首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloid deposition appears to be an early and crucial event in Alzheimer's disease (AD). To generate animal models of AD, mice expressing full-length amyloid precursor protein (APP), with mutations linked to FAD, have been created. These animals exhibit abnormalities characteristic of AD, including deposits of beta-amyloid (Abeta), neuritic plaques, and glial responses. In studies of cognition in these animals, there have been several reports of memory disturbances well before the appearance of amyloid deposits. We have developed two distinct lines of transgenic mice (C3-3 and E1-2) that express the "Swedish" variant of APP (APP(SWE)) at levels that are approximately three-fold higher than endogenous mouse APP. Both lines have been backcrossed to C57BL/6J mice for 10 generations. Here, we use longitudinal and cross-sectional studies to evaluate the cognitive performance of our animals, where the concentration of Abeta1-42 in brain increases with aging from low levels (2-10 pmol/g) at 6-14 months of age to relatively high levels (60-100 pmol/g) at 24-26 months, when deposits of Abeta were beginning to form. When 12-month-old mice were tested in tasks that assess reference and working memory, transgenic mice from both lines could not be distinguished from nontransgenic littermates. Further study of 24- to 26-month-old transgenic mice (C3-3 line) found no evidence of memory impairment despite the presence of high levels of human Abeta (60-100 pmol/g). Thus, the expression of APP(SWE) at approximately three-fold over endogenous levels, which is sufficient to induce amyloid deposition at advanced ages, does not significantly erode cognitive performance in aged mice.  相似文献   

2.
Although deposition of aggregated amyloid beta-protein (Abeta) in human brain is a fundamental pathological event in the development of Alzheimer's disease (AD), our knowledge of the molecular mechanisms underlying the initiation of Abeta fibril formation remains still very incomplete. Recent data indicate that genetic factors have a direct effect on Abeta fibrillogenesis. Most of pathogenic mutations identified in genes responsible for familial AD (FAD) affect activities of alpha-, beta, and gamma-secretases during amyloid precursor protein (APP) processing leading to a significant increase in the Abeta42/Abeta40 concentration ratio. The enhanced anabolism of Abeta may lead to its deposition. Recently, it was shown that the two main alloforms of Abeta have distinct biological activity and behaviour at the earliest stage of assembly. In vitro studies showed that Abeta42 monomers, but not Abeta40, form initial and minimal structures (pentamer/hexamer units called paranuclei), which can oligomerise to larger forms. This finding may explain the particularly strong association of Abeta42 with AD. We have reviewed molecular effects of APP and Presenilin mutations responsible for FAD in both Abeta metabolism and formation of Abeta fibril.  相似文献   

3.
Alzheimer disease: mouse models pave the way for therapeutic opportunities   总被引:5,自引:0,他引:5  
Research into the molecular mechanisms of Alzheimer disease (AD) continues to clarify important issues in aberrant protein processing while seeking to identify therapeutic targets. Mutations of genes on chromosomes 1, 14 (presenilins 1 and 2), and 21 (the amyloid-beta [Abeta] amyloid precursor protein [APP]) cause the familial forms of AD that often begin before age 65. An allelic polymorphism on chromosome 19 (apolipoprotein E ) affects the age of onset of the more common forms of sporadic AD. Multiple studies in transgenic mice provide strong evidence to support the view that Abeta amyloid formation is an early and critical pathogenic event: mice expressing pathogenic human APP mutations develop Abeta deposits; coexpression of mutant presenilin genes accelerates the rate of Abeta deposition; and apolipoprotein E plays a role in this process. Thus, the 3 established genetic causes or risk factors for AD affect Abeta deposition. The fact that elevation of the Abeta42/Abeta40 ratio (differing only in 2 amino acids in length) is also linked to amyloid deposition in the APP mice and is temporally linked to cognitive impairment suggests that Abeta42 may be a principal inducing factor of AD. The exact sequence of events is still unknown, but the transgenic models generated so far have shown their usefulness in clarifying this complex part of the pathology. The continuing progress in elucidation of the molecular pathogenesis of AD suggests a range of rational pharmacological interventions for this disorder. The most promising strategy involves the development of approaches to retard, halt, or prevent Abeta-mediated disease progression, and these can now be tested in transgenic animals.  相似文献   

