首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following ACL injury a reduction in the peak knee flexion moment during walking (thought to be created by a decrease of quadriceps contraction) has been described as an adaptation to reduce anterior tibial translation (ATT) relative to the femur. However, the amount of ATT caused by quadriceps contraction is influenced by the patellar ligament insertion angle (PLIA). The purpose of this study was to test the hypothesis that quadriceps usage during walking correlates to individual anatomical variations in the extensor mechanism as defined by PLIA. PLIA and gait were measured for ACL‐deficient knees, using subjects' contralateral knees as controls. In ACL‐deficient knees, PLIA was negatively correlated (R2 = 0.59) to peak knee flexion moment (balanced by net quadriceps moment), while no correlation was found in contralateral knees. Reduction in peak flexion moment in ACL‐deficient knees compared to their contralateral knees was distinctive in subjects with large PLIA, possibly to avoid excessive ATT. These results suggest that subject‐specific anatomic variability of knee extensor mechanism may account for the individual variability previously observed in adaptation to a quadriceps reduction strategy following ACL injury. The average (±1 SD) PLIA of ACL‐deficient knees (21.1 ± 3.4°) was less than the average PLIA of contralateral knees (23.9 ± 3.1°). This altered equilibrium position of the tibiofemoral joint associated with reduced PLIA and adaptations of gait patterns following ACL injury may be associated with degenerative changes in the articular cartilage. In the future, individually tailored treatment and rehabilitation considering individuals' specific extensor anatomy may improve clinical outcomes. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:1643–1650, 2007  相似文献   

2.
BACKGROUND: Quantifying the effects of anterior cruciate ligament deficiency on joint biomechanics is critical in order to better understand the mechanisms of joint degeneration in anterior cruciate ligament-deficient knees and to improve the surgical treatment of anterior cruciate ligament injuries. We investigated the changes in position of the in vivo tibiofemoral articular cartilage contact points in anterior cruciate ligament-deficient and intact contralateral knees with use of a newly developed dual orthogonal fluoroscopic and magnetic resonance imaging technique. METHODS: Nine patients with an anterior cruciate ligament rupture in one knee and a normal contralateral knee were recruited. Magnetic resonance images were acquired for both the intact and anterior cruciate ligament-deficient knees to construct computer knee models of the surfaces of the bone and cartilage. Each patient performed a single-leg weight-bearing lunge as images were recorded with use of a dual fluoroscopic system at full extension and at 15 degrees , 30 degrees , 60 degrees , and 90 degrees of flexion. The in vivo knee position at each flexion angle was then reproduced with use of the knee models and fluoroscopic images. The contact points were defined as the centroids of the areas of intersection of the tibial and femoral articular cartilage surfaces. RESULTS: The contact points moved not only in the anteroposterior direction but also in the mediolateral direction in both the anterior cruciate ligament-deficient and intact knees. In the anteroposterior direction, the contact points in the medial compartment of the tibia were more posterior in the anterior cruciate ligament-deficient knees than in the intact knees at full extension and 15 degrees of flexion (p < 0.05). No significant differences were observed with regard to the anteroposterior motion of the contact points in the lateral compartment of the tibia. In the mediolateral direction, there was a significant lateral shift of the contact points in the medial compartment of the tibia toward the medial tibial spine between full extension and 60 degrees of flexion (p < 0.05). The contact points in the lateral compartment of the tibia shifted laterally, away from the lateral tibial spine, at 15 degrees and 30 degrees of flexion (p < 0.05). CONCLUSIONS: In the presence of anterior cruciate ligament injury, the contact points shift both posteriorly and laterally on the surface of the tibial plateau. In the medial compartment, the contact points shift toward the medial tibial spine, a region where degeneration is observed in patients with chronic anterior cruciate ligament injuries.  相似文献   

