首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

To evaluate the differences in enhancement of the abdominal solid organ and the major vessel on dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) obtained with gadolinium ethoxybenzyldiethylenetriamine pentaacetic acid (Gd‐EOB‐DTPA: EOB) and gadolinium diethylenetriamine pentaacetic acid (Gd‐DTPA) in the same patients.

Materials and Methods

A total of 13 healthy volunteers underwent repeat assessments of abdominal MR examinations with DCE‐MRI using either Gd‐DTPA at a dose of 0.1 mmol/kg body weight or EOB at a dose of 0.025 mmol/kg body weight. DCE images were obtained at precontrast injection and in the arterial phase (AP: 25 seconds), portal phase (PP: 70 seconds), and equilibrium phase (EP: 3 minutes). The signal intensities (SIs) of liver at AP, PP, and EP; the SIs of spleen, renal cortex, renal medulla, pancreas, adrenal gland, aorta at AP; and the SIs of portal vein and inferior vena cava (IVC) at PP were defined using region‐of‐interest measurements, and were used for calculation of signal intensity ratio (SIR).

Results

The mean SIRs of liver (0.195 ± 0.140), spleen (1.35 ± 0.353), renal cortex (1.58 ± 0.517), renal medulla (0.548 ± 0.259), pancreas (0.540 ± 0.183), adrenal gland (1.04 ± 0.405), and aorta (2.44 ± 0.648) at AP as well as the mean SIRs of portal vein (1.85 ± 0.477) and IVC (1.16 ± 0.187) at PP in the EOB images were significantly lower than those (0.337 ± 0.200, 1.99 ± 0.443, 2.01 ± 0.474, 0.742 ± 0.336, 0.771 ± 0.227, 1.26 ± 0.442, 3.22 ± 1.20, 2.73 ± 0.429, and 1.68 ± 0.366, respectively) in the Gd‐DTPA images (P < 0.05 each). There was no significant difference in mean SIR of liver at PP between EOB (0.529 ± 0.124) and Gd‐DTPA (0.564 ± 0.139). Conversely, the mean SIR of liver at EP was significantly higher with EOB (0.576 ± 0.167) than with Gd‐DTPA (0.396 ± 0.093) (P < 0.001).

Conclusion

Lower arterial vascular and parenchymal enhancement with Gd‐EOB, as compared with Gd‐DTPA, may require reassessment of its dose, despite the higher late venous phase liver parenchymal enhancement. J. Magn. Reson. Imaging 2009;29:636–640. © 2009 Wiley‐Liss, Inc.  相似文献   

2.

Purpose

To elucidate whether a contrast agent dilution method (dilution method), in which gadoxetate disodium (Gd‐EOB‐DTPA) is diluted with saline, is useful for good‐quality arterial‐phase images.

Materials and Methods

In this study we observed 494 hypervascular hepatocellular carcinomas (HCCs) in 327 patients with chronic liver disease. Three Gd‐EOB‐DTPA injection methods were adopted for comparison: 1) test injection method (undiluted Gd‐EOB‐DTPA and modified scan delay), in which a test dose of 0.5 mL of Gd‐EOB‐DTPA was injected to determine scan delay; 2) conventional method (undiluted Gd‐EOB‐DTPA and fixed scan delay); and ( 3 ) dilution method (diluted Gd‐EOB‐DTPA and fixed scan delay), in which Gd‐EOB‐DTPA was diluted to 20 mL with saline. Lesion‐liver contrast was calculated. Image quality and lesion detectability were evaluated by two radiologists blinded to the injection methods.

Results

The lesion‐liver contrast of the dilution method was significantly higher than that of the other two methods. Lesion detectability of the conventional method (64%) was significantly lower than that of the other two methods (contrast agent dilution method, 95%; test injection method, 93%). The image quality of the contrast agent dilution method was significantly better than that of the other two methods.

