首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gemfibrozil, a fibrate hypolipidemic agent, is eliminated in humans by glucuronidation. A gemfibrozil glucuronide has been reported to show time-dependent inhibition of cytochrome P450 2C8. Comprehensive assessment of the drug interaction between gemfibrozil and cytochrome P450 2C8 substrates requires a clear understanding of gemfibrozil glucuronidation. However, the primary UDP-glucuronosyltransferase (UGT) isozymes responsible for gemfibrozil glucuronidation remain to be determined. Here, we identified the main UGT isozymes involved in gemfibrozil glucuronidation. Evaluation of 12 recombinant human UGT isozymes shows gemfibrozil glucuronidation activity in UGT1A1, UGT1A3, UGT1A9, UGT2B4, UGT2B7, and UGT2B17, with UGT2B7 showing the highest activity. The kinetics of gemfibrozil glucuronidation in pooled human liver microsomes (HLMs) follows Michaelis-Menten kinetics with high and low affinity components. The high affinity K(m) value was 2.5 microM, which is similar to the K(m) value of gemfibrozil glucuronidation in recombinant UGT2B7 (2.2 microM). In 16 HLMs, a significant correlation was observed between gemfibrozil glucuronidation and both morphine 3-OH glucuronidation (r = 0.966, p < 0.0001) and flurbiprofen glucuronidation (r = 0.937, p < 0.0001), two reactions mainly catalyzed by UGT2B7, whereas no significant correlation was observed between gemfibrozil glucuronidation and either estradiol 3beta-glucuronidation and propofol glucuronidation, two reactions catalyzed by UGT1A1 and UGT1A9, respectively. Flurbiprofen and mefenamic acid inhibited gemfibrozil glucuronidation in HLMs with similar IC(50) values to those reported in recombinant UGT2B7. These results suggest that UGT2B7 is the main isozyme responsible for gemfibrozil glucuronidation in humans.  相似文献   

2.
Epirubicin is one of the most active agents for breast cancer. The formation of epirubicin glucuronide by liver UDP-glucuronosyltransferase (UGT) is its main inactivating pathway. This study aimed to investigate epirubicin glucuronidation in human liver microsomes, to identify the specific UGT isoform for this reaction, and to correlate epirubicin glucuronidation with other UGT substrates. Microsomes from human livers were used. UGTs specifically expressed in cellular systems, as well as two UGT2B7 variants, were screened for epirubicin glucuronidation. Epirubicin, morphine, and SN-38 glucuronides were measured by high-pressure liquid chromatography. The mean +/- S.D. formation rate of epirubicin glucuronide in human liver microsomes (n = 47) was 138 +/- 37 pmol/min/mg (coefficient of variation, 24%). This phenotype was normally distributed. We screened commercially available UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7, and UGT2B15 for epirubicin glucuronidation. Only UGT2B7 converted epirubicin to its glucuronide. No differences in epirubicin glucuronidation were found in HK293 cells expressing the two UGT2B7 variants at position 268. Catalytic efficiency (V(max)/K(m)) of epirubicin glucuronidation was 1.4 microl/min/mg, a value higher than that observed for morphine, a substrate of UGT2B7. Formation of epirubicin glucuronide was significantly related to that of morphine-3-glucuronide (r = 0.76, p < 0.001) and morphine-6-glucuronide (r = 0.73, p < 0.001). No correlation was found with SN-38, a substrate of UGT1A1 (r = 0.04). UGT2B7 is the major human UGT catalyzing epirubicin glucuronidation, and UGT2B7 is the candidate gene for this phenotype. The reported tyrosine to histidine polymorphism in UGT2B7 does not alter the formation rate of epirubicin glucuronide, and undiscovered genetic polymorphisms in UGT2B7 might change the metabolic fate of this important anticancer agent.  相似文献   