3.
The purpose of this study was to evaluate tibiofemoral kinematics after double-bundle anterior cruciate ligament (ACL) reconstructions and compare them with those of successful single-bundle reconstructions and contralateral normal knees using open MR images. We obtained MR images based on the flexion angle without weight-bearing, from 20 patients with successful unilateral single-bundle (10 patients) and double-bundle (10 patients) ACL reconstructions with tibialis anterior allografts and a minimum 1-year follow-up. The MR images of the contralateral uninjured knees were used as normal controls. Sagittal images of the mid-medial and mid-lateral sections of the tibiofemoral compartments were used to measure the translation of the femoral condyles relative to the tibia. The mean translations of the medial femoral condyles on the tibial plateaus during knee joint motion showed no significant differences among normal, single-bundle, and double-bundle ACL reconstructed knees (all p>0.05). The mean translations of the lateral femoral condyles showed a significant difference between normal and single-bundle reconstructed knees, or between single-bundle and double-bundle reconstructed knees (p<0.05). However, there was no significant difference between normal and double-bundle reconstructed knees (p=0.220). These findings suggest that double-bundle ACL reconstruction restores normal kinematic tibiofemoral motion better than single-bundle reconstruction.  相似文献   

4.
Patellar tendon adhesion is a complication from anterior cruciate ligament (ACL) reconstruction that may affect patellofemoral and tibiofemoral biomechanics. A computational model was used to investigate the changes in knee joint mechanics due to patellar tendon adhesion under normal physiological loading during gait. The calculations showed that patellar tendon adhesion up to the level of the anterior tibial plateau led to patellar infera, increased patellar flexion, and increased anterior tibial translation. These kinematic changes were associated with increased patellar contact force, a distal shift in peak patellar contact pressure, a posterior shift in peak tibial contact pressure, and increased peak tangential contact sliding distance over one gait cycle (i.e., contact slip). Postadhesion, patellar and tibial contact locations corresponded to regions of thinner cartilage. The predicted distal shift in patellar contact was in contrast to other patellar infera studies. Average patellar and tibial cartilage pressure did not change significantly following patellar tendon adhesion; however, peak medial tibial pressure increased. These results suggest that changes in peak tibial cartilage pressure, contact slip, and the migration of contact to regions of thinner cartilage are associated with patellar tendon adhesion and may be responsible for initiating patellofemoral pain and knee joint structural damage observed following ACL reconstruction. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29: 1168–1177, 2011  相似文献   

5.
《Acta orthopaedica》2013,84(2):267-274
Background?Long-term follow-up studies have indi-cated that there is an increased incidence of arthrosis following anterior cruciate ligament (ACL) reconstruc-tion, suggesting that the reconstruction may not repro-duce intact ACL biomechanics. We studied not only the magnitude but also the orientation of the ACL and ACL graft forces

Methods?10 knee specimens were tested on a robotic testing system with the ACL intact, deficient, and recon-structed (using a bone-patella tendon-bone graft). The magnitude and orientation of the ACL and ACL graft forces were determined under an anterior tibial load of 130?N at full extension, and 15, 30, 60, and 90° of flexion. Orientation was described using elevation angle (the angle formed with the tibial plateau in the sagit-tal plane) and deviation angle (the angle formed with respect to the anteroposterior direction in the transverse plane)

Results?ACL reconstruction restored anterior tibial translation to within 2.6?mm of that of the intact knee under the 130-N anterior load. Average internal tibial rotation was reduced after ACL reconstruction at all flexion angles. The force vector of the ACL graft was significantly different from the ACL force vector. The average values of the elevation and deviation angles of the ACL graft forces were higher than that of the intact ACL at all flexion angles

Interpretation?Contemporary single bundle ACL reconstruction restores anterior tibial translation under anterior tibial load with different forces (both magni-tude and orientation) in the graft compared to the intact ACL. Such graft function might alter knee kinematics in other degrees of freedom and could overly constrain the tibial rotation. An anatomic ACL reconstruction should reproduce the magnitude and orientation of the intact ACL force vector, so that the 6-degrees-of-freedom knee kinematics and joint reaction forces can be restored.  相似文献   

6.
Tibial articular cartilage wear was assessed intraoperatively in 100 consecutive patients with varus osteoarthritis undergoing total knee arthroplasty. Severity of deformity on radiographs, integrity of the anterior cruciate ligament (ACL) at surgery, and body mass index were recorded. Posterior half of the medial tibial plateau was more commonly involved in knees with ACL deficiency; there was predominantly anteromedial involvement with an intact ACL. Varus deformity was significantly greater in knees with a deficient ACL than with an intact ACL. Severity of deformity did not alter the wear pattern, irrespective of the ACL integrity. The functional status of ACL in an osteoarthritic knee can be corroborated with the wear pattern on the tibial plateau articular cartilage.  相似文献   

