首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated the effect of the nonpeptide mimic of angiotensin (Ang)-(1-7), AVE 0991, on the hypotensive effect of bradykinin (BK). Increasing doses of intra-arterial or intravenous BK were administered before and 30 minutes after the beginning of AVE 0991 infusion. The effect of AVE 0991 on plasma Ang-converting enzyme activity was tested using Hip-His-Leu as the substrate. The interaction of AVE 0991 with Ang-converting enzyme in vivo was tested by determining its effect on the pressor action of Ang I or Ang II. AVE 0991 produced a significant and similar potentiation of intra-arterial or intravenous bradykinin. AVE 0991 did not inhibit plasma Ang-converting enzyme activity in vitro or the pressor effect of Ang I in vivo. N(W)-nitro-l-arginine methyl ester or D-Ala(7)-Ang-(1-7) administration abolished the BK potentiating effect of AVE 0991. We further examined the BK-potentiating effect of AVE 0991, evaluating its effect on NO production in rabbit endothelial cells. The NO release was measured using the 4-amino-5-methylamino-2'-7'-difluorofluorescein diacetate. A synergistic effect of AVE 0991 and BK on NO release was observed. These results suggest that AVE 0991 potentiates bradykinin through an Ang-converting enzyme-independent, NO-dependent receptor Mas-mediated mechanism. This effect may contribute to the improvement of endothelial function by AVE 0991 in vivo.  相似文献   

2.
It has been described recently that the nonpeptide AVE 0991 (AVE) mimics the effects of angiotensin-(1-7) [Ang-(1-7)] in bovine endothelial cells. In this study, we tested the possibility that AVE is an agonist of the Ang-(1-7) receptor Mas, in vitro and in vivo. In water-loaded C57BL/6 mice, AVE (0.58 nmol/g body weight) produced a significant reduction in urinary volume (0.06+/-0.03 mL/60 min [n=9] versus 0.27+/-0.05 [n=9]; P<0.01), associated with an increase in urinary osmolality. The Ang-(1-7) antagonist A-779 completely blocked the antidiuretic effect of AVE. As observed previously for Ang-(1-7), the antidiuretic effect of AVE after water load was blunted in Mas-knockout mice (0.37+/-0.10 mL/60 min [n=9] versus 0.27+/-0.03 mL/60 min [n=11] AVE-treated mice). In vitro receptor autoradiography in C57BL/6 mice showed that the specific binding of 125I-Ang-(1-7) to mouse kidney slices was displaced by AVE, whereas no effects were observed in the binding of 125I-angiotensin II or 125I-angiotensin IV. Furthermore, AVE displaced the binding of 125I-Ang-(1-7) in Mas-transfected monkey kidney cells (COS) cells (IC50=4.75x10(-8) mol/L) and of rhodamine-Ang-(1-7) in Mas-transfected Chinese hamster ovary (CHO) cells. It also produced NO release in Mas-transfected CHO cells blocked by A-779 but not by angiotensin II type-1 (AT1) and AT2 antagonists. Contrasting with these data, the antidiuretic effect of AVE was totally blocked by AT2 antagonists and partially blocked (approximately 60%) by AT1 antagonists. The binding data, the results obtained in Mas-knockout mice and in Mas-transfected cells, show that AVE is a Mas receptor agonist. Our data also suggest the involvement of AT2/AT1-related mechanisms, including functional antagonism, oligomerization or cross-talk, in the renal responses to AVE.  相似文献   

3.
Recently we showed that angiotensin (Ang) II potentiates platelet aggregation, while Ang-(1-7) potentiates the anti-aggregatory action of the nitric oxide (NO) donor sodium nitroprusside (SNP), and may therefore counteract platelet NO resistance that accompanies cardiovascular disease and is associated with increased levels of superoxide (O(2)(-)). In the current study, we investigated whether the effect of Ang-(1-7) on platelet NO responsiveness is associated with the modulation of O(2)(-) release and is mediated by a specific Ang-(1-7) receptor. In whole blood, SNP (10 micromol/L) inhibited ADP (2.5 micromol/L)-induced platelet aggregation by 21 +/- 8% (p < 0.02), measured via extent of aggregation. Ang-(1-7) did not directly affect platelet aggregation, but potentiated the inhibitory action of SNP. This effect of Ang-(1-7) was bimodal, with maximal increase in SNP-induced inhibition of aggregation by incremental 18 +/- 2% (2-fold, on average; p<0.01) at 10-100 nmol/L Ang-(1-7) (Cmax), and was abolished at higher concentrations of Ang-(1-7). The Ang-(1-7) receptor antagonist D-ala7-Ang-(1-7) (1 micromol/L) completely eliminated the potentiating effects of Ang-(1-7). Platelet aggregation was accompanied by O(2)(-) release (assessed via lucigenin-derived chemiluminescence). SNP suppressed this O(2)(-) release, and Ang-(1-7) at Cmax augmented (by incremental 23 +/- 8%, p<0.03) the effect of SNP. In order to examine possible association of Ang-(1-7) receptor with platelets, we performed aggregation experiments in platelet-rich plasma. However, in these experiments Ang-(1-7) did not potentiate the anti-aggregatory action of SNP. Furthermore, in isolated polymorphonuclear leukocytes (PMN), a major cellular source of O(2)(-) in blood, Ang-(1-7) did not modify O(2)(-) release (after stimulation with fMLP, PMA or ADP), either in the absence or presence of SNP. Hence, Ang-(1-7) effects occurred only in whole blood. In conclusion, Ang-(1-7) potentiates the anti-aggregatory effects of NO donor, presumably via a specific Ang-(1-7) receptor. This potentiation is associated with the suppression of O(2)(-) release during aggregation and arises via an interaction between platelets and PMN.  相似文献   