4.
OBJECTIVE: To assess AMY expression in familial AD (FAD). BACKGROUND: The discovery of nonbeta-amyloid (Abeta), plaque-like deposits composed of a 100-kd protein (AMY) in sporadic AD (SAD) brains prompted us to determine whether these plaques (AMY plaques) also occur in AD due to mutations of the presenilin-1 (PS-1), presenilin-2 (PS-2), or the amyloid precursor protein (APP) genes. METHODS: We used immunohistochemistry and confocal laser scanning microscopy to probe the brains of 22 patients with FAD (13 with PS-1, 5 with PS-2, and 4 with APP mutations) and 14 patients with SAD. RESULTS: AMY plaques were present in all SAD and FAD brains, including an FAD/PS-1 brain from an individual with preclinical disease. The morphology of AMY plaques in SAD and FAD brains was indistinguishable, but they differed from Abeta deposits because AMY plaques lacked an immunoreactive core. AMY plaques sometimes colocalized with Abeta(x-42) deposits, but they did not colocalize with Abeta(x-40) plaque cores in either SAD or FAD brains. The percent of cortical area occupied by AMY was greater in FAD than in SAD brains (mean percent area = 9.8% and 5.9%, t = 2.487, p = 0.018). In particular, APP and PS-1 cases had more AMY deposition than PS-2 or SAD cases (12.9%, 10.5%, 6.2% in APP, PS-1, and PS-2 AD). CONCLUSIONS: AMY plaques are consistently present in familial AD due to presenilin-1 (PS-1), PS-2, and amyloid precursor protein mutations, and they can begin to accumulate before the emergence of dementia.  相似文献   

5.
Evidence suggests that beta-amyloid (Abeta) peptide triggers a pathogenic cascade leading to neuronal loss in Alzheimer's disease (AD). However, the causal link between Abeta and neuron death in vivo remains unclear since most animal models fail to recapitulate the dramatic cell loss observed in AD. We have recently developed transgenic mice that overexpress human APP and PS1 with five familial AD mutations (5XFAD mice) and exhibit robust neuron death. Here, we demonstrate that genetic deletion of the beta-secretase (BACE1) not only abrogates Abeta generation and blocks amyloid deposition but also prevents neuron loss found in the cerebral cortex and subiculum, brain regions manifesting the most severe amyloidosis in 5XFAD mice. Importantly, BACE1 gene deletion also rescues memory deficits in 5XFAD mice. Our findings provide strong evidence that Abeta ultimately is responsible for neuron death in AD and validate the therapeutic potential of BACE1-inhibiting approaches for the treatment of AD.  相似文献   

6.
Doubly transgenic mice (PSAPP) overexpressing mutant APP and PS1 transgenes were examined using antibodies to Abeta subtypes and glial fibrillary acidic protein (GFAP). Visible Abeta deposition began primarily in the cingulate cortex of PSAPP mice at approximately 10 weeks of age. By 6 months, the mice had extensive amyloid deposition throughout the hippocampus and cortex as well as other regions of the brain. Highly congophilic deposits consisting of N-terminal normal and modified forms of Abeta were identified, reminiscent of those found in human AD brain. Both immunohistochemistry and mass spectrometry showed that Abeta42 forms were underrepresented relative to Abeta40, and Abeta43 was undetectable. Deposits were associated with prominent gliosis which increased with age, but in 14-month-old PSAPP mice, GFAP immunoreactivity in the vicinity of amyloid deposits was substantially reduced compared to APP littermates. These mice have considerable utility in the study of the amyloid phenotype of AD.  相似文献   

