首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first application of a Sonogashira cross‐coupling reaction in 18F chemistry has been developed. The reaction was exemplified by the cross‐coupling of terminal alkynes (ethynylcyclopentyl carbinol 6 , 17α‐ethynyl‐3,17β‐estradiol 7 and 17α‐ethynyl‐3‐methoxy‐3,17β‐estradiol 8 ) with 4‐[18F]fluoroiodobenzene. 4,4′‐Diiododiaryliodonium salts were used as precursors for the synthesis of 4‐[18F]fluoroiodobenzene, enabling the convenient access to 4‐[18F]fluoroiodobenzene in 13–70% yield using conventional heating or microwave activation. The Sonogashira cross‐coupling of 4‐[18F]fluoroiodobenzene with terminal alkynes gave the corresponding 4‐[18F]fluorophenylethynyl‐substituted compounds [18F]‐9 , [18F]‐10 and [18F]‐13 in yields up to 88% within 20 min of starting from 4‐[18F]fluoroiodobenzene. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The radiosyntheses of 5‐(4′‐[18F]fluorophenyl)‐uridine [18F]‐11 and 5‐(4′‐[18F]fluorophenyl)‐2′‐deoxy‐uridine [18F]‐12 are described. The 5‐(4′‐[18F]fluoro‐phenyl)‐substituted nucleosides were prepared via a Stille cross‐coupling reaction with 4‐[18F]fluoroiodobenzene followed by basic hydrolysis using 1 M potassium hy‐droxide. The Stille cross‐coupling reaction was optimized by screening various palladium complexes, additives and solvents. By using optimized labelling conditions (Pd2(dba)3/CuI/AsPh3 in DMF/dioxane (1:1), 20 min at 65°C), 550 MBq of [4‐18F]fluoroiodobenzene could be converted into 120 MBq (33%, decay‐corrected) of 5‐(4′‐[18F]fluorophenyl)‐2′‐deoxy‐uridine [18F]‐12 within 40 min, including HPLC purification. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
4‐[18F]Fluoroiodobenzene ([18F]FIB) is a versatile building block in 18F radiochemistry used in various transition metal‐mediated C–C and C–N cross‐coupling reactions and [18F]fluoroarylation reactions. Various synthesis routes have been described for the preparation of [18F]FIB. However, to date, no automated synthesis of [18F]FIB has been reported to allow access to larger amounts of [18F]FIB in high radiochemical and chemical purity. Herein, we describe an automated synthesis of no‐carrier‐added [18F]FIB on a GE TRACERlab? FX automated synthesis unit starting from commercially available (4‐iodophenyl)diphenylsulfonium triflate as the labelling precursor. [18F]FIB was prepared in high radiochemical yields of 89 ± 10% (decay‐corrected, n = 7) within 60 min, including HPLC purification. The radiochemical purity exceeded 95%, and specific activity was greater than 40 GBq/µmol. Typically, from an experiment, 6.4 GBq of [18F]FIB could be obtained starting from 10.4 GBq of [18F]fluoride. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The palladium‐mediated N‐arylation of indoles with 4‐[18F]fluoroiodobenzene as a novel radiolabelling method has been developed. Optimized reaction conditions were elaborated by variation of different catalyst systems (CuI/1,2‐diamines and Pd2(dba)3/phosphine ligands), bases and solvents in the reaction of indole with 4‐[18F]fluoroiodobenzene. Optimized reaction conditions (Pd2(dba)3/(2‐(dicyclohexyl‐phosphino)‐2′‐(N,N‐dimethylamino)‐biphenyl, NaOBut, toluene, 100°C for 20 min) were applied for the synthesis of 18F‐labelled σ2 receptor ligands [18F]‐11 and [18F]‐13 which were obtained in 91 and 84% radiochemical yields, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
The first application of the Horner–Wadsworth–Emmons reaction in 18F‐chemistry is described. This carbonyl‐olefination reaction was performed via a ‘multi‐step/one‐pot’ reaction by the coupling of benzylic phosphonic acid esters (3,5‐bis‐methoxymethoxybenzyl)‐phosphonic acid diethyl ester 2e , (4‐methoxy‐methoxybenzyl)‐phosphonic acid diethyl ester 3e and (4‐dimethyl‐aminobenzyl)phosphonic acid diethyl ester 4d ) with 4‐[18F]fluorobenzaldehyde to give the corresponding 18F‐labelled stilbenes [18F]2g , [18F]3g and [18F]4e exclusively as the expected E‐isomers. The radiochemical yields ranged from 9% to 22% (based upon [18F]fluoride, including HPLC purification). The specific activity reached up to 90 GBq/µmol. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Acidification of target water with H2SO4 in a specially constructed glassy carbon/polyethylene apparatus allowed for recovery of up to 82% of [18F]fluoride as [18F]HF gas. The [18F]HF distillate was found to be acid‐free but moist; when passed through a solution of tBuPh2SiOTf, it yielded [18F]tBuPh2SiF. The multivariate design of experiment showed that the key to high yield of [18F]HF was the efficient degassing of the reaction mixture.  相似文献   

7.