Conclusion

The dilution method contributed to improved image quality, high lesion‐liver contrast, and high lesion detectability in the arterial‐phase images of GD‐EOB‐DTPA‐enhanced MRI. J. Magn. Reson. Imaging 2009;30:849–854. © 2009 Wiley‐Liss, Inc.  相似文献   

3.

Purpose:

To evaluate liver function obtained by tracer‐kinetic modeling of dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) data acquired with a routine gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd‐EOB‐DTPA)‐enhanced protocol.

Materials and Methods:

Data were acquired from 25 cases of nonchronic liver disease and 94 cases of cirrhosis. DCE‐MRI was performed with a dose of 0.025 mmol/kg Gd‐EOB‐DTPA injected at 2 mL/sec. A 3D breath‐hold sequence acquired 5 volumes of 72 slices each: precontrast, double arterial phase, portal phase, and 4‐minute postcontrast. Regions of interest (ROIs) were selected semiautomatically in the aorta, portal vein, and whole liver on a middle slice. A constrained dual‐inlet two‐compartment uptake model was fitted to the ROI curves, producing three parameters: intracellular uptake rate (UR), extracellular volume (Ve), and arterial flow fraction (AFF).

Results:

Median UR dropped from 4.46 10?2 min?1 in the noncirrhosis to 3.20 in Child–Pugh A (P = 0.001), and again to 1.92 in Child–Pugh B (P < 0.0001). Median Ve dropped from 6.64 mL 100 mL?1 in the noncirrhosis to 5.80 in Child–Pugh A (P = 0.01). Other combinations of Ve and AFF changes were not significant for any group.

Conclusion:

UR obtained from tracer kinetic analysis of a routine DCE‐MRI has the potential to become a novel index of liver function. J. Magn. Reson. Imaging 2013;37:1109–1114. © 2012 Wiley Periodicals, Inc.
  相似文献   

4.

Purpose:

To develop and evaluate a quantitative parameter for staging hepatic fibrosis by contrast enhancement signal intensity and morphological measurements from gadoxetic acid (Gd‐EOB‐DTPA)‐enhanced MR imaging.

Materials and Methods:

MR images were obtained in 93 patients; 75 patients had histopathologically proven hepatic fibrosis and 18 patients who had healthy livers were evaluated. The liver‐to‐muscle signal intensity ratio (SIpost = SIliver/SImuscle), contrast enhancement index (CEI = SIpost/SIpre), and liver‐to‐spleen volumetric ratio (VR = Vliver/Vspleen) were evaluated for staging hepatic fibrosis.

Results:

VR was most strongly correlated with fibrosis stage (7.21; r = ?0.83; P < 0.001). Sensitivity, specificity, and area under the ROC curve demonstrated by linear regression formula generated by VR and CEI in predicting fibrous scores were 100%, 73%, and 0.91, respectively, for the detection of hepatic fibrosis F1 or greater (≥ F1),100%, 87%, and 0.96 for ≥ F2, 74%, 98%, and 0.93 for ≥ F3 and 91%, 100%, and 0.97 for F4.

Conclusion:

The liver‐to‐spleen volumetric ratio and contrast enhancement index were reliable biomarkers for the staging of hepatic fibrosis on Gd‐EOB‐DTPA‐enhanced MR imaging. J. Magn. Reson. Imaging 2012;36:1148–1153. © 2012 Wiley Periodicals, Inc.
  相似文献   

5.
6.

Purpose:

1) To analyze and compare fast dynamic imaging sequences to biopsy suspect liver lesions. 2) To evaluate the additional use of hepatocyte‐specific contrast agent compared to the nonenhanced fast dynamic scans and diagnostic liver imaging.