4.
-The stimulation of endothelium-dependent NO release by angiotensin-(1-7) [Ang-(1-7)] has been indirectly shown in terms of vasodilation, which was diminished by NO synthase inhibition or removal of the endothelium. However, direct measurement of endothelium-derived NO has not been analyzed. With a selective porphyrinic microsensor, NO release was directly assessed from single primary cultured bovine aortic endothelial cells. Ang-(1-7) caused a concentration-dependent release of NO of 1 to 10 μmol/L, which was attenuated by NO synthase inhibition. [D-Ala(7)]Ang-(1-7) (5 μmol/L), described as a selective antagonist of Ang-(1-7) receptors, inhibited Ang-(1-7)-induced NO release only by approximately 50%, whereas preincubation of bovine aortic endothelial cells with the angiotensin II subtype 1 and 2 receptor antagonists EXP 3174 and PD 123,177 (both at 0.1 μmol/L) led to an inhibition of 60% and 90%, respectively. A complete blockade of the Ang-(1-7)-induced NO release was observed on preincubation of the cells with 1 μmol/L concentration of the bradykinin subtype 2 receptor antagonist icatibant (HOE 140), suggesting an important role of local kinins in the action of Ang-(1-7). Simultaneous direct measurement of superoxide (O(2)(-)) detected by an O(2)(-)-sensitive microsensor revealed that the moderately Ang-(1-7)-stimulated NO release was accompanied by a very slow concomitant O(2)(-) production with a relative low peak concentration in comparison to the O(2)(-) production of the strong NO releasers bradykinin and, especially, calcium ionophore. Thus, Ang-(1-7) might preserve the vascular system, among others, due to its low formation of cytotoxic peroxynitrite by the reaction between NO and O(2)(-).  相似文献   

5.
In the past few years, there has been a growing interest in the heptapeptide Angiotensin(Ang)-(1-7), mainly because of its ability to counter regulate many of Ang II actions. Furthermore, heart and blood vessels are important target tissues for Ang-(1-7) formation and actions. The introduction of novel tools, such as the Ang-(1-7) antagonists, A-779 and D-pro7-Ang-(1-7), the Ang-(1-7) agonist AVE 0991, transgenic rats TGR(A-1-7)3292, and use of liposome-encapsulated Ang-(1-7) for evaluating the biochemical and functional role of Ang-(1-7), have produced a great impact in this field of research. Moreover, the recent identification of the Ang-(1-7)-forming enzyme ACE2 and of the Ang-(1-7) receptor Mas will allow important advances in our understanding of the physiological and pathological role of this peptide. In this review, we will discuss the current knowledge concerning the biological effects of Ang-(1-7) in the blood, heart, and blood vessels. In addition, we will highlight the possible applications of agonists of its receptor as therapeutic agents in cardiovascular and related diseases.  相似文献   

6.
Tallant EA  Clark MA 《Hypertension》2003,42(4):574-579
Angiotensin (Ang) peptides play a critical role in regulating vascular reactivity and structure. We showed that Ang-(1-7) reduced smooth muscle growth after vascular injury and attenuated the proliferation of vascular smooth muscle cells (VSMCs). This study investigated the molecular mechanisms of the antiproliferative effects of Ang-(1-7) in cultured rat aortic VSMCs. Ang-(1-7) caused a dose-dependent release of prostacyclin from VSMCs, with a maximal release of 277.9+/-25.2% of basal values (P<0.05) by 100 nmol/L Ang-(1-7). The cyclooxygenase inhibitor indomethacin significantly attenuated growth inhibition by Ang-(1-7). In contrast, neither a lipoxygenase inhibitor nor a cytochrome p450 epoxygenase inhibitor prevented the antiproliferative effects of Ang-(1-7). These results suggest that Ang-(1-7) inhibits vascular growth by releasing prostacyclin. Ang-(1-7) caused a dose-dependent release of cAMP, which might result from prostacyclin-mediated activation of adenylate cyclase. The cAMP-dependent protein kinase inhibitor Rp-adenosine-3',5'-cyclic monophosphorothioate attenuated the Ang-(1-7)-mediated inhibition of serum-stimulated thymidine incorporation. Finally, Ang-(1-7) inhibited Ang II stimulation of mitogen-activated protein kinase activities (ERK1/2). Incubation of VSMCs with concentrations of Ang-(1-7) up to 1 micromol/L had no effect on ERK1/2 activation. However, preincubation with increasing concentrations of Ang-(1-7) caused a dose-dependent reduction in Ang II-stimulated ERK1/2 activities. Ang-(1-7) (1 micromol/L) reduced 100 nmol/L Ang II-stimulated ERK1 and ERK2 activation by 42.3+/-6.2% and 41.2+/-4.2%, respectively (P<0.01). These results suggest that Ang-(1-7) inhibits vascular growth through the release of prostacyclin, through the prostacyclin-mediated production of cAMP and activation of cAMP-dependent protein kinase, and by attenuation of mitogen-activated protein kinase activation.  相似文献   

