首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
IL‐27, a member of the IL‐12 family of cytokines, is produced by APCs, and displays pro‐ and anti‐inflammatory effects. How IL‐27 affects human NK cells still remains unknown. In this study, we observed that mature DCs secreted IL‐27 and that blockade of IL‐27R (CD130) reduced the amount of IFN‐γ produced by NK cells during their coculture, showing the importance of IL‐27 during DC–NK‐cell crosstalk. Accordingly, human rIL‐27 stimulated IFN‐γ secretion by NK cells in a STAT1‐dependent manner, induced upregulation of CD25 and CD69 on NK cells, and displayed a synergistic effect with IL‐18. Preincubation experiments demonstrated that IL‐27 primed NK cells for IL‐18‐induced IFN‐γ secretion, which was associated with an IL‐27‐driven upregulation of T‐bet expression. Also, IL‐27 triggered NKp46‐dependent NK‐cell‐mediated cytotoxicity against Raji, T‐47D, and HCT116 cells, and IL‐18 enhanced this cytotoxic response. Such NK‐cell‐mediated cytotoxicity involved upregulation of perforin, granule exocytosis, and TRAIL‐mediated cytotoxicity but not Fas‐FasL interaction. Moreover, IL‐27 also potentiated Ab‐dependent cell‐mediated cytotoxicity against mAb‐coated target cells. Taken together, IL‐27 stimulates NK‐cell effector functions, which might be relevant in different physiological and pathological situations.  相似文献   

3.
Type I interferons (IFNs) have the dual ability to promote the development of the immune response and exert an anti‐inflammatory activity. We analyzed the integrated effect of IFN‐α, TCR signal strength, and CD28 costimulation on human CD4+ T‐cell differentiation into cell subsets producing the anti‐ and proinflammatory cytokines IL‐10 and IFN‐γ. We show that IFN‐α boosted TCR‐induced IL‐10 expression in activated peripheral CD45RA+CD4+ T cells and in whole blood cultures. The functional cooperation between TCR and IFN‐α efficiently occurred at low engagement of receptors. Moreover, IFN‐α rapidly cooperated with anti‐CD3 stimulation alone. IFN‐α, but not IL‐10, drove the early development of type I regulatory T cells that were mostly IL‐10+ Foxp3? IFN‐γ? and favored IL‐10 expression in a fraction of Foxp3+ T cells. Our data support a model in which IFN‐α costimulates TCR toward the production of IL‐10 whose level can be amplified via an autocrine feedback loop.  相似文献   