Materials and Methods:

Image acquisition was performed using a 1T open‐configured scanner suitable for interventional purposes. Transversal postcontrast T1‐weighted (T1w) fat‐saturated 3D high‐resolution examination (THRIVE) images were acquired >20 minutes postintravenous application of gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd‐EOB‐DTPA). A single slice, crossing the level of the lesion, was acquired using intermediate‐weighted steady‐state free‐precession (bTFE), T1w‐gradient echo and spin echo (T1FFE/TSE), T2w‐spin echo (sshTSE) sequences. T1w imaging was acquired prior and after contrast media application. Diagnostic and fast dynamic images were compared based on a 10‐point rating scale. In addition, the liver‐to‐lesion‐contrast ratio was measured.

Results:

A total of 39 malignant lesions with a mean diameter of 13 mm (5–30 mm) in 39 patients were included. Concerning a test of noninferiority, there was no significant difference between rating score values of fast dynamic imaging employing contrast‐enhanced T1FFE‐sequences compared to diagnostic THRIVE (P = 0.001). Calculated liver‐to‐lesion contrast also showed no difference for either imaging sequence (P = 1.0). All other sequences tested showed significant inferiority (P ≤ 0.001).

Conclusion:

T1w Gd‐EOB‐DTPA contrast‐enhanced fast dynamic GRE imaging significantly improves the contrast behavior of malignant liver lesions comparable to diagnostic imaging and is best suited for liver intervention, especially at 1T open magnetic resonance imaging. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

7.

Purpose

To compare gadoxetic acid disodium (Gd‐EOB‐DTPA)‐enhanced magnetic resonance imaging (MRI) with gadobenate dimeglumine (Gd‐BOPTA)‐enhanced MRI in preoperative living liver donors for the evaluation of vascular and biliary variations.

Materials and Methods

Sixty‐two living liver donors who underwent preoperative MRI were included in this study. Thirty‐one patients underwent MRI with Gd‐EOB‐DTPA enhancement, and the other 31 underwent MRI with Gd‐BOPTA enhancement. Two abdominal radiologists retrospectively reviewed dynamic T1‐weighted and T1‐weighted MR cholangiography images and ranked overall image qualities for the depiction of the hepatic artery, portal vein, hepatic vein, and bile duct on a 5‐point scale and determined the presence and types of normal variations in each dynamic phase. Semiquantitative analysis for bile duct visualization was also conducted by calculating bile duct‐to‐liver contrast ratios.

Results

No statistical differences were found between the two contrast media in terms of hepatic artery or bile duct image quality by the two reviewers, or in terms of portal vein image quality by one reviewer (P > 0.05). Gd‐BOPTA provided better image qualities than Gd‐EOB‐DTPA for the depiction of hepatic veins by both reviewers, and for the depiction of portal veins by one reviewer (P < 0.01). The two contrast media‐enhanced images had similar bile duct‐to‐liver contrast ratios (P > 0.05). Regarding diagnostic accuracies with hepatic vascular/biliary branching types, no significant differences were observed between the two contrast media (P > 0.05).

Conclusion

Gd‐EOB‐DTPA could be as useful as Gd‐BOPTA for the preoperative evaluation of living liver donors, and has the advantage of early hepatobiliary phase image acquisition. J. Magn. Reson. Imaging 2011;33:149–159. © 2010 Wiley‐Liss, Inc.  相似文献   

8.

Purpose:

To describe the presence of “peripheral low intensity sign” in hepatic hemangioma in the hepatobiliary phase (HP) of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd‐EOB‐DTPA)‐enhanced magnetic resonance imaging (MRI) and to compare the frequency of this sign between hepatic hemangiomas and hepatic metastases.

Materials and Methods:

The Institutional Review Board approved this study and waived the requirement for informed consent. Sixty‐four patients with 51 hepatic hemangiomas (n = 31 patients) and with 58 hepatic metastases (n = 33 patients) underwent Gd‐EOB‐DTPA‐enhanced MRI. In all hepatic hemangiomas, 41 lesions were the typical type and 10 were the high flow type. HP images were qualitatively evaluated for the frequency of peripheral low intensity sign in hepatic hemangiomas and hepatic metastases using a four‐point scale. Statistical evaluations were performed with a Mann–Whitney U‐test.