3.
UDP-glucuronosyltransferase 2B7 (UGT2B7) is involved in the glucuronidation of a wide array of clinically important drugs and endogenous compounds in humans. The aim of this study was to identify an isoform-selective probe substrate that could be used to investigate genetic and environmental influences on glucuronidation mediated by UGT2B7. Three potential probe substrates [3'-azido-3'-deoxythymidine (AZT), morphine, and codeine], were evaluated using recombinant UGTs and human liver microsomes (HLMs; n = 54). Of 11 different UGTs screened, UGT2B7 was the principal isoform mediating AZT glucuronidation, morphine-3-glucuronidation, and morphine-6-glucuronidation. Codeine was glucuronidated equally well by UGT2B4 and UGT2B7. Enzyme kinetic analysis of these activities typically showed higher apparent Km values for HLMs (pooled and individual) compared with UGT2B7. This difference was least (less than 2-fold higher Km) for AZT glucuronidation and greatest (3- to 6-fold higher Km) for codeine glucuronidation. Microsomal UGT2B7 protein content correlated well with AZT glucuronidation (rs = 0.77), to a lesser extent with morphine-3-glucuronidation (rs = 0.50) and morphine-6-glucuronidation (rs = 0.51), but very weakly with codeine glucuronidation (rs = 0.33). Livers were also genotyped for the UGT2B7*2 (H268Y) polymorphism. No effect of genotype on microsomal glucuronidation or UGT2B7 protein content was observed. In conclusion, although both AZT and morphine can serve as in vitro probe substrates for UGT2B7, AZT appears to be more selective than morphine. Codeine is not a useful UGT2B7 probe substrate because of significant glucuronidation by UGT2B4. The UGT2B7*2 polymorphism is not a determinant of glucuronidation of AZT, morphine, or codeine in HLMs.  相似文献   

4.
Modulation of UDP-glucuronosyltransferase 2B7 (UGT2B7)-catalyzed morphine glucuronidation by cytochrome P450 (P450) was studied. The effects of P450 isozymes on the kinetic parameters of UGT2B7-catalyzed glucuronidation of the morphine 3-hydroxyl group were examined by simultaneous expression of UGT2B7 and either CYP3A4, -1A2, or -2C9 in COS-1 cells. Although coexpression of CYP3A4 with UGT2B7 had little effect on Vmax, the Km was increased by about 9.8-fold compared with the UGT2B7 single expression system. The other P450 isozymes (CYP1A2 and CYP2C9) had some effects on Km and Vmax values. Immunoprecipitation of UGT from solubilized human liver microsomes resulted in coprecipitation of CYP3A4 with UGT2B7. The protein-protein interaction between CYP3A4 and UGT2B7 was further confirmed by overlay assay using glutathione S-transferase-CYP3A4 fusion protein. Addition of CYP3A4 to untreated COS microsomes expressing UGT2B7 had no or minor effects on morphine glucuronidation. In contrast, the formation of morphine-3-glucuronide by detergent-treated microsomes from COS-1 cells expressing UGT2B7 was reduced by CYP3A4, whereas the formation of the 6-glucuronide was enhanced. These results strongly suggest that 1) the glucuronidation activity of UGT2B7 toward morphine is specifically modulated by interaction with CYP3A4 in microsomal membranes and that 2) CYP3A4 alters UGT2B7 regioselectivity so that the ratio of morphine activation/detoxication is increased. This study provides the first evidence that P450 is not only involved in oxidation of drugs but also modulates the function of UGTs.  相似文献   

5.
Uridine 5'-diphosphate-glucuronosyltransferases (UGTs) involved in the glucuronide formation of efavirenz (EFV) and its three hydroxy metabolites, 8-hydroxyefavirenz (8-OH EFV), 7-hydroxyefavirenz (7-OH EFV), and 8,14-dihydroxyefavirenz (8,14-diOH EFV), were assessed. Among 12 recombinant UGT isoforms tested, only UGT2B7 showed catalytic activity in the formation of EFV-N-glucuronide (EFV-G) as previously reported. On the other hand, almost all UGT isoforms were involved in the glucuronidation of the three hydroxy metabolites, although their relative contribution is unclear. The catalytic activities in the formation of EFV-G by 17 different human liver microsomes exhibit a more than 40-fold inter-individual variability, whereas those of glucuronidation of the three hydroxy metabolites showed almost identical activity. The formation of EFV-G showed a significant correlation (r?=?0.920; p?相似文献   