4.
Reconstitution of human cytomegalovirus (HCMV) T‐cell immunity is crucial in hematopoietic stem cell transplant (HSCT) recipients. The QuantiFERON®‐CMV assay for cellular HCMV‐specific immunity was evaluated in allogeneic HSCT recipients (n = 43) and patients with hematological malignancies (n = 29) attending a tertiary‐care Irish hospital. An intracellular cytokine (ICC) assay correlated with the QuantiFERON®‐CMV assay. Although there was agreement between HCMV seropositivity and QuantiFERON®‐CMV assay, six HCMV seropositive immunosuppressed patients with hematological malignancy had negative QuantiFERON®‐CMV results. The 43 HSCT recipients were classified as high risk (D?/R+) (n = 18), intermediate risk (D+/R+ and D+/R?) (n = 17), and low risk (D?/R?) (n = 8). During episodes of HCMV DNAemia no evidence of HCMV‐specific immunity was found using the QuantiFERON®‐CMV assay. Furthermore, the recovery of HCMV‐specific CD8+ T‐cell responses in high‐risk seropositive recipients of matched unrelated donors was severely delayed, a mean of 200 (SD = 117) days compared to 58 (SD = 23) days for sibling donors (P ≤ 0.028). In addition, three patients with late HCMV infection (infection >100 days post‐transplant) had delayed reconstitution of HCMV‐specific CD8+ T cells. Interestingly, two recipients (R+/D?) developed rapid immune reconstitution by days 15 and 36 post‐HSCT, suggesting HCMV‐specific T‐cell lymphopoiesis of recipient origin. Levels of CD8+ T‐cell immunity in HCMV seropositive HSCT recipients were lowest following HSCT. A high number (33%) of indeterminate results was observed immediately after transplantation. Patients with indeterminate QuantiFERON®‐CMV results had low levels of HCMV‐specific CD8+ T cells. J. Med. Virol. 82:433–440, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
Occlusive transplant vasculopathy (TV) is the major cause for chronic graft rejection. Since endothelial cells (EC) are the first graft cells encountered by activated host lymphocytes, it is important to delineate the molecular mechanisms that coordinate the interaction of EC with activated T cells. Here, the interaction of CD8+ T cells with Ag‐presenting EC in vivo was examined using a transgenic heart transplantation model with β‐galactosidase (β‐gal) expression exclusively in EC (Tie2‐LacZ hearts). We found that priming with β‐gal peptide‐loaded DC failed to generate a strong systemic IFN‐γ response, but elicited pronounced TV in both IFN‐γ receptor (IFNGR)‐competent, and ifngr?/? Tie2‐LacZ hearts. In contrast, stimulation of EC‐specific CD8+ T cells with β‐gal‐recombinant mouse cytomegalovirus (MCMV‐LacZ) in recipients of ifngr+/+ Tie2‐LacZ hearts did not precipitate significant TV. However, MCMV‐LacZ infection of recipients of ifngr?/? Tie2‐LacZ hearts led to massive activation of β‐gal‐specific CD8 T cells, and led to development of fulminant TV. Further analyses revealed that the strong systemic IFN‐γ “storm” associated with MCMV infection induced upregulation of programmed death‐1 ligand 1 (PD‐L1) on EC, and subsequent attenuation of programmed death‐1 (PD‐1)‐expressing EC‐specific CD8+ T cells. Thus, IFNGR signaling in ECs activates a potent peripheral negative feedback circuit that protects vascularized grafts from occlusive TV.  相似文献   

7.
IL‐10 is a potent immunoregulatory and anti‐inflammatory cytokine. However, therapeutic trials in chronic inflammation have been largely disappointing. It is well established that IL‐10 can inhibit Th1 and Th2 cytokine production via indirect effects on APC. Less data are available about the influence of IL‐10 on IL‐17 production, a cytokine which has been recently linked to chronic inflammation. Furthermore, there are only few reports about a direct effect of IL‐10 on T cells. We demonstrate here that IL‐10 can directly interfere with TCR‐induced IFN‐γ production in freshly isolated memory T cells in the absence of APC. This effect was independent of the previously described effects of IL‐10 on T cells, namely inhibition of IL‐2 production and inhibition of CD28 signaling. In contrast, IL‐10 did not affect anti‐CD3/anti‐CD28‐induced IL‐17 production from memory T cells even in the presence of APC. This might have implications for the interpretation of therapeutic trials in patients with chronic inflammation where Th17 cells contribute to pathogenesis.  相似文献   

8.
γδ T cells are highly cytolytic lymphocytes that produce large amounts of pro‐inflammatory cytokines during immune responses to multiple pathogens. Furthermore, their ability to kill tumor cells has fueled the development of γδ‐T‐cell‐based cancer therapies. Thus, the regulation of γδ‐T‐cell activity is of great biological and clinical relevance. Here, we show that murine CD4+CD25+ αβ T cells, the vast majority of which express the Treg marker, Foxp3, abolish key effector functions of γδ T cells, namely the production of the pro‐inflammatory cytokines, IFN‐γ and IL‐17, cytotoxicity, and lymphocyte proliferation in vitro and in vivo. We further show that suppression is dependent on cellular contact between Treg and γδ T cells, results in the induction of an anergic state in γδ lymphocytes, and can be partially reversed by manipulating glucocorticoid‐induced TNF receptor‐related protein (GITR) signals. Our data collectively dissect a novel mechanism by which the expansion and pro‐inflammatory functions of γδ T cells are regulated.  相似文献   

9.
T cells expressing the γδ TCR are dominant T‐cell subsets in the intestinal immune system. We previously demonstrated that γδ T cells play important roles in augmenting Th17‐type colitogenic immune responses in a T‐cell‐induced colitic inflammation model. However, its underlying mechanism remains poorly understood. In this study, an in vitro coculture system using effector T cells enriched in gut Ag‐reactive cells was employed as a readout tool to search for gut Ag presenting APCs. We found that the presence of γδ T cells dramatically enhances gut Ag presentation within the mLN in mice. Gut Ag presentation by CD11b+ DC subsets was particularly controlled by γδ T cells. Interestingly, γδ T‐cell entry to the lymph nodes was essential to improve the Ag presentation. Therefore, our results highlight that γδ T cells play a previously unrecognized role to support colitogenic immunity by regulating gut Ag presentation in the draining LN.  相似文献   