Four different no carrier added (n.c.a.) 4‐[18F]fluorophenylurea derivatives are synthesized as model compounds via two alternative routes. In both cases carbamate‐4‐nitrophenylesters are used as intermediates. Either n.c.a. 4‐[18F]fluoroaniline reacts with carbamates of several amines, or the carbamate of n.c.a. 4‐[18F]fluoroaniline is formed at first and an amine is added subsequently to yield the urea derivative. The choice of the appropriate way of reaction depends on the possibilities of precursor synthesis. The radiochemical yields reach up to 80% after 50 min of synthesis time while no radiochemical by‐products can be determined. These high yields were possible due to an optimized preparation of n.c.a. 4‐[18F]fluoroaniline with a radiochemical yield of up to 90%. From the various ways of its radiosynthesis, the substitution with n.c.a. [18F]fluoride on dinitrobenzene is chosen, using phosphorous acid and palladium black for reduction of the second nitro group. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The availability of no‐carrier‐added (n.c.a.) 1‐bromo‐4‐[18F]fluorobenzene with high radiochemical yields is important for 18F‐arylation reactions using metallo‐organic 4‐[18F]fluorophenyl compounds (e.g. of lithium or magnesium) or Pd‐catalyzed coupling. In this study, different methods for the preparation of 1‐bromo‐4‐[18F]fluorobenzene by nucleophilic aromatic substitution reactions using n.c.a. [18F]fluoride were examined. Of six pathways compared, symmetrical bis‐(4‐bromphenyl)iodonium bromide proved most useful to achieve the title compound in a direct, one‐step nucleophilic substitution with a radiochemical yield (RCY) of 65% within 10 min. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Currently there is still a need for more potent amino acid analogues as tumour imaging agents for peripheral tumour imaging with PET as it was recently reported that the success of O‐(2′‐[18F]fluoroethyl)‐L ‐tyrosine ([18F]FET) is limited to brain, head and neck tumours. As the earlier described 2‐Amino‐3‐(2‐[18F]fluoromethyl‐phenyl)‐propionic acid (2‐[18F]FMP) suffered from intramolecular‐catalysed defluorination, we synthesized 2‐Amino‐3‐(4‐[18F]fluoromethyl‐phenyl)‐propionic acid (4‐[18F]FMP) as an alternative for tumour imaging with PET. Radiosynthesis of 4‐[18F]FMP, based on Br for [18F] aliphatic nucleophilic exchange, was performed with a customized modular Scintomics automatic synthesis hotboxthree system in a high overall yield of 30% and with a radiochemical purity of \gt 99%. 4‐[18F]FMP was found to be stable in its radiopharmaceutical formulation, even at high radioactivity concentrations. Additionally, for a comparative study, [18F]FET was synthesized using the same setup in 40% overall yield, with a radiochemical purity \gt 99%. The described automated radiosynthesis allows the production of two different amino acid analogues with minor alternations to the parameter settings of the automated system, rendering this unit versatile for both research and clinical practice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A reaction pathway via oxidation of [18F]fluorobenzaldehydes offers a very useful tool for the no‐carrier‐added radiosynthesis of [18F]fluorophenols, a structural motive of several potential radiopharmaceuticals. A considerably improved chemoselectivity of the Baeyer‐Villiger oxidation (BVO) towards phenols was achieved, employing 2,2,2‐trifluoroethanol as reaction solvent in combination with Oxone or m‐CPBA as oxidation agent. The