 1-methyl-6,7-dihydroxy-1,2,3, 4-tetrahydroisoquinoline (salsolinol), which is structurally similar to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has been reported to inhibit mitochondrial complex I (NADH-Q reductase) activity as does the MPTP metabolite 1-methyl-4-phenylpyridinium ion (MPP(+)). However, the mechanism of salsolinol leading to neuronal cell death is still unknown. Thus, we correlated indices of cellular energy production and cell viability in human dopaminergic neuroblastoma SH-SY5Y cells after exposure to salsolinol and compared these results with data obtained with MPP(+). Both toxins induce time and dose-dependent decrease in cell survival with IC(50) values of 34 microM and 94 microM after 72 h for salsolinol and MPP(+), respectively. Furthermore, salsolinol and MPP(+) produce a decrease of intracellular net ATP content with IC(50) values of 62 microM and 66 microM after 48 h, respectively. In contrast to MPP(+), salsolinol does not induce an increase of intracellular net NADH content. In addition, enhancing glycolysis by adding D-glucose to the culture medium protects the cells against MPP(+) but not salsolinol induced cellular ATP depletion and cytotoxicity. These results suggest that cell death induced by salsolinol is due to impairment of cellular energy supply, caused in particular by inhibition of mitochondrial complex II (succinate-Q reductase), but not complex I.  相似文献   

18.
Summary. Drug abuse disorder is induced by a variety of substances and results from their interaction with the brain reward system. It is characterized by a high frequency of relapse, usually associated with to craving. In this study we investigated the effects of 1-methyl-1,2,3,4-tetrahydroisoquinoline, an endogenous compound with antidopaminergic and neuroprotective activity, on cocaine-induced reinstatement in cocaine-dependent, self-administering rats. 1-methyl-1,2,3,4-tetrahydroisoquinoline (50 mg/kg i.p.) completely inhibited the expression of reinstatement of cocaine self-administration and accompanying neurochemical changes induced by a single priming cocaine dose (10 mg/kg i.p.). The priming cocaine dose inhibited dopamine metabolism in the structures containing nerve endings (frontal cortex, nucleus accumbens, and striatum) but not in the substantia nigra and ventral tegmental area. A behaviorally active dose of 1-methyl-1,2,3,4-tetrahydroisoquinoline administered 30 min before a priming dose of cocaine significantly increased the dopamine concentration in the limbic structures, and strongly inhibited dopamine metabolism in the substantia nigra and ventral tegmental area. Cocaine also inhibited noradrenaline and serotonin metabolism, and 1-methyl-1,2,3,4-tetrahydroisoquinoline abolished the inhibition in noradrenaline metabolism, while it intensified the inhibition of serotonin metabolism. Our results strongly support the view that 1-methyl-1,2,3,4-tetrahydroisoquinoline, an endogenous compound, has considerable potential as a drug for combating substance abuse disease through the attenuation of craving.  相似文献   

19.
Total monoamine oxidase activity in the medial preoptic area and median eminence (with surrounding tissue) has been studied in female rats of three age groups, viz., those aged 1.5–2 months (peripubertal), 4–5 months (mature), and over 12 months (aging). Monoamine oxidase activity was measured using kynuramine as a substrate and changes in the concentration of product (4-hydroxyquinoline) were recorded at 327 nm. In the medial preoptic area, the lowest activity (nmole kynuramine/min/mg protein, M ± m) was found during the peripubertal period (1.55 ± 0.11), while in mature and aging rats the activities were similar (1.93 ± 0.12 and 2.01 ± 0.15, respectively). In the median eminence, the greatest activity of monoamine oxidase was found in the aging rats (6.61± 0.56), whereas in the rats of peripubertal and mature age the activities were similar (4.79 ± 0.57 and 4.36 ± 0.25, respectively). In animals aged 4–5 months, we found a tendency toward a negative correlation between the activity of monoamine oxidase in the medial preoptic area and the activity in the median eminence. Our results suggest that opposing changes in enzyme activity are necessary for the coordinated work of the monoaminergic systems in the areas studied.  相似文献   

20.
Previously it has been shown that bilateral intranigral injections of dopamine into rats pretreated with a monoamine oxidase inhibitor induced prolonged stimulation of locomotor activity, while bilateral intranigral injections of haloperidol reduced the locomotor stimulation evoked by systemic amphetamine. In the present studies, the role of the substantia nigra in locomotor activity was further investigated using a variety of dopaminergic and other agonists and neuroleptics. Ergometrine, epinine, (+/-)-2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene hydrobromide (ADTN), 1,2,3,4-tetrahydro-6,7,-dihydroxyisoquinoline hydrochloride (THIQ), muscimol and glycine elicited locomotor activity when injected into the substantia nigra pars reticulata bilaterally. Additionally the non-dopaminergic agonists also elicited a degree of stereotyped behavior. Locomotor activity induced by intranigral ergometrine was blocked by systemic haloperidol but was not affected by intranigral haloperidol. Locomotor activity elicited by systemic amphetamine was blocked by bilateral intranigral alpha-flupenthixol, but that elicited by bilateral intra-accumbens ergometrine was not affected by alpha-flupenthixol or haloperidol injected into the substantia nigra pars reticulata bilaterally. The results provide further evidence that alterations of neurotransmission in the substantia nigra exert effects on locomotor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号