10.
Conventional αβ T cells have the ability to form a long‐lasting resident memory T‐cell (TRM) population in nonlymphoid tissues after encountering foreign antigen. Conversely, the concept of ‘innate memory’, where the ability of nonadaptive branches of the immune system to deliver a rapid, strengthened immune response upon reinfection or rechallenge, is just emerging. Using the αβ T‐cell‐independent Aldara psoriasis mouse model in combination with genetic fate‐mapping and reporter systems, we identified a subset of γδ T cells in mice that is capable of establishing a long‐lived memory population in the skin. IL‐17A/F‐producing Vγ4+Vδ4+ T cells populate and persist in the dermis for long periods of time after initial stimulation with Aldara. Experienced Vγ4+Vδ4+ cells show enhanced effector functions and mediate an exacerbated secondary inflammatory response. In addition to identifying a unique feature of γδ T cells during inflammation, our results have direct relevance to the human disease as this quasi‐innate memory provides a mechanistic insight into relapses and chronification of psoriasis.  相似文献   

11.
Our previous work revealed that the recipients with the highest pre‐existing numbers of CD8+ effector T cells (TE) [hyperparathyroidism (HPT)E recipients] occupied approximately 30% of adult transplant recipients performed in our hospital. HPTE recipients demonstrated very poor clinical outcome compared with the remaining 70% of recipients with the lowest pre‐existing TE (LPTE recipient). This study aimed to clarify the best combined immunosuppressive regimen related to function of cytotoxic T lymphocytes (CTLs) for HPTE recipients. Eighty‐one HPTE recipients were classified into three types, according to the immunosuppressive regimens: type 1, tacrolimus (Tac)/glucocorticoid (GC); type 2, Tac/mycophenolate mofetil (MMF)/GC; and type 3, Tac/MMF. Frequencies of severe infection, rejection and hospital death were the highest in types 1 and 2, whereas the lowest occurred in type 3. The survival rate in type 3 was the highest (100%) during follow‐up until post‐operative day 2000. Regarding the immunological mechanism, in type 1 TE perforin and interferon (IFN)‐γ were generated through the self‐renewal of CD8+ central memory T cells (TCM), but decreased in the early post‐transplant period due to marked down‐regulation of interleukin (IL)‐12 receptor beta‐1 of TCM. In type 2, the self‐renewal TCM did not develop, and the effector function could not be increased. In type 3, in contrast, the effectors and cytotoxicity were correlated inversely with IL‐12Rβ1+ TCM levels, and increased at the highest level around the pre‐transplant levels of IL‐12Rβ1+ TCM. However, the immunological advantage of Tac/MMF therapy was inhibited strongly by additive steroid administration.  相似文献   

12.
Decline of cell‐mediated immunity is often attributed to decaying T‐cell numbers and their distribution in peripheral organs. This study examined the hypothesis that qualitative as well as quantitative changes contribute to the declining efficacy of CD8+ T‐cell memory. Using a model of influenza virus infection, where loss of protective CD8+ T‐cell immunity was observed 6 months postinfection, we found no decline in antigen‐specific T‐cell numbers or migration to the site of secondary infection. There was, however, a large reduction in antigen‐specific CD8+ T‐cell degranulation, cytokine secretion, and polyfunctionality. A profound loss of high‐avidity T cells over time indicated that failure to confer protective immunity resulted from the inferior functional capacity of remaining low avidity cells. These data imply that high‐avidity central memory T cells wane with declining antigen levels, leaving lower avidity T cells with reduced functional capabilities.  相似文献   