7.
Left ventricular hypertrophy (LVH) is associated with elevated plasma angiotensin II (Ang II) levels and endothelial dysfunction. The relationship between Ang II and endothelial dysfunction remains unknown, however, but it may involve an alteration in endothelial cell redox state. We therefore investigated the effect of Ang II on NADH/NADPH oxidase-mediated superoxide anion (O(2)(-)) production by cultured guinea pig coronary microvascular endothelial cells (CMVEs) and CMVEs freshly isolated from a guinea pig, pressure-overload model of LVH. Lucigenin chemiluminescence was used to measure O(2)(-) production in the particulate fraction of CMVE lysates. In cultured cells, incubation with Ang II (0.1 nmol/L to 1 micromol/L for 18 hours) resulted in significant (P<0.01) increases in both NADH- and NADPH-dependent O(2)(-) production, with a peak effect at 1 nmol/L. The latter was significantly (P<0.01) inhibited by the AT(1) receptor antagonist losartan (1 micromol/L for 18 hours). In contrast, the O(2)(-) response to Ang II (0.1 nmol/L to 1 micromol/L for 18 hours) was largely unaffected by concomitant exposure to the AT(2) antagonist PD 123319 (1 micromol/L). In freshly isolated CMVEs from nonoperated animals, NADH- and NADPH-dependent O(2)(-) production was not different from that in sham-operated animals but was significantly (P<0.05) elevated in the aortic-banded animals. Plasma Ang II levels were significantly (P<0.001) elevated in the aortic-banded (1.25+/-0.12 microg/L, n=12) compared with sham-operated animals (0.63+/-0.06 microg/L, n=12). These data suggest that the endothelial dysfunction associated with LVH may be due, at least in part, to the Ang II-induced upregulation of NADH/NADPH oxidase-dependent O(2)(-) production.  相似文献   

8.
Recent studies have shown that angiotensin-(1-7) (Ang-[1-7]), which is generated endogenously from both Ang I and II, is a bioactive component of the renin-angiotensin system and may play an important role in the regulation of blood pressure. However, little is known about its role in regulating the reactivity of the afferent arteriole or the mechanism(s) involved. We hypothesized that Ang-(1-7), acting on specific receptors, participates in the control of afferent arteriole tone. We first examined the direct effect of Ang-(1-7) on rabbit afferent arterioles microperfused in vitro, and we tested whether endothelium-derived relaxing factor/NO and cyclooxygenase products are involved in its actions. To assess the vasodilator effect of Ang-(1-7), afferent arterioles were preconstricted with norepinephrine, and increasing concentrations of Ang-(1-7) were added to the lumen. We found that 10(-10) to 10(-6) mol/L Ang-(1-7) produced dose-dependent vasodilatation, increasing luminal diameter from 8.9+/-1.0 to 16.3+/-1.1 microm (P<0.006). Indomethacin had no effect on Ang-(1-7)-induced dilatation. N(G)-nitro-L-arginine methyl ester, a NO synthesis inhibitor, abolished the dilatation induced by Ang-(1-7). We attempted to determine which angiotensin receptor subtype is involved in this process. We found that 10(-6) mol/L [d-Ala7]-Ang-(1-7), a potent and selective Ang-(1-7) antagonist, abolished the dilatation induced by Ang-(1-7). An angiotensin II type 1 receptor antagonist (L158809) and an angiotensin II type 2 receptor antagonist (PD 123319) at 10(-6) mol/L had no effect on Ang-(1-7)-induced dilatation. Our results show that Ang-(1-7) causes afferent arteriole dilatation. This effect may be due to production of NO, but not the action of cyclooxygenase products. Ang-(1-7) has a receptor-mediated vasodilator effect on the rabbit afferent arteriole. This effect may be mediated by Ang-(1-7) receptors, because angiotensin type 1 and type 2 receptor antagonists could not block Ang-(1-7)-induced dilatation. Thus, our data suggest that Ang-(1-7)opposes the action of Ang II and plays an important role in the regulation of renal hemodynamics.  相似文献   