6.
Glucuronidation of morphine in humans is predominantly catalyzed by UDP-glucuronosyltransferase 2B7 (UGT2B7). Since our recent research suggested that cytochrome P450s (P450s) interact with UGT2B7 to affect its function [Takeda S et al. (2005) Mol Pharmacol 67:665-672], P450 inhibitors are expected to modulate UGT2B7-catalyzed activity. To address this issue, we investigated the effects of P450 inhibitors (cimetidine, sulfaphenazole, erythromycin, nifedipine, and ketoconazole) on the UGT2B7-catalyzed formation of morphine-3-glucuronide (M-3-G) and morphine-6-glucuronide (M-6-G). Among the inhibitors tested, ketoconazole was the most potent inhibitor of both M-3-G and M-6-G formation by human liver microsomes. The others were less effective except that nifedipine exhibited an inhibitory effect on M-6-G formation comparable to that by ketoconazole. Neither addition of NADPH nor solubilization of liver microsomes affected the ability of ketoconazole to inhibit morphine glucuronidation. In addition, ketoconazole had an ability to inhibit morphine UGT activity of recombinant UGT2B7 freed from P450. Kinetic analysis suggested that the ketoconazole-produced inhibition of morphine glucuronidation involves a mixed-type mechanism. Codeine potentiated inhibition of morphine glucuronidation by ketoconazole. In contrast, addition of another substrate, testosterone, showed no or a minor effect on ketoconazole-produced inhibition of morphine UGT. These results suggest that 1) metabolism of ketoconazole by P450 is not required for inhibition of UGT2B7-catalyzed morphine glucuronidation; and 2) this drug exerts its inhibitory effect on morphine UGT by novel mechanisms involving competitive and noncompetitive inhibition.  相似文献   

7.
Wu B  Zhang S  Hu M 《Molecular pharmaceutics》2011,8(6):2379-2389
Identifying uridine 5'-diphospho-(UDP)-glucuronosyltransferase (UGT)-selective probes (substrates that are primarily glucuronidated by a single isoform) is complicated by the enzymes' large overlapping substrate specificity. Here, regioselective glucuronidation of two flavonoids, 3,3',4'-trihydroxyflavone (3,3',4'-THF) and 3,6,4'-trihydroxyflavone (3,6,4'-THF), is used to probe the activity of hepatic UGT1A1. The glucuronidation kinetics of 3,3',4'-THF and 3,6,4'-THF was determined using 12 recombinant human UGT isoforms and pooled human liver microsomes (pHLM). The individual contribution of main UGT isoforms to the metabolism of the two flavonoids in pHLM was estimated using the relative activity factor approach. UGT1A1 activity correlation analyses using flavonoids-4'-O-glucuronidation vs β-estradiol-3-glucuronidation (a well-recognized marker for UGT1A1) or vs SN-38 glucuronidation were performed using a bank of HLMs (n = 12) including three UGT1A1-genotyped HLMs (i.e., UGT1A1*1*1, UGT1A1*1*28, and UGT1A1*28*28). The results showed that UGT1A1 and 1A9, followed by 1A7, were the main isoforms for glucuronidating the two flavonoids, where UGT1A1 accounted for 92 ± 7% and 91 ± 10% of 4'-O-glucuronidation of 3,3',4'-THF and 3,6,4'-THF, respectively, and UGT1A9 accounted for most of the 3-O-glucuronidation. Highly significant correlations (R(2) > 0.944, p < 0.0001) between the rates of flavonoids 4'-O-glucuronidation and that of estradiol-3-glucuronidation or SN-38 glucuronidation were observed across 12 HLMs. In conclusion, UGT1A1-mediated 4'-O-glucuronidation of 3,3',4'-THF and 3,6,4'-THF was highly correlated with the glucuronidation of estradiol (3-OH) and SN-38. This study demonstrated for the first time that regioselective glucuronidation of flavonoids can be applied to probe hepatic UGT1A1 activity in vitro.  相似文献   