studies showed the necessity of H2SO4 addition, which appears to have a dual effect, acting as catalyst and desiccant. For example, 2‐[18F]fluorophenol was obtained with a RCY of 97% under optimised conditions of 80°C and 30‐minute reaction time. The changed performance of the BVO, which is in agreement with known reaction mechanisms via Criegee intermediates, provided the best results with regard to radiochemical yield (RCY) and chemoselectivity, i.e. formation of [18F]fluorophenols rather than [18F]fluorobenzoic acids. Thus, after a long history of the BVO, the new modification now allows an almost specific formation of phenols, even from electron‐deficient benzaldehydes. Further, the applicability of the tuned, chemoselective BVO to the n.c.a. level and to more complex compounds was demonstrated for the products n.c.a. 4‐[18F]fluorophenol (RCY 95%; relating to 4‐[18F]fluorobenzaldehyde) and 4‐[18F]fluoro‐m‐tyramine (RCY 32%; relating to [18F]fluoride), respectively.  相似文献   

11.
To assess the potential of intermolecular hydroacylation reactions as a new fluorine‐18 labeling method, model reactions of [18F]fluorobenzaldehyde with three different olefins (1‐hexene ( 2a ), allylbenzene ( 2b ), and 3‐phenoxypropene ( 2c )) in the presence of Wilkinson's catalyst were performed. The procedure gave high radiochemical yields (38–62%) of [18F]fluorophenylketones with short reaction times (15 min). The intermolecular hydroacylation reaction provides a new method for the preparation of fluorine‐18 labeled compounds. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
A fully automated synthesis of N‐succinimidyl 4‐[18F]fluorobenzoate ([18F]SFB) was carried out by a convenient three‐step, one‐pot procedure on the modified TRACERlab FXFN synthesizer, including [18F]fluorination of ethyl 4‐(trimethylammonium triflate)benzoate as the precursor, saponification of the ethyl 4‐[18F]fluorobenzoate with aqueous tetrapropylammonium hydroxide instead of sodium hydroxide, and conversion of 4‐[18F]fluorobenzoate salt ([18F]FBA) to [18F]SFB treated with N,N,N′,N′‐tetramethyl‐O‐(N‐succinimidyl)uranium tetrafluoroborate (TSTU). The purified [18F]SFB was used for the labeling of Tat membrane‐penetrating peptide (containing the Arg‐Lys‐Lys‐Arg‐Arg‐Arg‐Arg‐Arg‐Arg‐Arg‐Arg‐Pro‐Leu‐Gly‐Leu‐Ala‐Gly‐Glu‐Glu‐Glu‐Glu‐Glu‐Glu‐Glu sequence, [18F]CPP) through radiofluorination of lysine amino groups. The uncorrected radiochemical yields of [18F]SFB were as high as 25–35% (based on [18F]fluoride) (n=10) with a synthesis time of~40 min. [18F]CPP was produced in an uncorrected radiochemical yields of 10–20% (n=5) within 30 min (based on [18F]SFB). The radiochemical purities of [18F]SFB and [18F]CPP were greater than 95%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Reductive coupling reactions between 4‐[18F]fluoro‐benzaldehyde ([18F] 1 ) and different alcohols by use of decaborane (B10H14) as reducing agent have the potential to synthesize 4‐[18F]fluoro‐benzylethers in one step. [18F] 1 was synthesized from 4‐trimethylammonium benzaldehyde (triflate salt) via a standard fluorination procedure (K[18F]F/Kryptofix® 222) in dimethylformamide at 90°C for 25 min and purified by solid‐phase extraction. Subsequently, reductive etherifications of [18F] 1 were performed as one‐step reactions with primary and secondary alcohols, mediated by B10H14 in acetonitrile at 60°C. Various 4‐[18F]fluorobenzyl ethers (6 examples are shown) were obtained within 1–2 h reaction time in decay‐corrected radiochemical yields of 12–45%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