Results:

Peripheral low intensity signs were demonstrated in 24 (47%) of 51 hepatic hemangiomas, while they were seen in 27 (47%) of 58 hepatic metastases. There was no significant difference in the mean visual score of peripheral low intensity sign between all hepatic hemangiomas (0.84 ± 1.03) and hepatic metastases (0.76 ± 0.92). The mean visual score of peripheral low intensity sign in typical hemangiomas (1.02 ± 1.06) was significantly higher than that in high flow hemangiomas (0.10 ± 0.32) (P = 0.008).

Conclusion:

Peripheral low intensity sign is not specific for malignant tumors, and can be seen even in hepatic hemangiomas on HP of Gd‐EOB‐DTPA‐enhanced MRI. J. Magn. Reson. Imaging 2012;35:852–858. © 2011 Wiley Periodicals, Inc.  相似文献   

9.

Purpose:

To evaluate hyperintense Gd‐DTPA‐ compared with hyper‐ and hypointense Gd‐EOB‐DTPA‐enhanced magnet resonance imaging (MRI) in c‐myc/TGFα transgenic mice for detecting hepatocellular carcinoma (HCC).

Materials And Methods:

Twenty HCC‐bearing transgenic mice with overexpression of the protooncogene c‐myc and transforming growth factor‐alpha (TGF‐α) were analyzed. MRI was performed using a 3‐T MRI scanner and an MRI coil. The imaging protocol included Gd‐DTPA‐ and Gd‐EOB‐DTPA‐enhanced T1‐weighted images. The statistically evaluated parameters are signal intensity (SI), signal intensity ratio (SIR), contrast‐to‐noise ratio (CNR), percentage enhancement (PE), and signal‐to‐noise ratio (SNR).

Results:

On Gd‐DTPA‐enhanced MRI compared with Gd‐EOB‐DTPA‐enhanced MRI, the SI of liver was 265.02 to 573.02 and of HCC 350.84 to either hyperintense with 757.1 or hypointense with 372.55 enhancement. Evaluated parameters were SNR of HCC 50.1 to 56.5/111.5 and SNR of liver parenchyma 37.8 to 85.8, SIR 1.32 to 1.31/0.64, CNR 12.2 to 26.1/?30.08 and PE 42.08% to 80.5/?98.2%, (P < 0.05).

Conclusion:

Gd‐EOB‐DTPA is superior to Gd‐DTPA for detecting HCC in contrast agent‐enhanced MRI in the c‐myc/TGFα transgenic mouse model and there was no difference between the hyperintense or hypointense appearance of HCC. Either way, HCCs can easily be distinguished from liver parenchyma in mice. J. Magn. Reson. Imaging 2012;35:1397–1402. © 2012 Wiley Periodicals, Inc.
  相似文献   

10.

Purpose:

To assess if a high resolution respiratory triggered inversion recovery prepared GRE sequence (RT) improved image quality and detection of lesions compared with breathhold GRE T1 weighted MR sequence (BH) in the hepatobiliary uptake phase of MR of the liver using gadoxetic acid (Gd‐EOB‐DTPA).

Materials and Methods:

Thirty‐eight consecutive patients from July 2009 to September 2010 who had undergone Gd‐EOB‐DTPA enhanced liver exams were retrospectively identified. Qualitative assessment performed on reference lesions and background liver by two independent readers. Quantitative assessment performed by one reader.

Results:

Liver parenchyma signal‐to‐noise ratio for BH was 90.3 ± 23.9 (mean ± SD) and RT, 106.1 ± 40.4 (P = 0.119). For BH, 320 lesions were detected compared with 257 for RT. Lesion to liver contrast was significantly better on RT sequences (0.26 ± 0.24; mean ± SD) compared with BH sequence (0.21 ± 0.20; P = 0.044). Fifty‐seven reference lesions assessed. Both reviewers rated BH better for lesion margin and hepatic vessel sharpness. BH was rated with less artifact (P < 0.05). Lesion to liver contrast on BH was significantly better for one reviewer.