7.
Recent work has suggested the transected anterior cruciate ligament (ACL) can heal and support reasonable loads if repaired with sutures and a bioactive scaffold; however, use of a traditional suture configuration results in knees with increased anterior–posterior (AP) laxity. The objective was to determine whether one of five different suture repair constructs when performed at two different joint positions would restore normal AP knee laxity. AP laxity of the porcine knee at 60° of flexion was evaluated for five suture repair techniques. Femoral fixation for all repair techniques utilized a suture anchor. Primary repair was to either the tibial stump, one of three bony locations in the ACL footprint, or a hybrid bony fixation. All five repairs were tied with the knee in first 30° and then 60° of flexion for a total of 10 repair constructs. Suture repair to bony fixation points within the anterior half of the normal ACL footprint resulted in knee laxity values within 0.5 mm of the ACL‐intact joint when the sutures were tied with the knee at 60° flexion. Suture repair to the tibial stump, or with the knee at 30° of flexion, did not restore normal AP laxity of the knee. Three specific suture repair techniques for the transected porcine ACL restored the normal AP laxity of the knee at the time of surgery. Additional studies defining the changes in laxity with cyclic loading and in vivo healing are indicated. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:1500–1505, 2008  相似文献   

8.
Unicompartmental knee arthroplasty (UKA) has regained popularity in recent years. However, limited data exist on how UKA affects knee biomechanics. The role of the anterior cruciate ligament (ACL) after fixed bearing UKA remains controversial. In this study, a robotic testing system was used to apply a quadriceps/hamstrings load to cadaveric knee specimens in the intact state, after medial UKA, and after transection of the ACL in UKA. The load was applied to the knee from full extension to 120 degrees of flexion in 30 degrees increments. UKA generally did not affect anterior-posterior (AP) femoral position, but did cause external tibial rotation and variations in varus-valgus rotation compared to the intact knee. ACL transection after UKA shifted the femur posteriorly compared to the intact and UKA knees and increased internal tibial rotation compared to the UKA knee at low flexion. The AP motion of the articular contact position in the implant was increased after ACL transection. These data might help explain the mechanism of tibial component loosening and provide insight into further investigations of polyethylene wear in UKA. Based on the kinematic data, the ACL should be functional to provide patients the greatest opportunity for long-term success after medial UKA.  相似文献   

9.

Background

Rotational kinematics has become an important consideration after ACL reconstruction because of its possible influence on knee degeneration. However, it remains unknown whether ACL reconstruction can restore both rotational kinematics and normal joint contact patterns, especially during functional activities.

Questions/purposes

We asked whether knee kinematics (tibial anterior translation and axial rotation) and joint contact mechanics (tibiofemoral sliding distance) would be restored by double-bundle (DB) or single-bundle (SB) reconstruction.

Methods

We retrospectively studied 17 patients who underwent ACL reconstruction by the SB (n = 7) or DB (n = 10) procedure. We used dynamic stereo x-ray to capture biplane radiographic images of the knee during downhill treadmill running. Tibial anterior translation, axial rotation, and joint sliding distance in the medial and lateral compartments were compared between reconstructed and contralateral knees in both SB and DB groups.

Results

We observed reduced anterior tibial translation and increased knee rotation in the reconstructed knees compared to the contralateral knees in both SB and DB groups. The mean joint sliding distance on the medial compartment was larger in the reconstructed knees than in the contralateral knees for both the SB group (9.5 ± 3.9 mm versus 7.5 ± 4.3 mm) and the DB group (11.1 ± 1.3 mm versus 7.9 ± 3.8 mm).

Conclusions

Neither ACL reconstruction procedure restored normal knee kinematics or medial joint sliding.

Clinical Relevance

Further study is necessary to understand the clinical significance of abnormal joint contact, identify the responsible mechanisms, and optimize reconstruction procedures for restoring normal joint mechanics after ACL injury.  相似文献   

10.

Background

The purpose of this study was to compare the initial stability of anatomical and non-anatomical single bundle anterior cruciate ligament (ACL) reconstruction and to determine which would better restore intact knee kinematics. Our hypothesis was that the initial stability of anatomical single bundle ACL reconstruction would be superior to that of non-anatomical single bundle ACL reconstruction.