13.
Proinflammatory cytokines produced during immune responses to infectious stimuli are well‐characterized to have secondary effects on the function of hematopoietic progenitor cells in the BM. However, these effects on the BM are poorly characterized during chronic infection with intestinal helminth parasites. In this study, we use the Trichuris muris model of infection and show that Th1 cell‐associated, but not acute Th2 cell‐associated, responses to chronic T. muris infection cause a major, transient expansion of CD48?CD150? multipotent progenitor cells in the BM that is dependent on the presence of adaptive immune cells and IFN‐γ signaling. Chronic T. muris infection also broadly stimulated proliferation of BM progenitor cells including CD48?CD150+ hematopoietic stem cells. This shift in progenitor activity during chronic T. muris infection correlated with a functional increase in myeloid colony formation in vitro as well as neutrophilia in the BM and peripheral blood. In parallel, we observed an accumulation of CD4+, CD8+, and CD4?CD8? (double negative) T cells that expressed IFN‐γ, displaying activated and central memory‐type phenotypes in the bone marrow during chronic infection. Thus, these results demonstrate that Th1 cell‐driven responses in the intestine during chronic helminth infection potently influence upstream hematopoietic processes in the BM via IFN‐γ.  相似文献   

14.
γδ T cells are a potent source of innate IL‐17A and IFN‐γ, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24low CD44high effector γδ T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ γδ T cells produced IL‐17A, while NK1.1+ γδ T cells were efficient producers of IFN‐γ but not of IL‐17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ γδ T cells. Accordingly, both γδ T‐cell subsets were rare in gut‐associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL‐17A and IFN‐γ in response to TCR‐specific and TCR‐independent stimuli. IL‐12 and IL‐18 induced IFN‐γ and IL‐23 induced IL‐17A production by NK1.1+ or CCR6+ γδ T cells, respectively. Importantly, we show that CCR6+ γδ T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL‐17A‐producing γδ T cells derive from less TCR‐dependent selection events than IFN‐γ‐producing NK1.1+ γδ T cells.  相似文献   

15.
We show here that the expression of 4–1BB is rapidly induced in γδ T cells following antigenic stimulation in both mice and humans, and ligation of the newly acquired 4–1BB with an agonistic anti‐4–1BB augments cell division and cytokine production. We further demonstrate that γδ rather than αβ T cells protect mice from Listeria monocytogenes (LM) infection and 4–1BB stimulation enhances the γδ T‐cell activities in the acute phase of LM infection. IFN‐γ produced from γδ T cells was the major soluble factor regulating LM infection. Vγ1+ T cells were expanded in LM‐infected mice and 4–1BB signal triggered an exclusive expansion of Vγ1+ T cells and induced IFN‐γ in these Vγ1+ T cells. Similarly, 4–1BB was induced on human γδ T cells and shown to be fully functional. Combination treatment with human γδ T cells and anti‐hu4–1BB effectively protected against LM infection in human γδ T cell‐transferred NOD‐SCID mice. Taken together, these data provide evidence that the 4–1BB signal is an important regulator of γδ T cells and induces robust host defense against LM infection.  相似文献   

16.
Clinical efficacy in the treatment of rheumatoid arthritis with anti‐CD20 (Rituximab)‐mediated B‐cell depletion has garnered interest in the mechanisms by which B cells contribute to autoimmunity. We have reported that B‐cell depletion in a murine model of proteoglycan‐induced arthritis (PGIA) leads to an increase in Treg cells that correlate with decreased autoreactivity. Here, we demonstrate that the increase in Treg cells after B‐cell depletion is due to an increase in the differentiation of naïve CD4+ T cells into Treg cells. Since the development of PGIA is dependent on IFN‐γ and B cells are reported to produce IFN‐γ, we hypothesized that B‐cell‐specific IFN‐γ plays a role in the development of PGIA. Accordingly, mice with B‐cell‐specific IFN‐γ deficiency were as resistant to the induction of PGIA as mice that were completely IFN‐γ deficient. Importantly, despite a normal frequency of IFN‐γ‐producing CD4+ T cells, B‐cell‐specific IFN‐γ‐deficient mice exhibited a higher percentage of Treg cells compared with that in WT mice. These data indicate that B‐cell IFN‐γ production inhibits Treg‐cell differentiation and exacerbates arthritis. Thus, we have established that IFN‐γ, specifically derived from B cells, uniquely contributes to the pathogenesis of autoimmunity through prevention of immunoregulatory mechanisms.  相似文献   

