首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although 3′‐deoxy‐3′‐[18F]fluorothymidine ([18F]FLT) is a prospective radiopharmaceutical for the imaging of proliferating tumor cell, it is difficult to prepare large amount of [18F]FLT. We herein describe the preparation of [18F]FLT in an ionic liquid, [bmim][OTf] (1‐butyl‐3‐methyl‐imidazolium trifluoromethanesulfonate). At optimized condition, [18F]fluorinationin ionic liquid with 5 µl of 1 M KHCO3 and 5 mg of the precursor yielded 61.5 ± 4.3% (n=10). Total elapsed time was about 70 min including HPLC purification. The rapid synthesis of [18F]FLT can be achieved by removing all evaporation steps. Overall radiochemical yield and radiochemical purity were 30 ± 5% and >95%, respectively. This method can use a small amount of a nitrobenzenesulfonate precursor and can be adapted for automated production. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
A synthesis method has been developed for the labelling of N‐(3‐[18F]fluoropropyl)‐2β‐carbomethoxy‐3β‐(4‐fluorophenyl)nortropane ([18F]β‐CFT‐FP), a potential radioligand for visualization of the dopamine transporters by positron emission tomography. The two‐step synthesis includes preparation of [18F]fluoropropyl tosylate and its use without purification in the fluoroalkylation of 2β‐carbomethoxy‐3β‐(4‐fluorophenyl)nortropane (nor‐β‐CFT). The final product is purified by HPLC. Optimization of the two synthesis steps resulted in a greater than 30% radiochemical yield of [18F]β‐CFT‐FP (decay corrected to end of bombardment). The synthesis time including HPLC‐purification was approximately 90 min. The radiochemical purity of the final product was higher than 99% and the specific radioactivity at the end of synthesis was typically 20 GBq/µmol. In comparison to alkylation by [18F]fluoropropyl bromide, the procedure described here results in an improved overall radiochemical yield of [18F]β‐CFT‐FP in a shorter time. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
2‐exo‐(2′‐Fluoro‐3′‐(4‐fluorophenyl)‐pyridin‐5′‐yl)‐7‐azabicyclo[2.2.1]heptane (F2PhEP), a novel, epibatidine‐based, α4β2‐selective nicotinic acetylcholine receptor antagonist of low toxicity, as well as the corresponding N‐Boc‐protected chloro‐ and bromo derivatives as precursors for labelling with fluorine‐18 were synthesized from 7‐tert‐butoxycarbonyl‐7‐azabicyclo[2.2.1]hept‐2‐ene in 13, 19 and 8% overall yield, respectively. [18F]F2PhEP was prepared in 8–9% overall yield (non‐decay‐corrected) using 1 mg of the bromo derivative in the following two‐step radiochemical process: (1) no‐carrier‐added nucleophilic heteroaromatic ortho‐radiofluorination with the activated K[18F]F‐Kryptofix®222 complex in DMSO using microwave activation at 250 W for 90 s, followed by (2) quantitative TFA‐induced removal of the N‐Boc protective group. Radiochemically pure (>95%) [18F]F2PhEP (1.48–1.66 GBq, 74–148 GBq/µmol) was obtained after semi‐preparative HPLC (Symmetry® C18, eluent aqueous 0.05 M NaH2PO4 CH3CN: 78/22 (v:v)) in 75–80 min starting from an 18.5 GBq aliquot of a cyclotron‐produced [18F]fluoride production batch. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Recently, two fluorine‐18 labelled derivatives of flumazenil were described: 5‐(2′‐[18F]fluoroethyl)‐5‐desmethylflumazenil (ethyl 8‐fluoro‐5‐[18F]fluoroethyl‐6‐oxo‐5,6‐dihydro‐4H‐benzo‐[f]imidazo[1,5‐a] [1,4]diazepine‐3‐carboxylate; [18F]FEFMZ) and 3‐(2′‐[18F]fluoro)‐flumazenil (2′‐[18F]fluoroethyl 8‐fluoro‐5‐methyl‐6‐oxo‐5,6‐dihydro‐4H‐benzo‐[f]imidazo[1,5‐a]‐[1,4]diazepine‐3‐carbo‐ xylate; [18F]FFMZ). Since the biodistribution data of the latter were superior to those of the former we developed a synthetic approach for [18F]FFMZ starting from a commercially available precursor, thereby obviating the need to prepare a precursor by ourselves. The following two‐step procedure was developed: First, [18F]fluoride was reacted with 2‐bromoethyl triflate using the kryptofix/acetonitrile method to yield 2‐bromo‐[18F]fluoroethane ([18F]BFE). In the second step, distilled [18F]BFE was reacted with the tetrabutylammonium salt of 3‐desethylflumazenil (8‐fluoro‐5‐methyl‐6‐oxo‐5,6‐dihydro‐4H‐benzo‐[f]imidazo[1,5‐a] [1,4]diazepine‐3‐carboxylic acid) to yield [18F]FFMZ. The synthesis of [18F]FFMZ allows for the production of up to 7 GBq of this PET‐tracer, enough to serve several patients. [18F]FFMZ synthesis was completed in less than 80 min and the radiochemical purity exceeded 98%. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