Methods

Anterior tibial translation (ATT) and internal rotation of the tibia were measured with a computer navigation system in seven pairs of fresh-frozen cadaveric knees under two testing conditions (manual maximum anterior force, and a manual maximum anterior force combined with an internal rotational force). Tests were performed at 0, 30, 60, and 90 degrees of flexion with the ACL intact, the ACL transected, and after reconstruction of one side of a pair with either anatomical or non-anatomical single bundle ACL reconstruction.

Results

Under manual maximal anterior force, both reconstruction techniques showed no significant difference of ATT when compared to ACL intact knee state at 30° of knee flexion (p > 0.05). Under the combined anterior and internal rotatory force, non-anatomical single-bundle ACL reconstruction showed significant difference of ATT compared to those in ACL intact group (p < 0.05). In contrast, central anatomical single bundle ACL reconstruction showed no significant difference of ATT compared to those in ACL intact group (p > 0.05). Internal rotation of the tibia showed no significant difference in the ACL intact, the ACL transected, non-anatomical reconstructed and anatomical reconstructed knees.

Conclusions

Anatomical single bundle ACL reconstruction restored the initial stability closer to the native ACL under combined anterior and internal rotational forces when compared to non-anatomical ACL single bundle reconstruction.  相似文献   

11.
目的比较单隧道双束和单隧道单束ACL重建膝关节稳定性的差异。方法选用6侧人体膝关节标本,保留完整的关节囊及周围韧带,行单隧道双束和单束ACL重建,在MTS-858生物材料试验系统上测试膝关节在胫前加载(134N)和旋转加载(5N·m内旋胫骨)下屈曲0°、15°、30°、60°、90°位时的运动学反应。每个膝关节在4个不同条件下进行测试:ACL完整、ACL损伤、单隧道双束重建ACL以及单隧道单束重建ACL,其中单隧道双束及单束ACL均采用双股腘绳肌腱。结果 (1)胫前加载:双束组在屈曲30°、60°和90°位,单束组在屈曲90°位时关节前后稳定性获得良好恢复(P0.05);在屈曲60°位时双束组的胫前位移明显低于单束组,差异有统计学意义(P0.05)。(2)旋转加载:与ACL完整组相比较,双束组的胫骨内旋角度在屈曲0°、60°位时无明显变化(P0.05),屈曲90°位时明显减少(P0.05);单束组在屈曲0°时无明显变化(P0.05)。屈曲60°和90°位时双束组的胫骨内旋角度明显小于单束组,差异有统计学意义(P0.05)。结论与单隧道单束ACL重建相比,单隧道双束ACL重建能够更好地恢复膝关节前后稳定性及旋转稳定性。  相似文献   

12.
Introduction  Recently, several publications investigated the rotational instability of the human knee joint under pivot shift examinations and reported the internal tibial rotation as measurement for instrumented knee laxity measurements. We hypothesize that ACL deficiency leads to increased internal tibial rotation under a simulated pivot shift test. Furthermore, it was hypothesized that anatomic single bundle ACL reconstruction significantly reduces the internal tibial rotation under a simulated pivot shift test when compared to the ACL-deficient knee. Methods  In seven human cadaveric knees, the kinematics of the intact knee, ACL-deficient knee, and anatomic single bundle ACL reconstructed knee were determined in response to a 134 N anterior tibial load and a combined rotatory load of 10 N m valgus and 4 N m internal tibial rotation using a robotic/UFS testing system. Statistical analyses were performed using a two-way ANOVA test. Results  Single bundle ACL reconstruction reduced the anterior tibial translation under a simulated KT-1000 test significantly compared to the ACL-deficient knee (P < 0.05). After reconstruction, there was a statistical significant difference to the intact knee at 30° of knee flexion. Under a simulated pivot shift test, anatomic single bundle ACL reconstruction could restore the intact knee kinematics. Internal tibial rotation under a simulated pivot shift showed no significant difference in the ACL-intact, ACL-deficient and ACL-reconstructed knee. Conclusion  In conclusion, ACL deficiency does not increase the internal tibial rotation under a simulated pivot shift test. For objective measurements of the rotational instability of the knee using instrumented knee laxity devices under pivot shift mechanisms, the anterior tibial translation should be rather evaluated than the internal tibial rotation. This study was supported in part by a grant of the German Speaking Association of Arthroscopy (AGA).  相似文献   