7.
It has been demonstrated that immunization of transgenic mouse models of Alzheimer's disease (AD) with amyloid-beta(1-42) peptide (Abeta(1-42)) results in prevention of Abeta plaque formation and amelioration of established plaques in the brain. As the response of the T lymphocyte helper (Th) arm of the immune response had not yet been investigated after Abeta immunization, we i.p. immunized C57BL/6 mice with Abeta(1-42), Abeta(1-40), or phosphate-buffered saline (PBS), and examined markers of Th1 and Th2 immune responses in spleen and in splenocytes from these mice. Spleens from Abeta(1-42)-immunized mice demonstrated decreased interleukin-12 receptor beta chain expression compared to mice immunized with Abeta(1-40) or PBS. Consistently, following stimulation with concanavalin A or anti-CD3 antibody, primary splenocytes from Abeta(1-42)-immunized mice demonstrated elevated secretion of interleukin-4 and interleukin-10, and decreased levels of interferon-gamma. To validate this Th1-->Th2 shift in a transgenic mouse model of AD, we immunized Tg APP(sw) mice (line 2576) with Abeta(1-42) and found decreased Th1 (interleukin-2 and interferon-gamma) and elevated Th2 (interleukin-4 and interleukin-10) cytokines in their stimulated primary splenocytes. Interferon-gamma was markedly reduced and interleukin-10 was increased in blood plasma from these mice, effects that were associated with dramatically mitigated Abeta deposition after Abeta(1-42) immunization. Taken together, these results show enhanced Th2 and down-regulated Th1 immunity following immune challenge with Abeta(1-42).  相似文献   

8.
Most familial early-onset Alzheimer's disease (FAD) is caused by mutations in the presenilin-1 (PS1) gene. Abeta 42 is derived from amyloid precursor protein (APP) and increased concentrations are widely believed to be a pathological hallmark of abnormal PS function. Thus, the interaction between PS1 and APP is central to the molecular mechanism of AD. To examine the effect of wild-type human PS1 on rat APP metabolism, we made several PC12D cell lines that expressed human wild or mutant PS1, and analyzed the processing of endogenous rat APP and the intracellular gamma-secretase activity. We found the ratio of Abeta 42/Abeta 40 increased in PC12D cells expressing wild-type human PS1. These changes were identical to those found in PC12D cells expressing human PS1 bearing the A260V mutation. These results suggest that APP metabolism is physiologically regulated by the PS1 and that loss of normal PS1 affects gamma-secretase activity.  相似文献   

9.
The amyloid hypothesis has dominated the thinking in our attempts to understand, diagnose and develop drugs for Alzheimer's disease (AD). This article presents a new hypothesis that takes into account the numerous familial AD (FAD) mutations in the amyloid precursor protein (APP) and its processing pathways, but suggests a new perspective beyond toxicity of forms of the amyloid beta-peptide (Abeta). Clearly, amyloid deposits are an invariable feature of AD. Moreover, although APP is normally processed to secreted and membrane-bound fragments, sAPPbeta and CTFbeta, by BACE, and the latter is subsequently processed by gamma-secretase to Abeta and CTFgamma, this pathway mostly yields Abeta of 40 residues, and increases in the levels of the amyloidogenic 42-residue Abeta (Abeta42) are seen in the majority of the mutations linked to the disease. The resulting theory is that the disease is caused by amyloid toxicity, which impairs memory and triggers deposition of the microtubule associated protein, Tau, as neurofibrillary tangles. Nevertheless, a few exceptional FAD mutations and the presence of large amounts of amyloid deposits in a group of cognitively normal elderly patients suggest that the disease process is more complex. Indeed, it has been hard to demonstrate the toxicity of Abeta42 and the actual target has been shifted to small oligomers of the peptide, named Abeta derived diffusible ligands (ADDLs). Our hypothesis is that the disease is more complex and caused by a failure of APP metabolism or clearance, which simultaneously affects several other membrane proteins. Thus, a traffic jam is created by failure of important pathways such as gamma-secretase processing of residual intramembrane domains released from the metabolism of multiple membrane proteins, which ultimately leads to a multiple system failure. In this theory, toxicity of Abeta42 will only contribute partially, if at all, to neurodegeneration in AD. More significantly, this theory would predict that focussing on specific reagents such as gamma-secretase inhibitors that hamper metabolism of APP, may initially show some beneficial effects on cognitive performance by elimination of acutely toxic ADDLs, but over the longer term may exacerbate the disease process by reducing membrane protein turnover.  相似文献   