[18F]Fluorothymidine ([18F]FLT) is synthesized with a high radiochemical yield by nucleophilic substitution in protic solvent. In this study, we compared [18F]fluorination yields of [18F]fluorothymidine ([18F]FLT) in various alcohol solvents: 3,3‐dimethyl‐1‐butanol, 2‐trifluoromethyl‐2‐propanol, t‐BuOH (2‐methyl‐2‐propanol), t‐amyl alcohol (2‐methyl‐2‐butanol), thexyl alcohol (2,3‐dimethyl‐2‐butanol) and 3,3‐dimethyl‐2‐butanol. We used 5′‐O‐DMTr‐2′‐deoxy‐3′‐O‐nosyl‐β‐D‐threopentofuranosyl)‐3‐N‐BOC‐thymine as a precursor for [18F]fluorination. [18F]F? was eluted with TBAHCO3 solution after trapping [18F]F? on a PS‐HCO3 cartridge. [18F]fluorination was performed at 100°C for 5–30 min using 20 mg of the precursor. [18F]fluorination and radiochemical yields of [18F]FLT were evaluated by radioTLC. [18F]fluorination yields were dependent on the solvent used. All tertiary alcohol solvents, except 2‐trifluoromethyl‐2‐propanol, showed >85% of [18F]fluorination yields, whereas primary and secondary alcohols showed 26.3–71.8%. The highest yield of 94.1±4.4% was obtained with thexyl alcohol after [18F]fluorination for 5 min. Automated synthesis with t‐amyl alcohol resulted in high synthetic yields of 64.6±6.1% after high‐performance liquid chromatography purification (n=43). The use of tertiary alcohol as a solvent provides high radiochemical yields of [18F]FLT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The use of the key enzyme involved in carbon–fluorine bond formation in Streptomyces cattleya catalysing the formation of 5′‐fluoro‐5′‐deoxyadenosine (5′‐FDA) from fluoride ion and S‐adenosyl‐l‐methionine (SAM) was explored for its potential application in fluorine‐18 labelling of the adenosine derivative. Enzymatic radiolabelling of [18F]‐5′‐FDA was successfully carried out starting from SAM and [18F]HF when the concentration of the enzyme preparation was increased from sub‐mg/ml values to mg/ml values. The purity of the enzyme had no measurable effect on the radiochemical yield of the reaction and the radiochemical purity of [18F]‐5′‐FDA. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
We synthesized 2'‐deoxy‐2'‐[18F]fluorouridine ( 7 ) as a radiotracer for positron emission tomography from a new nosylate precursor ( 6 ). This new precursor was synthesized from uridine in four steps. The overall synthetic yield was 9.4% and we have high stability of >98% purity up to 6 months at 4°C. The optimal manual [18F]fluorination conditions were 30 mg of the precursor 6 in 500 µl of acetonitrile at 145°C for 15 min with 370 MBq of [18F]fluoride. The [18F]fluorination yield was 76.5±2.7% (n = 3). After hydrolysis of protecting groups with 1 N HCl and purification by HPLC, the overall radiochemical yield and purity were 26.5±1.4% and 98.2±2.5%, respectively. The preparation time was 70.0±10.5 min (n = 3 for each result). We also developed an automated method with a radiochemical yield and purity of 24.0±2.8 and 98.0±1.5% (n = 10) using a GE TracerLab MX chemistry module. This new nosylate precursor for 2'‐deoxy‐2'‐[18F]fluorouridine synthesis showed higher radiochemical yields and reproducibility than previous methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The F‐18 labelled methionine derivative S‐(2‐[18F]fluoroethyl)‐L‐homocysteine ([18F]FEHCys) was prepared by a one‐pot two‐step synthesis via the protected S‐(2‐bromoethyl)‐L‐homocysteine 1 and S‐(2‐chloroethyl)‐L‐homocysteine 2 precursors. The bromoethyl derivative 1 gave higher radiochemical yields (40% at 5 min) at 100°C compared with the chloro‐analogue (22% at 100°C in 30 min). However, [18F]FEHCys was found to be unstable in aqueous systems being transformed to the corresponding hydroxyl derivative within 20 min. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