9.
Angiotensin II receptor blockers (ARBs) are widely used for the treatment of hypertension. It is believed that treatment with an ARB increases the level of plasma angiotensin II (Ang II) because of a lack of negative feedback on renin activity. However, Ichikawa (Hypertens Res 2001; 24: 641-646) reported that long-term treatment of hypertensive patients with olmesartan resulted in a reduction in plasma Ang II level, though the mechanism was not determined. It has been reported that angiotensin 1-7 (Ang-(1-7)) potentiates the effect of bradykinin and acts as an angiotensin-converting enzyme (ACE) inhibitor. It is known that ACE2, which was discovered as a novel ACE-related carboxypeptidase in 2000, hydrolyzes Ang I to Ang-(1-9) and also Ang II to Ang-(1-7). It has recently been reported that olmesartan increases plasma Ang-(1-7) through an increase in ACE2 expression in rats with myocardial infarction. We hypothesized that over-expression of ACE2 may be related to a reduction in Ang II level and the cardioprotective effect of olmesartan. Administration of 0.5 mg/kg/day of olmesartan for 4 weeks to 12-week-old stroke-prone spontaneously hypertensive rats (SHRSP) significantly reduced blood pressure and left ventricular weight compared to those in SHRSP given a vehicle. Co-administration of olmesartan and (D-Ala7)-Ang-(1-7), a selective Ang-(1-7) antagonist, partially inhibited the effect of olmesartan on blood pressure and left ventricular weight. Interestingly, co-administration of (D-Ala7)-Ang-(1-7) with olmesartan significantly increased the plasma Ang II level (453.2+/-113.8 pg/ml) compared to olmesartan alone (144.9+/-27.0 pg/ml, p<0.05). Moreover, olmesartan significantly increased the cardiac ACE2 expression level compared to that in Wistar Kyoto rats and SHRSP treated with a vehicle. Olmesartan significantly improved cardiovascular remodeling and cardiac nitrite/ nitrate content, but co-administration of olmesartan and (D-Ala7)-Ang-(1-7) partially reversed this anti-remodeling effect and the increase in nitrite/nitrate. These findings suggest that olmesartan may exhibit an ACE inhibitory action in addition to an Ang II receptor blocking action, prevent an increase in Ang II level, and protect cardiovascular remodeling through an increase in cardiac nitric oxide production and endogenous Ang-(1-7) via over-expression of ACE2.  相似文献   

10.
OBJECTIVE: Angiotensin (Ang) is broken down enzymatically to several different metabolites which, in addition to Ang II, may have important biological effects in the kidney. This study investigates the role of Ang metabolites on vascular resistance and noradrenaline release in the rat kidney. METHODS AND RESULTS: In rat isolated kidney Ang I, Ang II, Ang III, Ang IV and des-Asp-Ang I induced pressor responses and enhanced noradrenaline release to renal nerve stimulation (RNS) in an concentration-dependent manner, with the following rank order of potency (EC(50)): Ang II >or= Ang III > Ang I = des-Asp-Ang I > Ang IV. All effects were blocked by the AT(1)-receptor antagonist EXP 3174 (0.1 micromol/l) but not by the AT(2)-receptor antagonist PD 123319 (1 micromol/l). Angiotensin-converting enzyme (ACE) inhibition by captopril (10 micromol/l) abolished the effect of Ang I and des-Asp-Ang I but had no influence on the effect of the other metabolites. Ang-(1-7) blocked the effects of Ang I and Ang II, being 10 times more potent against Ang I than Ang II. The selective Ang-(1-7) receptor blocker d-Ala7-Ang-(1-7) (10 micromol/l) did not influence the inhibitory effects of Ang-(1-7). Ang-(1-7) (10 micromol/l) by itself had no influence on vascular resistance and RNS-induced noradrenaline release. CONCLUSION: Ang I, Ang II, Ang III, Ang IV and des-Asp-Ang I regulate renal vascular resistance and noradrenaline release by activation of AT(1) receptors. In the case of Ang I and des-Asp-Ang I this depends on conversion by ACE. Ang-(1-7) may act as a potent endogenous inhibitor/antagonist of ACE and the AT(1)-receptors, respectively.  相似文献   