10.
Zhang J  Wu X  Qin C  Qi J  Ma S  Zhang H  Kong Q  Chen D  Ba D  He W 《Neurobiology of disease》2003,14(3):365-379
Memory impairment progressing to dementia is the main clinical symptom of Alzheimer's disease (AD). Deposition of the amyloid-beta peptide (Abeta) in brain, particularly its 42-amino acid isoform (Abeta42), has been shown to play a primary and crucial role in the pathogenesis of AD. In this study we have developed a recombinant adeno-associated virus (AAV) vaccine against AD. This vaccine could express CB-Abeta42 (cholera toxin B subunit and Abeta42 fusion protein) in vivo. A single administration of the AAV-CB-Abeta42 vaccine induced a prolonged, strong production of Abeta-specific serum IgG in transgenic mice that overexpressed the London mutant of amyloid precursor protein (APP/V717I), and resulted in improved ability of memory and cognition, decreased Abeta deposition in the brain, and a resultant decrease in plaque-associated astrocytosis. Our results extended the immunological approaches for the treatment and prevention of AD to an oral, intranasal, or intramuscular route that might be better tolerated in human patients than repetitive parental immunizations in the presence of adjuvant. AAV has attracted tremendous interest as a promising vector for gene delivery. Our results raised the possibility that AAV-CB-Abeta42 vector immunization may provide the basis of a novel and promising Alzheimer's disease vaccination program.  相似文献   

11.
The deposition of amyloid beta (Abeta) peptides and neurofibrillary tangles are the two characteristic pathological features of Alzheimer's disease (AD). To investigate the relation between amyloid precursor protein (APP) production, amyloid beta deposition and the type of Abeta in deposits, i.e., human and/or mouse, we performed a histopathological analysis, using mouse and human specific antibodies, of the neocortex and hippocampus in 6, 12 and 19 months old APP/PS1 double and APP and PS1 single transgenic mice. There was a significant correlation between the human amyloid beta deposits and the intrinsic rodent amyloid beta deposits, that is, all plaques contained both human and mouse Abeta, and the diffuse amyloid beta deposits also colocalized human and mouse Abeta. Furthermore, some blood vessels (mainly leptomeningeal vessels) show labeling with human Abeta, and most of these vessels also label with mouse Abeta. Our findings demonstrate that the human amyloid deposits in APP/PS1 transgenic mice are closely associated with mouse Abeta, however, they do not precisely overlap. For instance, the core of plaques consists of primarily human Abeta, whereas the rim of the plaque contains both human and mouse amyloid beta, similarly, human and mouse Abeta are differentially localized in the blood vessel wall. Finally, as early as amyloid beta deposits can be detected, they show the presence of both human and mouse Abeta. Together, these data indicate that mouse Abeta is formed and deposited in significant amounts in the AD mouse brain and that it is deposited together with the human Abeta.  相似文献   

12.
Both the beta-amyloid precursor protein (APP) and the apoliprotein E (apoE) genes are involved in the pathogenesis of Alzheimer's disease (AD). We previously showed that mice over-expressing a human mutated form of APP (APP(V717F)) display age-dependent recognition memory deficits associated with the progression of amyloid deposition. Here, we asked whether 10- to 12-month-old APP(V717F) mice lacking the apoE gene, which do not present obvious amyloid deposition, differ from APP(V717F) mice in the object recognition task. The recognition performance is decreased in both transgenic mouse groups compared to control groups. Moreover, some behavioral disturbances displayed by APP mice lacking apoE are even more pronounced than those of APP mice expressing apoE. Our results suggest that the recognition memory deficits are related to high levels of soluble Abeta rather than to amyloid deposits.  相似文献   