Conclusion:

BH sequence had better overall image quality than RT in several quantitative and qualitative factors including number of lesions detected and level of artifact. J. Magn. Reson. Imaging 2013;37:700—706. © 2013 Wiley Periodicals, Inc.  相似文献   

11.

Purpose:

To evaluate the usefulness of gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd‐EOB‐DTPA)‐enhanced MR imaging (EOB‐MRI) in differentiating between simple steatosis and nonalcoholic steatohepatitis (NASH), as compared with MR in‐phase/out‐of‐phase imaging. The correlations between the MR features and histological characteristics were preliminarily investigated.

Materials and Methods:

From April 2008 to October 2011, 25 patients (13 simple steatosis and 12 NASH) who underwent both EOB‐MRI and in‐phase/out‐of‐phase imaging were analyzed. The hepatobiliary‐phase enhancement ratio and signal intensity loss on opposed‐phase T1‐weighted images (fat fraction) were compared between the simple steatosis and NASH groups. In the simple steatosis and NASH groups, the correlations between enhancement ratio and histological grade/stage were explored. In the NASH group, fat fraction was correlated with the steatosis score.

Results:

The enhancement ratio in NASH was significantly lower than that in simple steatosis (P = 0.03). In the simple steatosis and NASH groups, the enhancement ratio was significantly correlated with the fibrosis stage (r = ?0.469, P = 0.018). Fat fraction in NASH was strongly correlated with the steatosis score (r = 0.728, P = 0.007).

Conclusion:

In simple steatosis and NASH, the hepatobiliary‐phase enhancement ratio of EOB‐MRI showed significant association with fibrosis stage, and may be a useful discriminating parameter compared with the fat fraction measured by in‐phase/out‐of‐phase imaging. J. Magn. Reson. Imaging 2012;37:1137–1143. © 2012 Wiley Periodicals, Inc.
  相似文献   

12.

Purpose:

To develop a method for body magnetic resonance imaging (MRI) of conscious mice and investigate the effect of isoflurane anesthesia and hypothermia on the hepatic kinetics of gadoxetate disodium (Gd‐EOB‐DTPA).

Materials and Methods:

Conscious or anesthetized mice were restrained on a holder and the rectal temperature was measured serially. Serial MRI of the liver was performed after intravenous injection of Gd‐EOB‐DTPA with or without temperature control. Three mice were studied for each condition.

Results:

The temperature dropped rapidly in anesthetized mice beside the MR unit. The decline was less prominent in conscious mice. The temperature decreased less in anesthetized mice and remained constant in conscious mice in the radiofrequency (RF) coil. The washout of Gd‐EOB‐DTPA was slower in anesthetized hypothermic mice than in conscious normothermic mice. Warmed anesthetized mice showed faster washout, and cooled conscious mice showed delayed washout. Severer hypothermia in anesthetized mice resulted in weaker initial enhancement and slower washout.

Conclusion:

By separately manipulating the presence or absence of anesthesia and hypothermia, we demonstrated that washout of Gd‐EOB‐DTPA was delayed under hypothermia, regardless of anesthesia. Serial body MRI of conscious mice was feasible and allowed the evaluation of kinetics of a contrast agent, while excluding the possible effects of anesthesia. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

13.

Purpose:

To evaluate the incidence and predictive factors of hypervascular transformation during follow‐up of “high‐risk nodules” detected in the hepatobiliary phase of initial Gd‐EOB‐DTPA‐enhanced MRI in chronic liver disease patients.

Materials and Methods:

A total of 109 patients with chronic liver disease who underwent Gd‐EOB‐DTPA‐enhanced MRI several times were investigated. Of these, 43 patients had 76 high‐risk nodules with both hypointensity in the hepatobiliary phase and hypovascularity in the arterial phase of initial MRI. These nodules were observed until hypervascularity was detected. MRI and clinical findings were compared to assess the incidence and potential predictive factors for hypervascular transformation between the group showing hypervascular transformation and the group not showing hypervascularization.