N‐(3‐[18F]fluoropropyl)‐2β‐carbomethoxy‐3β‐(4‐iodophenyl)nortropane ([18F]FP‐β‐CIT) was synthesized in a two‐step reaction sequence. In the first reaction, 1‐bromo‐3‐(nitrobenzene‐4‐sulfonyloxy)‐propane was fluorinated with no‐carrier‐added fluorine‐18. The resulting product, 1‐bromo‐3‐[18F]‐fluoropropane, was distilled into a cooled reaction vessel containing 2β‐carbomethoxy‐3β‐(4‐iodophenyl)‐nortropane, diisopropylethylamine and potassium iodide. After 30 min, the reaction mixture was subjected to a preparative HPLC purification. The product, [18F]FP‐β‐CIT, was isolated from the HPLC eluent with solid‐phase extraction and formulated to yield an isotonic, pyrogen‐free and sterile solution of [18F]FP‐β‐CIT. The overall decay‐corrected radiochemical yield was 25 ± 5%. Radiochemical purity was > 98% and the specific activity was 94 ± 50 GBq/µmol at the end of synthesis. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Microfluidics technology has emerged as a powerful tool for the radiosynthesis of positron emission tomography (PET) and single‐photon emission computed tomography radiolabeled compounds. In this work, we have exploited a continuous flow microfluidic system (Advion, Inc., USA) for the [18F]‐fluorine radiolabeling of the malonic acid derivative, [18F] 2‐(5‐fluoro‐pentyl)‐2‐methyl malonic acid ([18F]‐FPMA), also known as [18F]‐ML‐10, a radiotracer proposed as a potential apoptosis PET imaging agent. The radiosynthesis was developed using a new tosylated precursor. Radiofluorination was initially optimized by manual synthesis and served as a basis to optimize reaction parameters for the microfluidic radiosynthesis. Under optimized conditions, radio‐thin‐layer chromatography analysis showed 79% [18F]‐fluorine incorporation prior to hydrolysis and purification. Following hydrolysis, the [18F]‐FPMA was purified by C18 Sep‐Pak, and the final product was analyzed by radio‐HPLC (high‐performance liquid chromatography). This resulted in a decay‐corrected 60% radiochemical yield and ≥98% radiochemical purity. Biodistribution data demonstrated rapid blood clearance with less than 2% of intact [18F]‐FPMA radioactivity remaining in the circulation 60 min post‐injection. Most organs showed low accumulation of the radiotracer, and radioactivity was predominately cleared through kidneys (95% in 1 h). Radio‐HPLC analysis of plasma and urine samples showed a stable radiotracer at least up to 60 min post‐injection.  相似文献   

11.
The SUZUKI reaction of organoboron compounds with 4‐[18F]fluoroiodobenzene has been developed as a novel radiolabelling technique in 18F chemistry. The cross‐coupling reaction of p‐tolylboronic acid with 4‐[18F]fluoroiodobenzene was used to screen different palladium complexes, bases and solvents. Optimized reaction conditions (Pd2(dba)3, Cs2CO3, acetonitrile, 60°C for 5 min) were further applied to the synthesis of various 18F‐labelled biphenyls bearing different functional groups. The reaction proceeded in excellent radiochemical yields of up to 94% within 5 min while showing good compatibility to many functional groups. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The synthesis of a pyrimidine analog, 3′‐deoxy‐3′‐[18F]‐fluoro‐1‐β‐D ‐xylofuranosyluracil ([18F]‐FMXU) is reported. 5‐Methyluridine 1 was converted to its di‐methoxytrityl derivatives 2 and 3 as a mixture. After separation the 2′,5′‐di‐methoxytrityluridine 2 was converted to its 3′‐triflate 4 followed by derivatization to the respective N3t‐Boc product 5 . The triflate 5 was reacted with tetrabutylammonium[18F]fluoride to produce 6 , which by acid hydrolysis yielded compound 7 . The crude preparation was purified by HPLC to obtain the desired product [18F]‐FMXU. The radiochemical yields were 25–40% decay corrected (d. c.) with an average of 33% in four runs. Radiochemical purity was >99% and specific activity was >74 GBq/µmol at the end of synthesis (EOS). The synthesis time was 67–75 min from the end of bombardment (EOB). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Tolbutamide ( 1 ) is a sulfonurea agent used to stimulate insulin secretion in type 2 diabetic patients. Its analogue 1‐(4‐(2‐[18F]fluoroethoxy)benzenesulfonyl)‐3‐butyl urea ( 3 ) was synthesized in overall radiochemical yields of 45% as a potential β‐cell imaging agent. Compound 3 was synthesized by 18F‐fluoroalkylation of the corresponding hydroxy precursor ( 2 ) with 2‐[18F]fluoroethyltosylate in DMF at 120°C for 10 min followed by purification with HPLC in a synthesis time of 50 min. Insulin secretion experiments of the authentic 19F‐standard compound on rat islets showed that the compound has a similar stimulating effect on insulin secretion as that of tolbutamide ( 1 ). The partition coefficient of compound 3 between octanol/water was determined to be 1.3±0.3 (n=5). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Automated synthetic procedures of [18F]fluoro‐[di‐deutero]methyl tosylate on a GE TRACERlab FX F‐N module and a non‐commercial synthesis module have been developed. The syntheses included azeotropic drying of the [18F]fluoride, nucleophilic 18F‐fluorination of bis(tosyloxy)‐[di‐deutero]methane, HPLC purification and subsequent formulation of the synthesized [18F]fluoro‐[di‐deutero]methyl tosylate (d2‐[18F]FMT) in organic solvents. Automation shortened the total synthesis time to 50 min, resulting in an average radiochemical yield of about 50% and high radiochemical purity (>98%). The possible application of this procedure to commercially available synthesis modules might be of significance for the production of deuterated 18F‐fluoromethylated imaging probes in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A fully automated synthesis of N‐succinimidyl 4‐[18F]fluorobenzoate ([18F]SFB) was carried out by a convenient three‐step, one‐pot procedure on the modified TRACERlab FXFN synthesizer, including [18F]fluorination of ethyl 4‐(trimethylammonium triflate)benzoate as the precursor, saponification of the ethyl 4‐[18F]fluorobenzoate with aqueous tetrapropylammonium hydroxide instead of sodium hydroxide, and conversion of 4‐[18F]fluorobenzoate salt ([18F]FBA) to [18F]SFB treated with N,N,N′,N′‐tetramethyl‐O‐(N‐succinimidyl)uranium tetrafluoroborate (TSTU). The purified [18F]SFB was used for the labeling of Tat membrane‐penetrating peptide (containing the Arg‐Lys‐Lys‐Arg‐Arg‐Arg‐Arg‐Arg‐Arg‐Arg‐Arg‐Pro‐Leu‐Gly‐Leu‐Ala‐Gly‐Glu‐Glu‐Glu‐Glu‐Glu‐Glu‐Glu sequence, [18F]CPP) through radiofluorination of lysine amino groups. The uncorrected radiochemical yields of [18F]SFB were as high as 25–35% (based on [18F]fluoride) (n=10) with a synthesis time of~40 min. [18F]CPP was produced in an uncorrected radiochemical yields of 10–20% (n=5) within 30 min (based on [18F]SFB). The radiochemical purities of [18F]SFB and [18F]CPP were greater than 95%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The synthesis of 1‐(5‐chloro‐2‐{2‐[(2R)‐4‐(4‐[18F]fluorobenzyl)‐2‐methylpiperazin‐1‐yl]‐2‐oxoethoxy}phenyl)urea ( [18F]4 ), a potent nonpeptide CCR1 antagonist, is described as a module‐assisted two‐step one‐pot procedure. The final product was obtained utilizing the reductive amination of the formed 4‐[18F]fluorobenzaldehyde ( 2 ) with a piperazine derivative 3 and sodium cyanoborohydride. After HPLC purification of the final product [18F]4 , its solid phase extraction, formulation and sterile filtration, the isolated (not decay‐corrected) radiochemical yields of [18F]4 were between 7 and 13% (n=28). The time of the entire manufacturing process did not exceed 95 min. The radiochemical purity of [18F]4 was higher than 95%, the chemical purity ?60% and the enantiomeric purity >99.5%. The specific radioactivity was in the range of 59–226 GBq/µmol at starting radioactivities of 23.6–65.0 GBq [18F]fluoride. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A slightly modified automated commercial synthesis system for preparation of O‐(2‐[18F]fluoroethyl)‐l‐tyrosine (FET), an amino acid tracer for tumor imaging with positron emission tomography, is described. Direct nucleophilic fluorination of [18F]fluoride with 1,2‐di(4‐methylphenylsulfonyloxy)ethane on a quaternary 4‐(4‐methylpiperidinyl)‐pyridinium functionalized polystyrene anion exchange resin gave 1‐[18F]‐2‐(4‐methylphenylsulfonyloxy)ethane, then [18F]fluoroalkylation of l‐tyrosine yielded FET. The overall radiochemical yield with no decay correction was about 8–10%, the whole synthesis time was about 52 min, and the radiochemical purity was above 95%. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