13.
In Alzheimer disease (AD) patients, early memory dysfunction is associated with glucose hypometabolism and neuronal loss in the hippocampus. Double transgenic (Tg) mice co-expressing the M146L presenilin 1 (PS1) and K670N/M671L, the double "Swedish" amyloid precursor protein (APP) mutations, are a model of AD amyloid-beta deposition (Abeta) that exhibits earlier and more profound impairments of working memory and learning than single APP mutant mice. In this study we compared performance on spatial memory tests, regional glucose metabolism, Abeta deposition, and neuronal loss in APP/PS1, PS1, and non-Tg (nTg) mice. At the age of 2 months no significant morphological and metabolic differences were detected between 3 studied genotypes. By 8 months, however, APP/PS1 mice developed selective impairment of spatial memory, which was significantly worse at 22 months and was accompanied by reduced glucose utilization in the hippocampus and a 35.8% dropout of neurons in the CA1 region. PS1 mice exhibited a similar degree of neuronal loss in CA1 but minimal memory deficit and no impairment of glucose utilization compared to nTg mice. Deficits in 22 month APP/PS1 mice were accompanied by a substantially elevated Abeta load, which rose from 2.5% +/- 0.4% at 8 months to 17.4% +/- 4.6%. These findings implicate Abeta or APP in the behavioral and metabolic impairments in APP/PS1 mice and the failure to compensate functionally for PS1-related hippocampal cell loss.  相似文献   

14.
Mutations in presenilin 1 gene (PS1) account for the majority of early-onset familial Alzheimer's disease (FAD) cases. The disease is characterized by intracellular neurofibrillary tangles and extracellular amyloid fibrils composed of amyloid beta peptides (Abeta). Two successive cleavages are necessary to free the Abeta peptide from the amyloid precursor protein (APP). Gamma-secretase catalyzes the final cleavage of APP to generate Abeta peptides. PS1 is a catalytic subunit of gamma-secretase and is also involved in the cleavage of many membrane proteins. PS1 also has functional interactions with many other proteins. The use of animal models of AD has initiated the deciphering of these molecular pathways and mechanisms. Transgenic mouse models are useful to study the features of FAD and to investigate the nature of the neural-tissue changes of the disease and their evolution during aging. When expressed alone, mutations in human PS1 do not induce any detectable lesions, although they do increase Abeta peptides. This absence has led to the criticism that PS1 mouse models are not valuable for the study of AD. In this review we present how studies using PS1 transgenic mice have raised new questions related to pathological mechanisms of AD and are useful models for the study of (1) progressive cognitive decline, (2) early-occurring synaptic dysfunction, and (3) mechanisms other than amyloidogenesis that can be involved in disease pathogenesis.  相似文献   

15.
Aging of transgenic mice that overexpress the London mutant of amyloid precursor protein (APP/V717I) (Moechars et al., 1999a) was now demonstrated not to affect the normalized levels of alpha- or beta-cleaved secreted APP nor of the beta-C-terminal stubs. This indicated that aging did not markedly disturb either alpha- or beta-secretase cleavage of APP and failed to explain the origin of the massive amounts of amyloid peptides Abeta40 and Abeta42, soluble and precipitated as amyloid plaques in the brain of old APP/V717I transgenic mice. We tested the hypothesis that aging acted on presenilin1 (PS1) to affect gamma-secretase-mediated production of amyloid peptides by comparing aged APP/V717I transgenic mice to double transgenic mice coexpressing human PS1 and APP/V717I. In double transgenic mice with mutant (A246E) but not wild-type human PS1, brain amyloid peptide levels increased and resulted in amyloid plaques when the mice were only 6-9 months old, much earlier than in APP/V717I transgenic mice (12-15 months old). Mutant PS1 increased mainly brain Abeta42 levels, whereas in aged APP/V717I transgenic mice, both Abeta42 and Abeta40 increased. This resulted in a dramatic difference in the Abeta42/Abeta40 ratio of precipitated or plaque-associated amyloid peptides, i.e., 3.11+/-0.22 in double APP/V717I x PS1/A246E transgenic mice compared with 0.43 +/- 0.07 in aged APP/V717I transgenic mice, and demonstrated a clear difference between the effect of aging and the effect of the insertion of a mutant PS1 transgene. In conclusion, we demonstrate that aging did not favor amyloidogenic over nonamyloidogenic processing of APP, nor did it exert a mutant PS1-like effect on gamma-secretase. Therefore, the data are interpreted to suggest that parenchymal and vascular accumulation of amyloid in aging brain resulted from failure to clear the amyloid peptides rather than from increased production.  相似文献   