8.
The predominant metabolic pathway of gemcabene in humans is glucuronidation. The principal human UDP-glucuronosyltransferases (UGTs) involved in the glucuronidation of gemcabene were determined in this study. Glucuronidation of gemcabene was catalyzed by recombinant UGT1A3, recombinant UGT2B7, and recombinant UGT2B17, as well as by human liver microsomes (HLM). Gemcabene glucuronidation in recombinant UGTs and HLM followed non-Michaelis-Menten kinetics consistent with homotropic activation, but pharmacokinetics in humans were linear over the dose range tested (total plasma C(max), 0.06-0.88 mM). Gemcabene showed similar affinity (S(50)) for recombinant UGTs (0.92-1.45 mM) and HLM (1.37 mM). S-Flurbiprofen was identified as a more selective inhibitor of recombinant UGT2B7-catalyzed gemcabene glucuronidation (>23-fold lower IC(50)) when compared with recombinant UGT1A3- or recombinant UGT2B17-catalyzed gemcabene glucuronidation. The IC(50) for S-flurbiprofen inhibition of gemcabene glucuronidation was similar in HLM (60.6 microM) compared with recombinant UGT2B7 (27.4 microM), consistent with a major role for UGT2B7 in gemcabene glucuronidation in HLM. In addition, 5,6,7,3',4',5'-hexamethoxyflavone inhibited recombinant UGT1A3 and recombinant UGT2B17-catalyzed gemcabene glucuronidation (with 4-fold greater potency for recombinant UGT1A3) but did not inhibit gemcabene glucuronidation in HLM, suggesting that UGT1A3 and UGT2B17 do not contribute significantly to gemcabene glucuronidation. Reaction rates for gemcabene glucuronidation from a human liver bank correlated well (r(2)=0.722, P<0.0001; n=24) with rates of glucuronidation of the UGT2B7 probe substrate 3'-azido-3'-deoxythymidine. In conclusion, using the three independent experimental approaches typically used for cytochrome P450 reaction phenotyping, UGT2B7 is the major enzyme contributing to gemcabene glucuronidation in human liver microsomes.  相似文献   

9.
(R,S)-Oxazepam is a 1,4-benzodiazepine anxiolytic drug that is metabolized primarily by hepatic glucuronidation. In previous studies, S-oxazepam (but not R-oxazepam) was shown to be polymorphically glucuronidated in humans. The aim of the present study was to identify UDP-glucuronosyltransferase (UGT) isoforms mediating R- and S-oxazepam glucuronidation in human liver, with the long term objective of elucidating the molecular genetic basis for this drug metabolism polymorphism. All available recombinant UGT isoforms were screened for R- and S-oxazepam glucuronidation activities. Enzyme kinetic parameters were then determined in representative human liver microsomes (HLMs) and in UGTs that showed significant activity. Of 12 different UGTs evaluated, only UGT2B15 showed significant S-oxazepam glucuronidation. Furthermore, the apparent K(m) for UGT2B15 (29-35 microM) was similar to values determined for HLMs (43-60 microM). In contrast, R-oxazepam was glucuronidated by UGT1A9 and UGT2B7. Although apparent K(m) values for HLMs (256-303 microM) were most similar to UGT2B7 (333 microM) rather than UGT1A9 (12 microM), intrinsic clearance values for UGT1A9 were 10 times higher than for UGT2B7. A common genetic variation results in aspartate (UGT2B15*1) or tyrosine (UGT2B15*2) at position 85 of the UGT2B15 protein. Microsomes from human embryonic kidney (HEK)-293 cells overexpressing UGT2B15*1 showed 5 times higher S-oxazepam glucuronidation activity than did UGT2B15*2 microsomes. Similar results were obtained for other substrates, including eugenol, naringenin, 4-methylumbelliferone, and androstane-3alpha-diol. In conclusion, S-oxazepam is stereoselectively glucuronidated by UGT2B15, whereas R-oxazepam is glucuronidated by multiple UGT isoforms. Allelic variation associated with the UGT2B15 gene may explain polymorphic S-oxazepam glucuronidation in humans.  相似文献   

10.
Objective We characterized the kinetics of indomethacin glucuronidation by recombinant UDP-glucuronosyltransferase (UGT) isozymes and human liver microsomes (HLM) and identified the human UGT isozymes involved. Methods Indomethacin glucuronidation was investigated using HLM and recombinant human UGT isozymes. Human UGTs involved in indomethacin glucuronidation were assessed in kinetic studies, chemical inhibition studies, and correlation studies. Results Among the UGT isozymes investigated, UGT1A1, 1A3, 1A9, and 2B7 showed glucuronidation activity for indomethacin, with UGT1A9 possessing the highest activity, followed by UGT2B7. Glucuronidation of indomethacin by recombinant UGT1A9 and 2B7 showed substrate inhibition kinetics with K m values of 35 and 32 μM, respectively. The glucuronidation of indomethacin was significantly correlated with morphine 3OH-glucuronidation (r = 0.69, p < 0.05) and 3′-azido-3′-deoxythymidine glucuronidation (r = 0.82, p < 0.05), a reaction mainly catalyzed by UGT2B7. Propofol inhibited indomethacin glucuronidation in HLM with an IC50 value of 248 μM, which is between the IC50 value in recombinant UGT1A9 (106 μM) and UGT2B7 (> 400 μM). Conclusions These findings suggest that UGT2B7 plays a predominant role in indomethacin glucuronidation in the human liver and that UGT1A9 is partially involved.  相似文献   