11.
Recent studies have suggested that part of the vasorelaxation caused by nifedipine, a 1,4-dihydropyridine Ca(2+) antagonist, depends on the endothelium. To study the effect of endothelium-dependent vasorelaxation, the release of NO and superoxide (O(2)(-)) in the presence of nifedipine in isolated cultured rabbit endothelial cells was measured. Highly sensitive electrochemical microsensors were placed onto the cell membrane, and the kinetics of NO and O(2)(-) were measured simultaneously with time resolutions of 0.1 and 0.05 ms, respectively. Nifedipine at its therapeutical concentrations stimulated NO release and scavenged O(2)(-) in endothelial cells. The linear relationship between NO concentration and nifedipine concentration was observed in the range between 0.01 and 1 nmol/L. NO concentration reached a maximum of 200+/-10 nmol/L at 1.2 nmol/L of nifedipine. The NO concentration was approximately 50% and 30% of the concentration measured in the presence of receptor-dependent (acetylcholine) and the receptor-independent (Ca(2+) ionophore A23187) NO synthase (eNOS) agonists, respectively. NO release stimulated by eNOS agonists was followed by the generation of the NO scavenger superoxide. The concentration of O(2)(-) was significantly lower after stimulation with nifedipine (peak 5+/-0.5 nmol/L) than after stimulation with acetylcholine (15+/-1 nmol/L) and Ca(2+) ionophore (25+/-1 nmol/L). The average rate of NO release by nifedipine is relatively slow (17 nmol/L per second). This is in sharp contrast to the fast rate of NO release by acetylcholine and Ca(2+) ionophore (40 and 300 nmol/L per second, respectively). These experiments show that nifedipine, apart from its well-known Ca(2+) antagonistic properties in vascular smooth muscle cells, stimulates the release of significant concentration of NO in endothelium and also preserves NO concentration. Both these effects may be beneficial in the treatment of hypertension.  相似文献   

12.
We have recently shown that hydrolysis of labeled angiotensin I in canine brainstem homogenate causes a rapid accumulation of the heptapeptide angiotensin-(1-7) [Ang-(1-7)]. Although this angiotensin fragment has no vasopressor activity, its consistent generation in brain homogenate led us to study its potential neurosecretory effects in the rat hypothalamo-neurohypophysial system (HNS) in vitro. Ang-(1-7) or angiotensin II (Ang II) was added to HNS perifusate in concentrations of 0.04, 0.4, and 4 microM, and release of arginine vasopressin (AVP) during each treatment was quantified as a percentage of the AVP release detected in the preceding collection period. Base-line release of AVP averaged 281 +/- 47 pg per 15 min (mean +/- SEM) in HNS explants (five experiments, five explants per chamber) perifused in Krebs solution at 37 degrees C, after a 1-hr equilibration period. At 0.04 microM, Ang II or Ang-(1-7) did not stimulate AVP release. Ang II increased AVP release over the control value by 172% +/- 44% and 268% +/- 66% at 0.4 and 4 microM, respectively; the same concentrations of Ang-(1-7) increased AVP release by 134% +/- 12% and 216% +/- 45%. The responses to Ang II and Ang-(1-7) at the highest concentration were both significant (P less than 0.05), and comparison by two-way analysis of variance indicated that Ang II and Ang-(1-7) were equipotent in stimulating AVP release over the range of concentrations studied. In the presence of the competitive Ang II antagonist [Sar1,Thr8]Ang II (20 microM), the release of AVP increased approximately equal to 2-fold. Neither Ang II nor Ang-(1-7) (4 microM) caused a further enhancement of AVP release in the presence of [Sar1,Thr8]Ang II. These data suggest that a hydrophobic residue in position 8 of the angiotensin peptide is not essential for activation of angiotensin receptors in the rat HNS. Moreover, the equipotence of Ang II and Ang-(1-7) indicates that Ang-(1-7) may participate in the control of AVP release.  相似文献   

13.
In this study we evaluated the effect of angiotensin(1-7) and its nonpeptide analog, AVE 0991, on the endothelial function in vivo. The experiments were performed in conscious adult male Wistar rats, with polyethylene catheters implanted into the descending aorta (through left carotid artery), for injection of acetylcholine or sodium nitroprusside, femoral artery for mean arterial pressure and heart rate measurement; and femoral vein for drug administration. Increasing doses of acetylcholine (3.1 ng to 25.0 ng) or nitroprusside (1.0 microg to 10.0 microg) were administered before and 30 minutes after the start of the infusion of: angiotensin(1-7) (0.7 and 7.0 pmol/min); A-779 (180 pmol/min); angiotensin(1-7) (7.0 pmol/min) combined with A-779 (180 pmol/min); AVE 0991 (11, 45, and 230 pmol/min); AVE 0991 (45 pmol/min) combined with A-779 (180 pmol/min), or vehicle (6 microL/min). Baseline mean arterial pressure and heart rate were not altered during angiotensin(1-7) or AVE 0991 infusion. Angiotensin(1-7) (0.7 pmol/min) infusion produced a significant potentiation of the hypotensive effect of acetylcholine (3.1 ng: -9+/-1 mm Hg before; -18+/-2 mm Hg after; P<0.05). A similar potentiation was observed with the higher dose of angiotensin(1-7). As observed for angiotensin(1-7), infusion of AVE 0991 at 230 pmol/min potentiated the acetylcholine effect (3.1 ng: -8+/-2 mm Hg before; -16+/-2 mm Hg after; P<0.05). The potentiating effect was not observed for nitroprusside. A-779 or l-NAME treatment blocked the potentiation produced by angiotensin(1-7) or AVE 0991. Our data indicate that short-term stimulation of angiotensin(1-7) receptors improve endothelial function through facilitation of nitric oxide release.  相似文献   