13.
A bioresorbable, mono‐crystalline magnesium (Mg) ring device and suture implantation technique were designed to connect the ends of a transected anterior cruciate ligament (ACL) to restabilize the knee and load the ACL to prevent disuse atrophy of its insertion sites and facilitate its healing. To test its application, cadaveric goat stifle joints were evaluated using a robotic/universal force‐moment sensor testing system in three states: Intact, ACL‐deficient, and after Mg ring repair, at 30°, 60°, and 90° of joint flexion. Under a 67‐N anterior tibial load simulating that used in clinical examinations, the corresponding anterior tibial translation (ATT) and in‐situ forces in the ACL and medial meniscus for 0 and 100 N of axial compression were obtained and compared with a control group treated with suture repair. In all cases, Mg ring repair reduced the ATT by over 50% compared to the ACL‐deficient joint, and in‐situ forces in the ACL and medial meniscus were restored to near normal levels, showing significant improvement over suture repair. These findings suggest that Mg ring repair could successfully stabilize the joint and load the ACL immediately after surgery, laying the framework for future in vivo studies to assess its utility for ACL healing. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2001–2008, 2016.  相似文献   

14.
Background Long-term follow-up studies have indi-cated that there is an increased incidence of arthrosis following anterior cruciate ligament (ACL) reconstruc-tion, suggesting that the reconstruction may not repro-duce intact ACL biomechanics. We studied not only the magnitude but also the orientation of the ACL and ACL graft forces

Methods 10 knee specimens were tested on a robotic testing system with the ACL intact, deficient, and recon-structed (using a bone-patella tendon-bone graft). The magnitude and orientation of the ACL and ACL graft forces were determined under an anterior tibial load of 130 N at full extension, and 15, 30, 60, and 90° of flexion. Orientation was described using elevation angle (the angle formed with the tibial plateau in the sagit-tal plane) and deviation angle (the angle formed with respect to the anteroposterior direction in the transverse plane)

Results ACL reconstruction restored anterior tibial translation to within 2.6 mm of that of the intact knee under the 130-N anterior load. Average internal tibial rotation was reduced after ACL reconstruction at all flexion angles. The force vector of the ACL graft was significantly different from the ACL force vector. The average values of the elevation and deviation angles of the ACL graft forces were higher than that of the intact ACL at all flexion angles

Interpretation Contemporary single bundle ACL reconstruction restores anterior tibial translation under anterior tibial load with different forces (both magni-tude and orientation) in the graft compared to the intact ACL. Such graft function might alter knee kinematics in other degrees of freedom and could overly constrain the tibial rotation. An anatomic ACL reconstruction should reproduce the magnitude and orientation of the intact ACL force vector, so that the 6-degrees-of-freedom knee kinematics and joint reaction forces can be restored.  相似文献   

15.
Despite the numerous long-term success reports of posterior stabilized (PS) total knee arthroplasty (TKA), recent retrieval studies of various PS TKA designs revealed wear and deformation on the anterior side of the tibial post. This study investigated the mechanisms of anterior impingement of the post with the femoral component. Seven cadaveric knees were tested to study kinematics and tibial post biomechanics during simulated heel strike using an in vitro robotic testing system. Intact knee kinematics and in situ anterior cruciate ligament (ACL) forces were determined at hyperextension (0 degree to -9 degrees) and low flexion angles (0 degrees to 30 degrees) under the applied loads. The same knee was reconstructed using a PS TKA. The kinematics and the tibial post contact forces of the TKA were measured under the same loading condition. The ACL in the intact knee carried load and contributed to knee stability at low flexion angles and hyperextension. After TKA, substantial in situ contact forces (252.4 +/- 173 N at 9 degrees of hyperextension) occurred in the tibial post, indicating anterior impingement with the femoral component. Consequently, the TKA showed less posterior femoral translation compared to the intact knee after the impingement. At 9 degrees of hyperextension, the medial condyle of the intact knee translated 0.1 +/- 1.1 mm whereas the medial condyle of the TKA knee translated 5.6 +/- 6.9 mm anteriorly. The lateral condyle of the intact knee translated 1.5 +/- 1.0 mm anteriorly whereas the lateral condyle of the TKA knee translated 2.1 +/- 5.8 mm anteriorly. The data demonstrated that anterior tibial post impingement functions as a substitute for the ACL during hyperextension, contributing to anterior stability. However, anterior post impingement may result in additional polyethylene wear and tibial post failure. Transmitted impingement forces might cause backside wear and component loosening. Understanding the advantages and disadvantages of the tibial post function at low flexion angles may help to further improve component design and surgical techniques and thus enhance knee stability and component longevity after TKA.  相似文献   