Results:

The median observation period was 242.5 ± 203.2 days (range, 47–802 days). Overall, 24 of 76 high‐risk nodules (31.6%) showed hypervascular transformation during follow‐up (median observation period, 186.0 ± 190.3 days). The growth rate of the nodules (P < 0.001), the presence of fat within nodules (P = 0.037), and hyperintensity on T1‐weighted images (P = 0.018) were significantly correlated with hypervascularization.

Conclusion:

Subsets of high‐risk nodules tended to show hypervascular transformation during follow‐up, with an increased growth rate, the presence of fat, and hyperintensity on T1‐weighted images as predictive factors. J. Magn. Reson. Imaging 2013;37:1377–1383. © 2013 Wiley Periodicals, Inc.  相似文献   

14.

Purpose:

To compare the conspicuity of hypointense hepatocellular nodules in patients with chronic liver disease on hepatobiliary phase (HP) of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd‐EOB‐DTPA)‐enhanced magnetic resonance imaging (MRI) acquired with low to high flip angles (FAs).

Materials and Methods:

A total of 95 patients with chronic liver disease who underwent Gd‐EOB‐DTPA‐enhanced MRI were included. HP images were obtained at 20 minutes, with 15°, 20°, and 30° FAs. For the detected hepatocellular nodule, liver‐to‐lesion contrast‐to‐phantom ratios (CPR) and lesion conspicuity (LCS) were assessed.

Results:

In all examinations, 96 hepatocellular nodules showing hypointensity on HP were identified. These lesions included 39 hypovascular nodules and 57 hypervascular nodules. Mean CPR and LCS showed the highest value on the 30° FA, followed by 20° and 15° FAs. CPR and LCS of 15° FA were significantly lower than those of 20° and 30° FAs (P < 0.001 to P = 0.007). CPR of 30° FA for hypervascular nodules was significantly greater than that of 20° FA (P < 0.001).

Conclusion:

In the evaluation of hypointense hepatocellular nodules on HP of Gd‐EOB‐DTPA‐enhanced MRI, higher FA such as 30° should be used rather than low FA such as 15°. J. Magn. Reson. Imaging 2013;37:1093–1099. © 2012 Wiley Periodicals, Inc.  相似文献   

15.

Purpose

To investigate the utility of interstitial MR lymphography with gadopentetate dimeglumine (Gd‐DTPA) or gadoxetate disodium (Gd‐EOB‐DTPA) in mice.

Materials and Methods

We performed MR lymphography after the subcutaneous injection of Gd‐DTPA or Gd‐EOB‐DTPA (0.1, 0.5, or 2.0 μmol per mouse) into the right footpad in six healthy mice, and the time courses of contrast enhancement were assessed. Additionally, the lymphatic pathways from two distinct sites were assessed in tandem by interstitial MR lymphography studies.

Results

Subcutaneous injection of Gd‐DTPA or Gd‐EOB‐DTPA caused lymph node enhancement immediately after injection, followed by a rapid decline. Dose dependency was shown for the lymph node enhancement, and a high‐dose injection caused prominent visualization of the veins. Lymph node enhancement did not differ significantly between Gd‐DTPA and Gd‐EOB‐DTPA or between Gd‐EOB‐DTPA premixed and not premixed with bovine serum albumin. The tandem assessment of two lymphatic pathways was feasible, and image fusion aided detailed comparison.

Conclusion

Interstitial MR lymphography with Gd‐DTPA or Gd‐EOB‐DTPA allowed clear visualization of the lymphatic pathway in healthy mice, and no significant difference was found between the two agents. Their rapid kinetics limits the imaging timing window, however, facilitates repeated assessment in a single imaging session. J. Magn. Reson. Imaging 2011;33:490–497. © 2011 Wiley‐Liss, Inc.  相似文献   

16.