14.
Angiotensin (Ang) II regulates adrenal steroidogenesis and adrenal cortical arterial tone. Vascular metabolism could decrease Ang II concentrations and produce metabolites with vascular activity. Our goals were to study adrenal artery Ang II metabolism and to characterize metabolite vascular activity. Bovine adrenal cortical arteries were incubated with Ang II (100 nmol/L) for 10 and 30 minutes. Metabolites were analyzed by mass spectrometry. Ang (1-7), Ang III, and Ang IV concentrations were 146+/-21, 173+/-42 and 58+/-11 pg/mg at 10 minutes and 845+/-163, 70+/-14, and 31+/-3 pg/mg at 30 minutes, respectively. Concentration-related relaxations of U46619-preconstricted cortical arteries to Ang II (maximum relaxation=29+/-3%; EC(50)=3.4 pmol/L) were eliminated by endothelium removal and inhibited by the NO synthase inhibitor, nitro-L-arginine (30 micromol/L; maximum relaxation=14+/-7%). Ang II relaxations were enhanced by the angiotensin type-1 receptor antagonist losartan (1 micromol/L; maximum relaxation=41+/-3%; EC(50)=11 pmol/L). Losartan-enhanced Ang II relaxations were inhibited by nitro-L-arginine (maximum relaxation=18+/-5%) and the angiotensin type-2 receptor antagonist PD123319 (10 micromol/L; maximum relaxation=27+/-5%). Ang (1-7) and Ang III caused concentration-related relaxations with less potency (EC(50)=43 and 24 nmol/L, respectively) but similar efficacy (maximum relaxations=39+/-3% and 48+/-5%, respectively) as losartan-enhanced Ang II relaxations. Ang (1-7) relaxations were inhibited by nitro-L-arginine (maximum relaxation=16+/-4%) and the Ang (1-7) receptor antagonist 7(D)-Ala-Ang (1-7) (1 micromol/L; maximum relaxation=10+/-3%) and eliminated by endothelium removal. Thus, Ang II metabolism by adrenal cortical arteries to metabolites with decreased vascular activity represents an inactivation pathway possibly decreasing Ang II presentation to adrenal steroidogenic cells and limits Ang II vascular effects.  相似文献   

15.
Age-related baroreflex reductions in function may originate from central neural dysregulation as well as vascular structural/functional changes. We determined the role of 2 angiotensin (Ang) peptides at the nucleus tractus solitarii in age-related baroreflex impairment. Baroreflex sensitivity control of heart rate in response to increases in blood pressure was tested in younger (3 to 5 months) and older (16 to 20 months) anesthetized male Sprague-Dawley rats before and after bilateral solitary tract injections of the Ang II type 1 (AT1) receptor antagonist candesartan (24 pmol) or the Ang-(1-7) antagonist (D-Ala7)-Ang-(1-7) (144 fmol or 24 pmol). Basal reflex sensitivity of older rats was significantly lower than younger rats. In younger rats, the reflex was facilitated by bilateral candesartan injections and attenuated by bilateral (D-Ala7)-Ang-(1-7) injections. In older rats, the reflex was facilitated by AT1 blockade; however, (D-Ala7)-Ang-(1-7) injected into the solitary tract nucleus had no effect. Neprilysin mRNA in the medulla was lower in older rats compared with younger rats, whereas angiotensin-converting enzyme (ACE), ACE2, and mas receptor mRNA levels of older rats did not differ from values of younger rats. Thus, opposing actions of endogenous Ang II and Ang-(1-7) in the solitary tract nucleus contribute to baroreflex function in response to increases in mean arterial pressure of younger rats. The attenuated counterbalancing effect of Ang-(1-7) on baroreflex function is lost in older rats, which may be attributable to diminished production of the peptide from neprilysin.  相似文献   