16.
The identification of biochemical markers of Alzheimer's disease (AD) may help in the diagnosis of the disease. Previous studies have shown that Abeta(1-42) is decreased, and tau and phospho-tau are increased in AD cerebrospinal fluid (CSF). Our own studies have identified glycosylated isoforms of acetylcholinesterase (Glyc-AChE) and butyrylcholinesterase (Glyc-BuChE) that are increased in AD CSF. Glyc-AChE is increased in APP (SW) Tg2576 transgenic mice prior to amyloid plaque deposition, which suggests that Glyc-AChE may be an early marker of AD. The aim of this study was to determine whether Glyc-AChE or Glyc-BuChE is increased in CSF at early stages of AD and to compare the levels of these markers with those of Abeta(1-42), tau and phospho-tau. Lumbar CSF was obtained ante mortem from 106 non-AD patients, including 15 patients with mild cognitive impairment (MCI), and 102 patients with probable AD. Glyc-AChE, tau and phospho-tau were significantly increased in the CSF of AD patients compared to non-neurological disease (NND) controls. Abeta(1-42) was lower in the AD patients than in NND controls. A positive correlation was found between the levels of Glyc-AChE or Glyc-BuChE and disease duration. However, there was no clear correlation between the levels of tau, phospho-tau or Abeta(1-42) and disease duration. The results suggest that Glyc-AChE and Glyc-BuChE are unlikely to be early markers of AD, although they may have value as markers of disease progression.  相似文献   

17.
It is widely accepted that Abeta plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) [27]. Attention has been focused mainly on how extracellular Abeta exerts its effects on neuronal cells [7,11,16,32]. However, neuronal degeneration from an accumulation of intracellular Abetax-42 (iAbeta42) occurs in presenilin 1 (PS1) mutant mice without extracellular Abeta deposits [5]. In the present study, intracellular deposits of iAbeta42 are correlated with apoptotic cell death in AD and PS-1 familial AD (PS1 FAD) brains by means of triple staining with antibodies to Abeta, TUNEL, and staining with Hoechst 33342. Neurons simultaneously positive for iAbeta42 and the TUNEL assay were significantly more abundant in AD brains than in controls. The number of apoptotic neurons with intracellular neurofibrillary tangles (iNFTs) was insignificant. Our results indicate that intraneuronal deposition of a neurotoxic form of Abeta seems to be an early event in the neurodegeneration of AD.  相似文献   

18.
beta-amyloid cascade: current status and future directions]   总被引:1,自引:0,他引:1  
T Iwatsubo 《Clinical neurology》2000,40(12):1228-1230
The deposition of amyloid beta peptides (A beta) is one of the pathological hallmarks of Alzheimer's disease (AD) brains. A beta are composed of 40-42 amino acid peptides that are proteolytically cleaved from beta APP. The deposition as diffuse plaques of a species of A beta ending at the 42nd residue (A beta 42) is one of the earliest pathological changes of AD. Importantly, mutations in beta APP genes located in positions flanking the A beta sequences have been shown to cosegregate with the clinical manifestations of AD in a subset of familial AD (FAD) pedigrees. Moreover, mutations in presenilin (PS) 1 and 2, novel polytopic membrane proteins identified as causative molecules for the majority of FAD, also increase the production of A beta 42. These results support the notion that A beta (42) plays a key role in the cascadic development of AD. Recently, PS 1 and PS 2 are shown to be the catalytic subunits of gamma-secretase that cleave the intramembrane segments of beta APP and Notch. Future therapeutic approaches to reduce amyloid deposition, including inhibitors for beta- and gamma-secretases, as well as beta-amyloid vaccine therapy, raise high hopes towards the cure and prevention of AD, although the outcome thereof would be key to the consistency of amyloid cascade hypothesis.  相似文献   