Purpose:

To clarify the factors that predict enhancement of the liver parenchyma in hepatocyte‐phase of gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd‐EOB‐DTPA)‐enhanced MR imaging.

Materials and Methods:

Gd‐EOB‐DTPA–enhanced hepatocyte‐phase MR images of 198 patients with chronic liver diseases (Child‐Pugh class A in 112 patients, class B in 74 patients, and class C in 12 patients) were retrospectively analyzed. The hepatocyte‐phase images were obtained using fat‐suppressed T1‐weighted gradient‐echo images with a 3D acquisition sequence 10 min and 20 min after IV administration of Gd‐EOB‐DTPA (0.025 mmol/kg body weight). The quantitative liver–spleen contrast ratio (Q‐LSC) was calculated using the signal intensities of the liver and spleen. Serum albumin levels, total bilirubin levels, prothrombin activity, and the results of indocyanine green clearance tests (ICGs) were recorded and correlated with the Q‐LSC. Logistic regression analysis was performed to analyze which factors predict sufficient liver enhancement using a Q‐LSC of 1.5 as a cutoff value.

Results:

Only ICGs and Child‐Pugh classifications showed a statistically significant correlation with the Q‐LSC. Logistic regression analysis showed that ICGs were the only factors that accurately predicted liver enhancement on hepatocyte‐phase images.

Conclusion:

ICGs were found to be predictors of sufficient liver enhancement on hepatocyte‐phase images. J. Magn. Reson. Imaging 2009;30:1042–1046. © 2009 Wiley‐Liss, Inc.  相似文献   

17.

Purpose:

To evaluate whether using MR fluoroscopic triggering technique and slow rate injection improves the quality of arterial phase images in gadoxetic acid‐DTPA‐enhanced (Gd‐EOB‐DTPA) MR imaging because of proper acquisition timing and reduction of artifacts.

Materials and Methods:

Two hundred sixteen patients undergoing examination for liver diseases were retrospectively reviewed. All MR images were obtained with two Gd‐EOB‐DTPA injection protocols: (i) a combination protocol, in which the MR fluoroscopic triggering technique and slow rate injection (1 mL/s) were used; and for comparison, (ii) a conventional protocol, in which adjusted fixed scan delay and ordinary rate injection (2 mL/s) were adopted. Signal‐to‐noise ratio (SNR) of aorta, portal vein, and liver parenchyma on arterial phase images were calculated. Two blinded readers independently evaluated the obtained arterial phase images in terms of acquisition timing and degree of artifacts.

Results:

The SNRs of aorta and portal vein on arterial phase images were significantly higher in the combination protocol group (aorta/portal: 221.9 ± 91.9/197.1 ± 89.8) than that in the conventional protocol group (aorta/portal: 169.8 ± 97.4/92.7 ± 48.5) (P < 0.05). The acquisition timing for arterial phase images with the combination protocol was significantly better than that with the conventional protocol (P < 0.01). The image quality of the combination protocol was significantly higher than that of the conventional protocol (P < 0.01). The occurrence rate of moderate or severe degree of artifacts in the conventional protocol (38.0%) was more prominent than that in the combination protocol (18.5%).

Conclusion:

The combination of the MR fluoroscopic triggering technique and slow rate injection provides proper arterial phase images and reduces the artifacts in Gd‐EOB‐DTPA MR imaging. J. Magn. Reson. Imaging 2010;32:334–340. © 2010 Wiley‐Liss, Inc.  相似文献   

18.

Purpose:

To evaluate the effect of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd‐EOB‐DTPA) on T2‐weighted imaging (T2WI) and diffusion‐weighted imaging (DWI) for the diagnosis of hepatocellular carcinoma (HCC).