11.
In humans, orally administered 4-(5-pyridin-4-yl-1H-[1,2,4]triazol-3-yl) pyridine-2-carbonitrile (FYX-051) is excreted mainly as triazole N(1)- and N(2)-glucuronides in urine. It is important to determine the enzyme(s) that catalyze the metabolism of a new drug to estimate individual differences and/or drug-drug interactions. Therefore, the characterization and mechanism of these glucuronidations were investigated using human liver microsomes (HLMs), human intestinal microsomes (HIMs), and recombinant human UDP-glucuronosyltransferase (UGT) isoforms to determine the UGT isoform(s) responsible for FYX-051 N(1)- and N(2)-glucuronidation. FYX-051 was metabolized to its N(1)- and N(2)-glucuronide forms by HLMs, and their K(m) values were 64.1 and 72.7 microM, respectively; however, FYX-051 was scarcely metabolized to its glucuronides by HIMs. Furthermore, among the recombinant human UGT isoforms, UGT1A1, UGT1A7, and UGT1A9 catalyzed the N(1)- and N(2)-glucuronidation of FYX-051. To estimate their contribution to FYX-051 glucuronidation, inhibition analysis with pooled HLMs was performed. Mefenamic acid, a UGT1A9 inhibitor, decreased FYX-051 N(1)- and N(2)-glucuronosyltransferase activities, whereas bilirubin, a UGT1A1 inhibitor, did not affect these activities. Furthermore, in the experiment using microsomes from eight human livers, the N(1)- and N(2)-glucuronidation activity of FYX-051 was found to significantly correlate with the glucuronidation activity of propofol, a specific substrate of UGT1A9 (N(1): r(2) = 0.868, p < 0.01; N(2): r(2) = 0.775, p < 0.01). These results strongly suggested that the N(1)- and N(2)-glucuronidation of FYX-051 is catalyzed mainly by UGT1A9 in human livers.  相似文献   

12.
Purpose To assess the uridine diphosphate (UDP)-glucuronosyltransferase (UGT) isozymes involved in the glucuronidation of niflumic acid in human liver. Methods The glucuronidation activity of niflumic acid was determined in liver microsomes and recombinant UGT isozymes by incubation of niflumic acid with UDP-glucuronic acid (UDPGA). Results Incubation of niflumic acid with liver microsomes and UDPGA produced one peak, which was identified as a glucuronide from mass spectrometric analysis. A study involving a panel of recombinant human UGT isozymes showed that glucuronidation activity was highest in UGT1A1 among the isozymes investigated. The glucuronidation in human liver microsomes (HLMs) followed Michaelis-Menten kinetics with a Km value of 16 μM, which is similar to that found with recombinant UGT1A1. The glucuronidation activity of niflumic acid in microsomes from eight human livers significantly correlated with UGT1A1-catalyzed estradiol 3β-glucuronidation activity (r=0.78, p<0.05). β-Estradiol inhibited niflumic acid glucuronidation with an IC50 of 25 μM in HLMs, comparable to that for UGT1A1. Conclusions These findings indicate that UGT1A1 is the main isozyme involved in the glucuronidation of niflumic acid in the human liver.  相似文献   

13.
Clopidogrel is predominantly hydrolyzed to clopidogrel carboxylic acid (CCA) by carboxylesterase 1, and subsequently CCA is glucuronidated to clopidogrel acyl glucuronide (CAG) by uridine diphosphate‐glucuronosyltransferases (UGTs); however, the UGT isoenzymes glucuronidating CCA remain unidentified to date. In this study, the glucuronidation of CCA was screened with pooled human liver microsomes (HLMs) and 7 human recombinant UGT (rUGT) isoforms. Results indicated that rUGT2B7 exhibited the highest catalytical activity for the CCA glucuronidation as measured with a mean Vmax value of 120.9 pmol/min/mg protein, 3‐ to 12‐fold higher than that of the other rUGT isoforms tested. According to relative activity factor approach, the relative contribution of rUGT2B7 to CCA glucuronidation was estimated to be 58.6%, with the minor contributions (3%) from rUGT1A9. Moreover, the glucuronidation of CCA followed Michaelis‐Menten kinetics with a mean Km value of 372.9 μM and 296.4 μM for pooled HLMs and rUGT2B7, respectively, showing similar affinity for both. The formation of CAG was significantly inhibited by azidothymidine and gemfibrozil (well‐characterized UGT2B7 substrates) in a concentration‐dependent manner, or by fluconazole (a typical UGT2B7‐selective inhibitor) in a time‐dependent manner, for both HLMs and rUGT2B7, respectively. In addition, CCA inhibited azidothymidine glucuronidation (catalyzed almost exclusively by UGT2B7) by HLMs and rUGT2B7 in a concentration‐dependent manner, indicating that CCA is a substrate of UGT2B7. These results reveal that UGT2B7 is the major enzyme catalyzing clopidogrel glucuronidation in the human liver, and that there is the potential for drug‐drug interactions between clopidogrel and the other substrate drugs of UGT2B7.  相似文献   