19.
The CD40 receptor is a member of the tumor necrosis factor (TNF) super-family of trans-membrane receptors. Interaction of CD40 with its ligand CD40L mediates a broad range of immune and inflammatory responses in the periphery and in the central nervous system. Recently it has been suggested that CD40/CD40L interaction is involved in amyloid precursor protein (APP) processing and Alzheimer's disease (AD)-like pathology in transgenic mouse models of AD. We have previously shown that pharmacologically inhibiting CD40/CD40L interaction improves memory deficits in the PSAPP AD mouse model. We have also recently shown that CD40 deficiency mitigates amyloid deposition in APPsw and PSAPP mouse models. In the present report, using human embryonic kidney cells (HEK293) over-expressing both the APPsw mutation and CD40, we demonstrate that CD40/CD40L interaction directly increases the production of APP metabolites (Abeta 1-40, Abeta 1-42, CTFs, sAPPbeta and sAPPalpha). The results also show that CD40/CD40L interaction affects APP processing via the NF-kappaB pathway. Using NFkappaB inhibitors and SiRNAs to silence diverse elements of the NFkappaB pathway, we observe a reduction in levels of both Abeta 1-40 and Abeta 1-42. Taken together, our results further suggest that CD40L stimulation may be a key component in AD pathology and that elements of the NF-kappaB pathway may be suitable targets for therapeutic approaches against AD.  相似文献   

20.
Active and passive Abeta immunotherapy in Alzheimer's disease (AD)-like mouse models lowers cerebral amyloid-beta protein (Abeta) levels, especially if given early in the disease process, and improves cognitive deficits. In 2002, a Phase IIa clinical trial was halted due to meningoencephalitis in approximately 6% of the AD patients. It is hypothesized that the immunogen, full-length Abeta1-42, may have led to an autoimmune response. Currently, we are developing novel Abeta peptide immunogens for active immunization in amyloid precursor protein transgenic mice (APP Tg) to target Abeta B cell epitopes (within Abeta1-15) and avoid Abeta-specific T cell epitopes (Abeta16-42) so as to generate a safe and effective AD vaccine. Intranasal immunization with dendrimeric Abeta1-15 (16 copies of Abeta1-15 on a lysine core) or a tandem repeat of Abeta1-15 joined by 2 lysines and conjugated to an RGD motif with a mutated form of an E. coli-derived adjuvant generated robust Abeta titers in both wildtype and APP Tg mice. The Abeta antibodies recognized a B cell epitope within Abeta1-7, were mostly T-helper 2 associated immunoglobulin isotypes, bound human AD and APP Tg plaques, and detected Abeta oligomers. Splenic T cells reacted to the immunogens but not full-length Abeta. Six months of intranasal immunization (from 6-to-12 months of age) of J20 mice with each immunogen lowered insoluble Abeta42 by 50%, reduced plaque burden and gliosis, and increased Abeta in plasma. Interestingly, Abeta antibody generation was influenced by route of immunization. Transcutaneous immunization with dbeta1-15, but not full-length Abeta, led to high Abeta titers. In summary, our short Abeta immunogens induced robust titers of predominantly Th2 antibodies that were able to clear cerebral Abeta in the absence of Abeta-specific T cell reactivity, indicating the potential for a safer vaccine. We remain optimistic about the potential of such a vaccine for prevention and treatment of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号