Materials and Methods:

The phantom signal intensity was measured. We also evaluated 72 patients including 30 patients with HCC. T2WI and DWI were obtained before and then 4 and 20 min after injecting the contrast medium. The signal to noise ratio (SNR), contrast to noise ratio (CNR), and apparent diffusion coefficient (ADC) were calculated in the tumor and liver parenchyma.

Results:

The phantom signal intensity increased on T2WI at a concentration of contrast medium less than 0.2 mmol/L but decreased when the concentration exceeded 0.4 mmol/L. SNR of the liver parenchyma on T2WI was significantly different between before and 4 min after injecting the contrast medium, while there were no significant differences between before and 4 and 20 min after injection. On T2WI, SNR, and CNR of HCC showed no significant differences at any time. SNR, CNR, and ADC of the liver parenchyma and tumor on DWI also showed no significant differences at any time.

Conclusion:

It is acceptable to perform T2WI and DWI after injection of Gd‐EOB‐DTPA for the diagnosis of HCC. J. Magn. Reson. Imaging 2010;32:229–234. © 2010 Wiley‐Liss, Inc.  相似文献   

19.

Purpose:

To evaluate the value of hepatobiliary phase imaging for detection and characterization of hepatocellular carcinoma (HCC) in liver MRI with Gd‐EOB‐DTPA, in a North American population.

Materials and Methods:

One hundred MRI examinations performed with the intravenous injection of Gd‐EOB‐DTPA in patients with cirrhosis were reviewed retrospectively. Nodules were classified as HCC (n = 70), indeterminate (n = 33), or benign (n = 22). Five readers independently reviewed each examination with and without hepatobiliary phase images (HBP). Lesion conspicuity scores were compared between the two readings. Lesion detection, confidence scores, and receiver operating characteristic (ROC) analysis were compared.

Results:

Lesion detection was slightly improved for all lesion types with the inclusion of the HBP, and was substantially higher for small HCCs (96.0% versus 85.3%). Mean confidence scores for the diagnosis of HCC increased for HCCs overall and each size category (P < 0.001). Diagnostic performance improved with the addition of the HBP (aggregate AROC 87.7% versus 80.0%, P < 0.01), and sensitivity for characterization improved (90.9% versus 78.3%, P < 0.01) while specificity was unchanged.

Conclusion:

Hepatobiliary phase imaging may improve small lesion detection (<1 cm) and characterization of lesions in general, in MRI of the cirrhotic liver with Gd‐EOB‐DTPA. J. Magn. Reson. Imaging 2013;37:398–406. © 2012 Wiley Periodicals, Inc.  相似文献   

20.

Purpose:

To examine whether the uptake of a liver‐specific contrast agent in the liver parenchyma was correlated with the degree of liver fibrosis.

Materials and Methods:

This retrospective study included 54 and 63 patients who underwent superparamagnetic iron oxide (SPIO)‐ and gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd‐EOB‐DTPA)‐enhanced MRI before liver surgery, respectively. For each patient, we calculated ΔR2* and ΔR2, which represent differences in R2* and R2 values of the liver parenchyma before and after administration of SPIO; and the increase rate of liver‐to‐spleen signal intensity ratio (LSR) on the hepatobiliary phase compared with the precontrast image. The correlation of each MR parameter with the degree of liver fibrosis (F0 to F4) was assessed using Spearman's rank correlation test.

Results:

The increase rate of LSR was best correlated with the degree of liver fibrosis and significantly decreased as the liver fibrosis progressed (rho = ?0.641; P < 0.0001). It showed sensitivity of 76.9% and specificity of 83.3% in differentiating F3 or greater fibrosis when 1.126 or less was set up as a cut‐off value. No significant correlation was obtained between ΔR2* or ΔR2 and the degree of liver fibrosis.

Conclusion:

The uptake of Gd‐EOB‐DTPA in the liver parenchyma decreased as the liver fibrosis progressed. J. Magn. Reson. Imaging 2012;36:664–671. © 2012 Wiley Periodicals, Inc.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号