16.
目的 研究血管紧张素(1-7)对血管紧张素Ⅱ诱导的脐静脉内皮细胞E-选择素和单核细胞趋化蛋白1表达的影响,并初步探讨血管紧张素(1-7)的作用机制,阐明血管紧张素(1-7)对血管紧张素Ⅱ在炎症方面的拮抗作用.方法 经形态学及抗VⅢ因子抗体免疫荧光染色鉴定的人脐静脉内皮细胞,按以下分组加入不同干扰因素进行实验.实验分组:①对照组:不加干预因素;②血管紧张素Ⅱ组:加入血管紧张素Ⅱ100 nmol/L;③血管紧张素(1-7)组:加入血管紧张素(1-7)1 000 nmol/L;④血管紧张素Ⅱ+血管紧张素(1-7)组:分别用血管紧张素(1-7)10、100、1 000、10 000 nmol/L预处理30 min后,再加入血管紧张素Ⅱ100 nmol/L;⑤血管紧张素Ⅱ+血管紧张素(1-7)+血管紧张素(1-7)受体拮抗剂A-779组:先用1 000 nmol/L A-779预处理30 min后,再用终浓度为1 000 nmol/L血管紧张素(1-7)预处理30 min,最后加入终浓度100 nmol/L血管紧张素Ⅱ.各组用酶联免疫吸附法和逆转录聚合酶链反应从蛋白和mRNA水平检测E-选择素和单核细胞趋化蛋白1的表达情况.结果 正常细胞生长良好,呈鹅卵石样镶嵌排列,细胞透明度大,轮廓不清.荧光免疫组化染色法,可检测到培养的人脐静脉内皮细胞的VⅢ因子相关抗原为阳性.①与对照组比,血管紧张素Ⅱ(100 nmol/L)使E-选择素(25.39±1.97μg/L)和单核细胞趋化蛋白1(238.71±5.51 ng/L)的蛋白分泌量明显增加, E-选择素和单核细胞趋化蛋白1 mRNA的表达显著升高(均P<0.01);②血管紧张素(1-7)(1 000 nmol/L)使E-选择素(3.72±0.95μg/L)和单核细胞趋化蛋白1(90.24±9.82 ng/L)的蛋白分泌量降低,E-选择素和单核细胞趋化蛋白1 mRNA表达亦降低(均P<0.01);③混合刺激组中血管紧张素(1-7)(10~10 000 nmol/L)减少E-选择素蛋白合成,分别为21.15±1.31、17.41±1.94、12.71±1.84、9.46±1.40μg/L,均低于血管紧张素Ⅱ组(均P<0.01);同时也减少单核细胞趋化蛋白1蛋白合成,分别为214.57±7.16、196.83±8.20、176.63±8.93、155.52±8.19 ng/L,均低于血管紧张素Ⅱ组(均P<0.01);④混合刺激组中,与AngⅡ组比较,血管紧张素(1-7)(10~10 000 nmol/L)呈剂量依赖性的抑制AngⅡ刺激E-选择素、单核细胞趋化蛋白1 mRNA的表达(均P<0.01);⑤加入血管紧张素(1-7)受体拮抗剂A-779后,血管紧张素(1-7)的作用消失.结论 血管紧张素(1-7)通过其特异性受体Mas拮抗血管紧张素Ⅱ诱导的人脐静脉内皮细胞E-选择素和单核细胞趋化蛋白1的表达,并呈浓度依赖性.  相似文献   

17.
The nonpeptide AVE0991 is expected to be a putative new drug for cardiovascular diseases. However, the mechanisms for the cardioprotective actions of AVE0991 are still not fully understood. We planned to determine whether AVE0991 attenuates the angiotensin II (AngII)-induced myocardial hypertrophy and whether these AVE0991 effects involved transforming growth factor β1 (TGF-β1) and Smad2. A rat model of neonatal myocardial hypertrophy was induced by AngII. The AngII group significantly increased in protein content, surface area, and [3H]leucine incorporation efficiency by cardiomyocytes, compared to those of the control group (P < 0.01). The AngII group also had elevated TGF-β1 and Smad2 expression (P < 0.01). These AngII-induced changes were significantly attenuated by AVE0991 in a dose-dependent manner. In our study, these actions of AngII (10−6 mol/l) were significantly inhibited by both concentrations of AVE0991 (10−5 mol/l and 10−7 mol/l). Moreover, the high AVE0991 group had significantly better inhibition of myocardial hypertrophy than the low AVE0991 group. Meanwhile, the beneficial effects of AVE0991 were completely abolished when the cardiomyocytes were pretreated with Ang-(1–7) receptor antagonist A-779 (10−6 mol/l). These results suggested that AVE0991 prevented AngII-inducing myocardial hypertrophy in a dose-dependent fashion, a process that may be associated with the inhibition of TGF-β1/Smad2 signaling.  相似文献   