14.
Traditionally, the Michaelis-Menten equation has been used to determine kinetic parameters for in vitro glucuronidation assays. Recently, estradiol-3-glucuronide formation was shown to exhibit non-Michaelis-Menten kinetics consistent with autoactivation. A concern with the observation of nontraditional kinetics is that they may result as an artifact of the incubation conditions. To examine this concern, the formation of estradiol-3-glucuronide was investigated using human liver microsomes prepared by two different methods, a range of assay conditions, and activation by alamethecin, sonication, or Brij 58 (polyoxyethylene monocetyl ether). Interestingly, holding the other assay components constant, estradiol-3-glucuronide formation was up to 2.5-fold greater using microsomes prepared in phosphate buffer compared with those prepared in sucrose. Incubations activated by alamethecin consistently exhibited the highest rates of estradiol glucuronidation versus the other activators. Furthermore, estradiol-3-glucuronidation exhibited autoactivation kinetics in all of the conditions investigated (n = 1.2-1.7). Nontraditional kinetics were also observed when other UGT1A1 substrates such as ethinylestradiol, buprenorphine, and anthraflavic acid were studied with both human liver microsomes and recombinant UGT1A1. Naphthol, propofol, morphine, and androstanediol were used as probe UGT substrates selective for UGT1A6, UGT1A9, UGT2B7, and UGT2B15, respectively. Of these substrates, only androstanediol exhibited nontraditional kinetics using human liver microsomes. In conclusion, the Hill and/or Michaelis-Menten equations should be used to fit kinetic data to obtain an accurate assessment of in vitro glucuronidation.  相似文献   

15.
The aims of this study were to quantify absolute protein levels of uridine 5'-diphosphate-glucuronosyltransferases (UGTs) 1A1 and 2B7 in human liver microsomes (HLMs) and to investigate their correlation with marker activities. A quantification method for UGT1A1 and UGT2B7 in HLMs was developed. Unique tryptic peptides of UGT1A1 and UGT2B7 in tryptically digested HLMs were simultaneously quantified by liquid chromatography (LC) equipped with tandem mass spectrometry (MS) using corresponding stable isotope-labelled peptides as internal standards. Bovine serum albumin was used as a blank matrix for calibration curve samples. Our procedure had good digestion efficiency, sensitivity, calibration curve linearity, and reproducibility of digestion to quantification. In 16 individual HLMs, the protein levels of UGT1A1 and UGT2B7 ranged from 6.50 to 44.6 pmol/mg and 4.45 to 18.2 pmol/mg, respectively. Estradiol 3β-glucuronidation correlated strongly with the UGT1A1 level, indicating its high reliability as a reaction marker. Both morphine 3-O- and 6-O-glucuronidation significantly correlated with UGT2B7 level. However, the intercept of the linear regression clearly indicates that morphine glucuronidation was mediated by other UGT isoforms in addition to UGT2B7.  相似文献   