17.
Although regulatory T‐cells (Tregs) have been shown to be expanded in acute dengue, their role in pathogenesis and their relationship to clinical disease severity and extent of viraemia have not been fully evaluated. The frequency of Tregs was assessed in 56 adult patients with acute dengue by determining the proportion of forkhead box protein 3 (FoxP3) expressing CD4CD25+T‐cells (FoxP3+ cells). Dengue virus (DENV) viral loads were measured by quantitative real‐time polymerase chain reaction (PCR) and DENV‐specific T‐cell responses were measured by ex‐vivo interferon (IFN)‐γ enzyme‐linked immunospot (ELISPOT) assays to overlapping peptide pools of DENV‐NS3, NS1 and NS5. CD45RA and CCR4 were used to phenotype different subsets of T‐cells and their suppressive potential was assessed by their expression of cytotoxic T lymphocyte‐antigen 4 (CTLA‐4) and Fas. While the frequency of FoxP3+ cells in patients was significantly higher (P < 0·0001) when compared to healthy individuals, they did not show any relationship with clinical disease severity or the degree of viraemia. The frequency of FoxP3+ cells did not correlate with either ex‐vivo IFN‐γ DENV‐NS3‐, NS5‐ or NS1‐specific T‐cell responses. FoxP3+ cells of patients with acute dengue were predominantly CD45RA+ FoxP3low, followed by CD45RA‐FoxP3low, with only a small proportion of FoxP3+ cells being of the highly suppressive effector Treg subtype. Expression of CCR4 was also low in the majority of T‐cells, with only CCR4 only being expressed at high levels in the effector Treg population. Therefore, although FoxP3+ cells are expanded in acute dengue, they predominantly consist of naive Tregs, with poor suppressive capacity.  相似文献   

18.
19.
Dendritic cells (DCs) and complement are both key members of the innate and adaptive immune response. Recent experimental mouse models have shown that production of alternative pathway (AP) components by DCs strongly affects their ability to activate and regulate T‐cell responses. In this study we investigated the production and regulation of properdin (fP) and factor H (fH) both integral regulators of the AP, by DCs and tolerogenic DCs (tolDCs). Both fP and fH were produced by DCs, with significantly higher levels of both AP components produced by tolDCs. Upon activation with IFN‐γ both cells increased fH production, while simultaneously decreasing production of fP. IL‐27, a member of the IL‐12 family, increased fH, but production of fP remained unaffected. The functional capacity of fP and fH produced by DCs and tolDCs was confirmed by their ability to bind C3b. Inhibition of fH production by DCs resulted in a greater ability to induce allogenic CD4+ T‐cell proliferation. In contrast, inhibition of fP production led to a significantly reduced allostimulatory capacity. In summary, this study shows that production of fP and fH by DCs, differentially regulates their immunogenicity, and that the local cytokine environment can profoundly affect the production of fP and fH.  相似文献   

20.
Zika virus (ZIKV) is transmitted by mosquitoes and causes Dengue‐like illness, neurological symptoms such as Guillain‐Barré Syndrome and microcephaly in children born to infected pregnant mothers. Recently, the World Health Organization (WHO) declared ZIKV infection as a Global Health Emergency. However, there are no known prophylactic or therapeutic measures against this virus. As a proof of concept toward combination therapeutic strategy against ZIKV, combinations of host‐targeted (Interferon‐α and Interferon‐β) and direct acting (Sofosbuvir) antivirals were evaluated in a hepatic cell line (Huh7) using a Cytoprotection (CP) assay. The combination of these antivirals resulted in synergistic inhibition of ZIKV infection in the in vitro CP assay. Additional testing in a ZIKV yield assay demonstrated that combination treatment of these antivirals conferred >2‐log reduction in the release of viral RNA. Measurement of ZIKV proteins in the cells infected with multiple ZIKV strains isolated from different geographical regions (Americas, Asia, and Africa) using an immunofluorescence assay confirmed the effective antiviral activity of this combination against ZIKV. These results demonstrate the in vitro proof of concept (POC) for using a combination approach utilizing the strengths of both virus and host‐targeted antivirals. These results suggest the effectiveness of the combination strategy in combating ZIKV, in the in vitro systems. Further evaluation of such combination therapies in vivo might provide an impetus for the development of effective ZIKV therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号