The palladium‐mediated N‐arylation of indoles with 4‐[18F]fluoroiodobenzene as a novel radiolabelling method has been developed. Optimized reaction conditions were elaborated by variation of different catalyst systems (CuI/1,2‐diamines and Pd2(dba)3/phosphine ligands), bases and solvents in the reaction of indole with 4‐[18F]fluoroiodobenzene. Optimized reaction conditions (Pd2(dba)3/(2‐(dicyclohexyl‐phosphino)‐2′‐(N,N‐dimethylamino)‐biphenyl, NaOBut, toluene, 100°C for 20 min) were applied for the synthesis of 18F‐labelled σ2 receptor ligands [18F]‐11 and [18F]‐13 which were obtained in 91 and 84% radiochemical yields, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
This study reports the synthesis and characterization of 4‐chloro‐2‐tert‐butyl‐5‐[2‐[[1‐[2‐[18F]fluroethyl]‐1H‐1,2,3‐triazol‐4‐yl]methyl]phenylmethoxy]‐3(2H)‐pyridazinone ([18F]Fmp2) for myocardial perfusion imaging (MPI). The tosylate precursor and non‐radioactive compound [19F]Fmp2 were synthesized and characterized by infrared, 1H‐NMR, 13C‐NMR, and mass spectra (MS). The radiotracer [18F]Fmp2 was obtained by one‐step nucleophilic substitution of tosyl with 18F, and evaluated as an MPI agent in vitro and in vivo. Starting from [18F]KF/K222 solution, the typical decay‐corrected radiochemical yield (RCY) was 38 ± 8.8% with high radiochemical purity (>98%). The specific activity was calculated as 10 GBq/µmol at the end of synthesis determined by HPLC analysis. In the mice biodistribution, [18F]Fmp2 showed very high initial heart uptake (53.35 ± 5.47 %ID/g at 2 min after injection) and remarkable retention. The heart/liver, heart/lung, and heart/blood ratios were 7.98, 8.20, and 53.13, respectively at 2 min post‐injection. In the Positron Emission Tomography (PET) imaging study of Chinese mini‐swine, the standardized uptake value of the liver decreased modestly during the 2 h post‐injection, while the heart uptake and heart/liver ratios continued to increase with time. [18F]Fmp2 exhibited good stability, high heart uptake and low lung uptake in mice and Chinese mini‐swine. It may be worthy of further modification to improve liver clearance for MPI in the future.  相似文献   

20.
O‐(2‐Fluoroethyl)‐O‐(p‐nitrophenyl) methylphosphonate 1 is an organophosphate cholinesterase inhibitor that creates a phosphonyl‐serine covalent adduct at the enzyme active site blocking cholinesterase activity in vivo . The corresponding radiolabeled O‐(2‐[18F]fluoroethyl)‐O‐(p‐nitrophenyl) methylphosphonate, [ 18 F]1 , has been previously prepared and found to be an excellent positron emission tomography imaging tracer for assessment of cholinesterases in live brain, peripheral tissues, and blood. However, the previously reported [ 18 F]1 tracer synthesis was slow even with microwave acceleration, required high‐performance liquid chromatography separation of the tracer from impurities, and gave less optimal radiochemical yields. In this paper, we report a new synthetic approach to circumvent these shortcomings that is reliant on the facile reactivity of bis‐(O,O‐p‐nitrophenyl) methylphosphonate, 2 , with 2‐fluoroethanol in the presence of DBU. The cold synthesis was successfully translated to provide a more robust radiosynthesis. Using this new strategy, the desired tracer, [ 18 F]1 , was obtained in a non‐decay–corrected radiochemical yield of 8 ± 2% (n = 7) in >99% radiochemical and >95% chemical purity with a specific activity of 3174 ± 345 Ci/mmol (EOS). This new facile radiosynthesis routinely affords highly pure quantities of [ 18 F]1 , which will further enable tracer development of OP cholinesterase inhibitors and their evaluation in vivo .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号