16.
Carvedilol is administered orally as a racemic mixture of R(+)- and S(-)-enantiomers for treatment of angina pectoris, hypertension and chronic heart failure. We have reported that enzyme kinetic parameters for carvedilol glucuronidation by human liver microsomes (HLM) differed greatly depending on the substrate form, namely, racemic carvedilol and each enantiomer. These phenomena were thought to be caused by mutual inhibition between carvedilol enantiomers during racemate glucuronidation. The aim of this study was to clarify the mechanism of these phenomena in HLM and human intestinal microsomes (HIM) and its relevance to uridine 5'-diphosphate (UDP)-glucuronosyl transferase (UGT) 1A1, UGT2B4 and UGT2B7, which mainly metabolize carvedilol directly in phase II enzymes. HLM apparently preferred metabolizing (S)-carvedilol to (R)-carvedilol in the racemate, but true activities of HLM for both glucuronidation were approximately equal. By determination of the inhibitory effects of (S)-carvedilol on (R)-carvedilol glucuronidation and vice versa, it was shown that (R)-carvedilol glucuronidation was more easily inhibited than was (S)-carvedilol glucuronidation. UGT2B7 was responsible for (S)-carvedilol glucuronidation in HLM. Ratios of contribution to (R)-carvedilol glucuronidation were approximately equal among UGT1A1, UGT2B4 and UGT2B7. However, enzyme kinetic parameters were different between the two lots of HLM used in this study, depending on the contribution ratio of UGT2B4, in which (R)-glucuronidation was much more easily inhibited by (S)-carvedilol than was (S)-glucuronidation by (R)-carvedilol. Meanwhile, HIM preferred metabolizing (R)-carvedilol, and this tendency was not different between the kinds of substrate form.  相似文献   

17.
A metabolite formed by incubation of human liver microsomes, etoposide, and UDP-glucuronic acid was identified as etoposide glucuronide by liquid chromatography-tandem mass spectrometry analysis. According to the derivatization with trimethylsilylimidazole (Tri-Sil-Z), it was confirmed that the glucuronic acid is linked to an alcoholic hydroxyl group of etoposide and not to a phenolic group. Among nine recombinant human UGT isoforms (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A8, UGT1A9. UGT1A10, UGT2B7, and UGT2B15), only UGT1A1 exhibited the catalytic activity of etoposide glucuronidation. The enzyme kinetics in pooled human liver microsomes and recombinant UGT1A1 microsomes showed a typical Michaelis-Menten plot. The kinetic parameters of etoposide glucuronidation were K(m) = 439.6 +/- 70.7 microM and V(max) = 255.6 +/- 19.2 pmol/min/mg of protein in human liver microsomes and K(m) = 503.2 +/- 110.2 microM and V(max) = was 266.5 +/- 28.6 pmol/min/mg of protein in recombinant UGT1A1. The etoposide glucuronidation in pooled human liver microsomes was inhibited by bilirubin (IC(50) = 31.7 microM) and estradiol (IC(50) = 34 microM) as typical substrates for UGT1A1. The inhibitory effects of 4-nitrophenol (IC(50) = 121.0 microM) as a typical substrate for UGT1A6 and UGT1A9, imipramine (IC(50) = 393.8 microM) as a typical substrate for UGT1A3 and UGT1A4, and morphine (IC(50) = 109.3 microM) as a typical substrate for UGT2B7 were relatively weak. The interindividual difference in etoposide glucuronidation in 13 human liver microsomes was 78.5-fold (1.4-109.9 pmol/min/mg of protein). The etoposide glucuronidation in 10 to 13 human liver microsomes was significantly correlated with beta-estradiol-3-glucuronidation (r = 0.841, p < 0.01), bilirubin glucuronidation (r = 0.935, p < 0.01), and the immunoquantified UGT1A1 protein content (r = 0.800, p < 0.01). These results demonstrate that etoposide glucuronidation in human liver microsomes is specifically catalyzed by UGT1A1.  相似文献   

18.
The chimpanzee has recently been characterized as a surrogate for oxidative drug metabolism in humans and as a pharmacokinetic model for the selection of drug candidates. In the current study, the glucuronidation of acetaminophen, morphine and oestradiol was evaluated in the chimpanzee to extend the characterization of this important animal model. Following oral administration of acetaminophen (600 mg) to chimpanzees (n=2), pharmacokinetics were comparable with previously reported human values, namely mean oral clearance 0.91 vs. 0.62+/-0.05 l h-1 kg-1, apparent volume of distribution 2.29 vs. 1.65+/-0.25 l kg-1, and half-life 1.86 vs. 1.89+/-7h, for chimpanzee vs. human, respectively. Urinary excretions (percentage of dose) of acetaminophen, acetaminophen glucuronide and acetaminophen sulfate were also similar between chimpanzees and humans, namely 2.3 vs. 5.0, 63.1 vs. 54.7, and 25.0 vs. 32.3%, respectively. Acetaminophen, oestradiol and morphine glucuronide formation kinetics were investigated using chimpanzee (n=2) and pooled human liver microsomes (n=10). V(max) (app) and K(m)(app) (or S(50)(app)) for acetaminophen glucuronide, morphine 3- and 6-glucuronide, and oestradiol 3- and 17-glucuronide formation were comparable in both species. Eadie-Hofstee plots of oestradiol 3-glucuronide formation in chimpanzee microsomes were characteristic of autoactivation kinetics. Western immunoblot analysis of chimpanzee liver microsomes revealed a single immunoreactive band when probed with anti-human UGT1A1, anti-human UGT1A6, and anti-human UGT2B7. Taken collectively, these data demonstrate similar glucuronidation characteristics in chimpanzees and humans.  相似文献   