16.
Reduced quadriceps contraction has been suggested as an adaptation to prevent anterior tibial translation in anterior cruciate ligament (ACL)-deficient knees. This theory has been supported by a recent study that peak knee flexion moment (thought to be created by a decrease of quadriceps contraction) during walking was negatively correlated with patellar ligament insertion angle (PLIA) in ACL-deficient knees, but not in contralateral, uninjured knees. In addition, the PLIA was significantly smaller in ACL-deficient knees than in contralateral, uninjured knees. However, it is unknown whether ACL reconstruction restores the PLIA or whether the relationship between the PLIA and knee flexion moments previously observed in ACL-deficient knees disappears. This study tested the following hypotheses: (1) The PLIA of ACL-reconstructed knees is significantly smaller than the PLIA of uninjured contralateral knees; (2) Peak knee flexion moment (balanced by net quadriceps moment) during walking is negatively correlated with the PLIA in ACL-reconstructed knees. The PLIA of 24 ACL-reconstructed and contralateral knees were measured using MRI, and peak knee flexion moments during walking were measured. Results showed that the PLIA of ACL-reconstructed (22.9 ± 4.4°) knees was not significantly smaller (p = 0.09, power = 0.99) than the PLIA of contralateral (24.1 ± 4.8°) knees. Peak knee flexion moment was not correlated with the PLIA following ACL reconstruction (R2 = 0.016, power = 0.99). However, the magnitude of the knee flexion moment remained significantly lower in ACL-reconstructed knees. In summary, this study has shown that the PLIA of ACL-reconstructed knees returned to normal and that patients no longer adapt their gait in response to the PLIA, though quadriceps function did not return to normal levels. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 730–735, 2009  相似文献   

17.
Anterior cruciate ligament (ACL) deficiency increases the risk of early osteoarthritis (OA). Studies of ACL deficient knee kinematics would be important to reveal the disease process and therefore to find mechanisms which would potentially slow OA progression. The purpose of this study was to determine if in vivo kinematics of the anterior cruciate ligament deficient (ACLD) knee during a wide-based squat activity differ from kinematics of the contralateral intact knee. Thirty-three patients with a unilateral ACLD knee consented to participate in this institutional review board approved study with the contralateral intact knee serving as the control. In vivo knee kinematics during the wide-based squat were analyzed using a 2D/3D registration technique utilizing CT-based bone models and lateral fluoroscopy. Comparisons were performed using values between 0 and 100° flexion both in flexion and extension phases of the squat activity. Both the ACLD and intact knees demonstrated increasing tibial internal rotation with knee flexion, and no difference was observed in tibial rotation between the groups. The tibia in the ACLD knee was more anterior than that of the contralateral knees at 0 and 5° flexion in both phases (p < 0.05). Tibiofemoral medial contact points of the ACLD knees were more posterior than that of the contralateral knees at 5, 10 and 15° of knee flexion in the extension phase of the squat activity (p < 0.05). Tibiofemoral lateral contact points of the ACLD knees were more posterior than that of the contralateral knees at 0° flexion in the both phases (p < 0.05). The kinematics of the ACLD and contralateral intact knees were similar during the wide-based squat except at the low flexion angles. Therefore, we conclude the wide-based squat may be recommended for the ACLD knee by avoiding terminal extension.