18.
Angiotensin (Ang)-(1-7) elicits a facilitatory presynaptic effect on peripheral noradrenergic neurotransmission, and because biological responses to the heptapeptide on occasion are tissue specific, the present investigation was undertaken to study its action on noradrenergic neurotransmission at the central level. In rat hypothalamus labeled with [(3)H]-norepinephrine, 100 to 600 nmol/L Ang-(1-7) diminished norepinephrine released by 25 mmol/L KCl. This effect was blocked by the selective angiotensin type 2 receptor antagonist PD 123319 (1 micromol/L) and by the specific Ang-(1-7) receptor antagonist ([D-Ala(7)]Ang-(1-7) (1 micromol/L) but not by losartan (10 nmol/L to 1 micromol/L), a selective angiotensin type 1 receptor antagonist. The inhibitory effect on noradrenergic neurotransmission caused by Ang-(1-7) was prevented by 10 micromol/L N(omega)-nitro-L-arginine methylester, an inhibitor of nitric oxide synthase activity, and was restored by 100 micromol/L L-arginine, precursor of nitric oxide synthesis. Methylene blue (10 micromol/L), an inhibitor of guanylate cyclase considered as the target of nitric oxide action, as well as Hoe 140 (10 micromol/L), a bradykinin B(2)-receptor antagonist, prevented the inhibitory effect of the heptapeptide on neuronal norepinephrine release, whereas no modification was observed in the presence of 0.1 to 10 micromol/L indomethacin, a cyclooxygenase inhibitor. Our results indicate that Ang-(1-7) has a tissue-specific neuromodulatory effect on noradrenergic neurotransmission, being inhibitory at the central nervous system by a nitric oxide-dependent mechanism that involves angiotensin type 2 receptors and local bradykinin production.  相似文献   

19.
The aim of this study was to evaluate the angiotensin (Ang)-(1-7) effects in isolated mouse hearts. The hearts of male C57BL/6J and knockout mice for the Ang-(1-7) receptor Mas were perfused by the Langendorff method. After a basal period, the hearts were perfused for 20 minutes with Krebs-Ringer solution (KRS) alone (control) or KRS containing Ang-(1-7) (0.22 pmol/L), the Mas antagonist A-779 (115 nmol/L), the angiotensin type 1 receptor antagonist losartan (2.2 micromol/L), or the angiotensin type 2 receptor antagonist PD123319 (130 nmol/L). To evaluate the involvement of Ang receptors, prostaglandins, and nitric oxide in the Ang-(1-7) effects, the hearts were perfused for 20 to 30 minutes with KRS containing either A-779, losartan, PD123319, indomethacin, or NG-nitro-L-arginine methyl ester (L-NAME) alone or in association with subsequent Ang-(1-7) perfusion. In addition, hearts from Mas-knockout mice were perfused for 20 minutes with KRS containing Ang-(1-7) (0.22 pmol/L) and losartan. Ang-(1-7) alone did not change the perfusion pressure. Strikingly, in the presence of losartan, 0.22 pmol/L Ang-(1-7) induced a significant decrease in perfusion pressure, which was blocked by A-779, indomethacin, and L-NAME. Furthermore, this effect was not observed in Mas-knockout mice. In contrast, in the presence of PD123319, Ang-(1-7) produced a significant increase in perfusion pressure. This change was not modified by the addition of A-779. Losartan reduced but did not abolish this effect. Our results suggest that Ang-(1-7) produces complex vascular effects in isolated, perfused mouse hearts involving interaction of its receptor with angiotensin type 1- and type 2-related mechanisms, leading to the release of prostaglandins and nitric oxide.  相似文献   

20.
Recently there has been growing evidence suggesting that beneficial effects of angiotensin-(1-7) [Ang-(1-7)] in the heart are mediated by its receptor Mas. However, the signaling pathways involved in these effects in cardiomyocytes are unknown. Here, we investigated the involvement of the Ang-(1-7)/Mas axis in NO generation and Ca(2+) handling in adult ventricular myocytes using a combination of molecular biology, intracellular Ca(2+) imaging, and confocal microscopy. Acute Ang-(1-7) treatment (10 nmol/L) leads to NO production and activates endothelial NO synthase and Akt in cardiomyocytes. Ang-(1-7)-dependent NO raise was abolished by pretreatment with A-779 (1 micromol/L). To confirm that Ang-(1-7) action is mediated by Mas, we used cardiomyocytes isolated from Mas-deficient mice. In Mas-deficient cardiomyocytes, Ang-(1-7) failed to increase NO levels. Moreover, Mas-ablation was accompanied by significant alterations in the proteins involved in the regulation of endothelial NO synthase activity, indicating that endothelial NO synthase and its binding partners are important effectors of the Mas-mediated pathway in cardiomyocytes. We then investigated the role of the Ang-(1-7)/Mas axis on Ca(2+) signaling. Cardiomyocytes treated with 10 nmol/L of Ang-(1-7) did not show changes in Ca(2+)-transient parameters such as peak Ca(2+) transients and kinetics of decay. Nevertheless, cardiomyocytes from Mas-deficient mice presented reduced peak and slower [Ca(2+)](i) transients when compared with wild-type cardiomyocytes. Lower Ca(2+) ATPase of the sarcoplasmic reticulum expression levels accompanied the reduced Ca(2+) transient in Mas-deficient cardiomyocytes. Therefore, chronic Mas-deficiency leads to impaired Ca(2+) handling in cardiomyocytes. Collectively, these observations reveal a key role for the Ang-(1-7)/Mas axis as a modulator of cardiomyocyte function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号