19.
Bicalutamide (Casodex®) is a non‐steroidal pure anti‐androgen used in the treatment of localized prostate cancer. It is a racemate drug, and its activity resides in the (R)‐enantiomer, with little in the (S)‐enantiomer. A major metabolic pathway for bicalutamide is glucuronidation catalysed by UDP‐glucuronosyltransferase (UGT) enzymes. While (S)bicalutamide is directly glucuronidated, (R)bicalutamide requires hydroxylation prior to glucuronidation. The contribution of human tissues and UGT isoforms in the metabolism of these enantiomers has not been extensively investigated. In this study, both (R) and/or (S)bicalutamide were converted into glucuronide (‐G) derivatives after incubation of pure and racemic solutions with microsomal extracts from human liver and kidney. Intestinal microsomes exhibited only low reactivity with these substrates. Km values of liver and kidney samples for (S)bicalutamide glucuronidation were similar, and lower than values obtained with the (R)‐enantiomer. Among the 16 human UGTs tested, UGT1A8 and UGT1A9 were able to form both (S) and (R)bicalutamide‐G from pure or racemic substrates. UGT2B7 was also able to form (R)bicalutamide‐G. Kinetic parameters of the recombinant UGT2B7, UGT1A8 and UGT1A9 enzymes support a predominant role of the UGT1A9 isoform in bicalutamide metabolism. Accordingly, (S)bicalutamide inhibited the ability of human liver and kidney microsomes to glucuronidate the UGT1A9 probe substrate, propofol. In conclusion, the present study provides the first comprehensive analysis of in vitro bicalutamide glucuronidation by human tissues and UGTs and identifies UGT1A9 as a major contributor for (R) and (S) glucuronidation in the human liver and kidney.  相似文献   

20.
The stereo- and regioselective glucuronidation of 10 Delta(4)-3-keto monohydroxylated androgens and pregnanes was investigated to identify UDP-glucuronosyltransferase (UGT) enzyme-selective substrates. Kinetic studies were performed using human liver microsomes (HLMs) and a panel of 12 recombinant human UGTs as the enzyme sources. Five of the steroids, which were hydroxylated in the 6beta-, 7alpha-, 11beta- or 17alpha-positions, were not glucuronidated by HLMs. Of the remaining compounds, comparative kinetic and inhibition studies indicated that 6alpha- and 21-hydroxyprogesterone (OHP) were glucuronidated selectively by human liver microsomal UGT2B7. 6alpha-OHP glucuronidation by HLMs and UGT2B7 followed Michaelis-Menten kinetics, whereas 21-OHP glucuronidation by these enzyme sources exhibited positive cooperativity. UGT2B7 was also identified as the enzyme responsible for the high-affinity component of human liver microsomal 11alpha-OHP glucuronidation. In contrast, UGT2B15 and UGT2B17 were the major forms involved in human liver microsomal testosterone 17beta-glucuronidation and the high-affinity component of 16alpha-OHP glucuronidation. Activity of UGT1A subfamily enzymes toward the hepatically glucuronidated substrates was generally low, although UGT1A4 and UGT1A9 contribute to the low-affinity components of microsomal 16alpha- and 11alpha-OHP glucuronidation, respectively. Interestingly, UGT1A10, which is expressed only in the gastrointestinal tract, exhibited activity toward most of the glucuronidated substrates. The results indicate that 6alpha- and 21-OHP may be used as selective "probes" for human liver microsomal UGT2B7 activity and, taken together, provide insights into the regio- and stereoselectivity of hydroxysteroid glucuronidation by human UGTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号