Key points

  • In vivo knee kinematics during the wide-based squat was analyzed using a 2D/3D registration technique utilizing CT-based bone models and lateral fluoroscopy.
  • Significant differences of in vivo knee kinematics between the ACLD and contralateral knees were detected at low flexion angles.
  • The wide-based squat is considered a safe exercise for the ACLD knee.
Key words: 2D/3D registration technique, anterior cruciate ligament deficient knee, in vivo knee kinematics, wide-based squat activity.  相似文献   

18.
Kinematics measured during a short arc quadriceps knee extension exercise were compared in the knees of functionally unstable ACL-deficient patients, these patients' uninjured knees, and uninjured control subjects' knees. Cine phase contrast dynamic magnetic resonance imaging, in combination with a model-based tracking algorithm developed by the authors, was used to measure tibiofemoral kinematics as the subjects performed the active, supine posture knee extension exercise in the terminal 30 degrees of motion. Two determinants of tibiofemoral motion were measured: anterior/posterior location of the tibia relative to the femur, and axial rotation of the tibia relative to the femur. We hypothesized that more anterior tibial positioning, as well as differences in axial tibial rotation patterns, would be observed in ACL-deficient (ACL-D) knees when compared to uninjured knees. Multifactor ANOVA analyses were used to determine the dependence of the kinematic variables on (i) side (injured vs. uninjured, matched by subject in the control group), (ii) flexion angle measured at five-degree increments, and (iii) subject group (ACL-injured vs. control). Statistically significant anterior translation and external tibial rotation (screw home motion) accompanying knee extension were found. The ACL-D knees of the injured group exhibited significantly more anterior tibial positioning than the uninjured knees of these subjects (average difference over extension range=3.4+/-2.8 mm, p<0.01 at all angles compared), as well as the matched knees of the control subjects. There was a significant effect of interaction between side and subject group on A/P tibial position. We did not find significant differences in external tibial rotation associated with ACL deficiency. The changes to active joint kinematics documented in this entirely noninvasive study may contribute to cartilage degradation in ACL-D knees, and encourage more extensive investigations using similar methodology in the future.  相似文献   

19.
Altered knee kinematics following ACL reconstruction may predispose patients to the development of early onset post‐traumatic osteoarthritis. The goal of our study was to examine the longitudinal interrelationship between altered tibial position relative to the femur and cartilage health measured by quantitative T MRI. Twenty‐five patients with isolated unilateral ACL injury underwent kinematic and cartilage T MRI at baseline prior to ACL reconstruction and then at 1‐year post‐reconstruction. Tibial position relative to the femur in the anterior–posterior plane was calculated as well as cartilage T relaxation values in the injured and uninjured knee. At baseline prior to ACL reconstruction, the tibia was in a significantly more anterior position relative to the femur in the ACL deficient knee compared to the healthy contralateral knee. This difference was no longer present at 1‐year follow‐up. Additionally, the side–side difference in tibial position correlated to increased cartilage T relaxation values in the medial compartment of the knee 1‐year post‐reconstruction. Altered tibial position following ACL reconstruction is correlated with detectable cartilage degeneration as soon as 1 year following ACL reconstruction. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:1079–1086, 2015.  相似文献   

20.
A thorough understanding of anterior cruciate ligament (ACL) function and the effects of surgical interventions on knee biomechanics requires robust technologies and simulation paradigms that align with clinical insight. In vitro orthopedic biomechanical testing for the elucidation of ACL integrity doesn't have an established testing paradigm to simulate the clinical pivot shift exam on cadaveric specimens. The study aim was to develop a robotically simulated pivot shift that represents the clinical exam. An orthopedic surgeon performed a pivot shift on an instrumented ACL‐deficient cadaver leg to capture 6 degree‐of‐freedom motion/loads. The same knee was mounted to the robot and the sensitivity of the motion/loading profiles quantified. Three loading profile candidates that generated positive pivot shifts on the instrumented knee were selected and applied to 7 ACL‐intact/deficient specimens and resulted in the identification of a profile that was able to induce a positive pivot shift in all ACL‐deficient specimens ( p < 0.001). The simulated shifts began at 22 ± 8° and ended at 33 ± 6° of flexion with the average magnitude of the shifts being 12.8 ± 3.2 mm in anterior tibial translation and 17.6 ± 4.3° in external tibial rotation. The establishment and replication of a robotically simulated clinical pivot shift across multiple specimens show the robustness of the loading profile to accommodate anatomical and experimental variability. Further evaluation and refinement should be undertaken to create a useful tool in evaluating ACL function and reconstruction techniques. Statement of clinical significance: Creation and successful demonstration of the simulated clinical pivot shift validates a profile for robotic musculoskeletal simulators to analyze ACL related clinical questions. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2601–2608, 2019  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号