4‐[18F]Fluoro‐N‐hydroxybenzimidoyl chloride (18FBIC), an 18F‐labelled aromatic nitrile oxide, was developed as building block for Ru‐promoted 1,3‐dipolar cycloaddition with alkynes. 18FBIC is obtained in a one‐pot synthesis in up to 84% radiochemical yield (RCY) starting from [18F]fluoride with 4‐[18F]fluorobenzaldehyde (18FBA) and 4‐[18F]fluorobenzaldehyde oxime (18FBAO) as intermediates, by reaction of 18FBAO with N‐chlorosuccinimide (NCS). 18FBIC was found to be a suitable and stable synthon to give access to 18F‐labelled 3,4‐diarylsubstituted isoxazoles by [Cp*RuCl(cod)]‐catalysed 1,3‐dipolar cycloaddition with various alkynes. So the radiosynthesis of a fluorine‐18–labelled COX‐2 inhibitor [18F] 1b , a close derivative of valdecoxib, was performed with 18FBIC and 1‐ethynyl‐4‐(methylsulfonyl)benzene, providing [18F] 1b in up to 40% RCY after purification in 85 minutes. The application of 18FBIC as a building block in the synthesis of 18F‐labelled heterocycles will generally extend the portfolio of available PET radiotracers.  相似文献   

15.
2‐[18F]fluoroadenosine (2‐[18F]FAD), a potential radioligand for assessment of adenylate metabolism, was synthesized by carrier‐added and no‐carrier‐added procedures via nucleophilic radiofluorination of 2‐fluoroadenosine and 2‐iodoadenosine. The radiochemical yield, specific radioactivity and radiochemical purity of carrier‐added and no‐carrier‐added 2‐[18F]FAD were 5%, 22–30 mCi/µmol and 99%, and 0.5%, 1200–1700 mCi/µmol and 99%, respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
[18F]2‐Fluoroethyl‐p‐toluenesulfonate also called [18F]2‐fluoroethyl tosylate has been widely used for labeling radioligands for positron emission tomography (PET). [18F]2‐Fluoroethyl‐4‐bromobenzenesulfonate, also called [18F]2‐fluoroethyl brosylate ([18F]F(CH2)2OBs), was used as an alternative radiolabeling agent to prepare [18F]FEOHOMADAM, a fluoroethoxy derivative of HOMADAM, by O‐fluoroethylating the phenolic precursor. Purified by reverse‐phase HPLC, the no‐carrier‐added [18F]F(CH2)2OBs was obtained in an average radiochemical yield (RCY) of 35%. The reaction of the purified and dried [18F]F(CH2)2OBs with the phenolic precursor was performed by heating in DMF and successfully produced [18F]FEOHOMADAM, after HPLC purification, in RCY of 21%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The availability of no‐carrier‐added (n.c.a.) 4‐[18F]fluorophenol offers the possibility of introducing the 4‐[18F]fluorophenoxy moiety into potential radiopharmaceuticals. Besides alkyl–aryl ether synthesis using n.c.a. 4‐[18F]fluorophenol the diaryl ether coupling is an attractive synthetic method to enlarge the spectrum of interesting labelling procedures. As examples the syntheses of n.c.a. 2‐(4‐[18F]fluorophenoxy)‐N,N‐dimethylbenzylamine and n.c.a. 2‐(4‐[18F]fluorophenoxy)‐N‐methylbenzylamine were realized by an Ullmann ether synthesis of corresponding 2‐bromobenzoic acid amides using tetrakis(acetonitrile)copper(I) hexafluorophosphate as catalyst and a subsequent reduction of the amides formed. The radiochemical yield of the coupling varied between 5 and 65% based on labelled 4‐[18F]fluorophenol. Both compounds are structural analogues of recently published radiotracers for imaging the serotonin reuptake transporter sites (SERT). However, in vitro binding assays of both molecules showed only a low affinity towards monoamine transporters. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The radiosynthesis of a new [18F]fluoroalkylating agent, [18F]fluoroacetaldehyde, is described. It was produced using the Kornblum method by oxidation with dimethyl sulphoxide of 2‐[18F]fluoroethyl p‐toluenesulphonate ([18F]FETos). In these conditions the oxidation proceeds smoothly and rapidly to the selective conversion of tosyl esters of primary alcohols to aldehydes with no carboxylic acids being produced. The chemical identity of [18F]fluoroacetaldehyde was determined by comparing its chromatographic properties as well as those of its 2,4‐dinitrophenylhydrazone (2,4‐DNPH) derivative with those of, respectively, the standard fluoroacetaldehyde and its 2,4‐DNPH derivative. Standard fluoroacetaldehyde was prepared by oxidation of fluoroethanol with pyridinium dichromate and characterized as its 2,4‐DNPH derivative by mass spectrometry. To test its reactivity with amines under reductive alkylation conditions, [18F]fluoroacetaldehyde was reacted with benzylamine used as model substrate. The chemical identity of the resulting radiolabelled product was determined to be [18F]N‐(2‐fluoroethyl)‐benzylamine by comparing its chromatographic properties with those of the synthesized standard N‐(2‐fluoroethyl)‐benzylamine characterized by 19F and 1H NMR spectroscopy and mass spectrometry. This new fluorine‐18 labelled synthon may find applications in radiolabelling peptide, protein and antibody fragments as well as in aldol condensation or in the Mannich reaction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
An agonist PET tracer is of key interest for the imaging of the 5‐HT2A receptor, as exemplified by the previously reported success of [11C]Cimbi‐36. Fluorine‐18 holds several advantages over carbon‐11, making it the radionuclide of choice for clinical purposes. In this respect, an 18F‐labelled agonist 5‐HT2A receptor (5‐HT2AR) tracer is highly sought after. Herein, we report a 2‐step, 1‐pot labelling methodology of 2 tracer candidates. Both ligands display high in vitro affinities for the 5‐HT2AR. The compounds were synthesised from easily accessible labelling precursors, and radiolabelled in acceptable radiochemical yields, sufficient for in vivo studies in domestic pigs. PET images partially conformed to the expected brain distribution of the 5‐HT2AR; a notable exception however being significant uptake in the striatum and thalamus. Additionally, a within‐scan displacement challenge with a 5‐HT2AR antagonist was unsuccessful, indicating that the tracers cannot be considered optimal for neuroimaging of the 5‐HT2AR.  相似文献   

20.
With the goal of developing a PET radioligand for the in vivo assessment of glucose transport, 6-deoxy-6-[18F]fluoro-D -glucose ([18F]6FDG) was prepared in two steps from 18F. Starting with D -glucose, the tosyl- and mesyl-derivatives of 3,5-O-benzylidene-1,2-O-isopropylidene-α-D -glucofuranose were prepared by known methods. Reaction of either of these precursors with 18F resulted in the formation of 3,5-O-benzylidene-6-deoxy-6-[18F]-fluoro-1,2-O-isopropylidene-α-D -glucofuranose in high yield. Subsequent hydrolysis resulted in the production of [18F]6FDG. Under optimal conditions, [18F]6FDG is produced 60–70 min after end of bombardment (EOB) in 71 ± 12% yield (decay corrected, based upon fluoride) with a radiochemical purity of ⩾96%. Preliminary experiments have indicated that [18F]6FDG may be a more representative in vivo tracer for the glucose transporter than 2FDG. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号