首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
背景:壳聚糖及其衍生物制备的支架对细胞迁移和神经轴突再生有重要作用。壳聚糖及其衍生物的组织相容性好,易使干细胞在其表面附着生长,在神经组织工程具有较为广阔的应用前景。 目的:制备适宜骨髓间充质干细胞生长的壳聚糖/壳聚糖季铵盐/甘油磷酸钠温敏性水凝胶细胞支架,观察骨髓间充质干细胞在细胞支架中的生长情况。 方法:将壳聚糖进行季铵盐化改性处理,通过傅里叶变换红外光谱分析谱检测确定其生成。实验以壳聚糖与壳聚糖季铵盐配比为8∶1成功制备出较为稳定的壳聚糖/壳聚糖季铵盐/甘油磷酸钠温敏性温敏水凝胶细胞支架,观察成胶情况,并进行生物安全性检测。 结果与结论:实验在傅里叶变换红外光图谱上发现了季铵基基团的特征峰。细胞毒性实验显示,水凝胶浸提液干预的大鼠骨髓间充质干细胞无毒性。急性全身毒性实验显示,浸提液对大鼠体质量增加无明显影响,支架生物安全性较好。扫描电镜观察显示,骨髓间充质干细胞在细胞支架中能正常的生长和增殖。结果证实,实验成功制备了壳聚糖/壳聚糖季铵盐/甘油磷酸钠温敏性水凝胶细胞支架,适合骨髓间充质干细胞生长和增殖。  相似文献   

2.
 背景:有研究显示,壳聚糖等天然多糖经磺化改性后具有类似肝素的抗凝功能,因磺酸化后的壳聚糖其形成的磺酸根基团与肝素的活性基团相似,具有良好的抗凝血性。 目的:制备具有抗凝血功能的纳米壳聚糖微球,检测其形态结构、理化性能及生物安全性。 方法:利用乳相法合成纳米壳聚糖微球,通过磺化反应合成磺酸化壳聚糖微球,通过透射电镜描述其形态特征,红外光谱观察其特异基团峰值变化。①凝血实验:分别将肝素、纳米壳聚糖微球及10,30,50 mg磺酸化壳聚糖微球加入SD大鼠血中,检测凝血指标。②溶血实验:分别将去离子水、生理盐水及10,30,50 g/L磺酸化壳聚糖微球浸提液加入兔2%红细胞悬液中,检测溶血率。③细胞毒性实验:分别采用含体积分数10%胎牛血清的DMEM培养基及10,30,50 g/L磺酸化壳聚糖微球的浸提液培养人脐静脉血管内皮细胞,72 h后检测细胞相对增殖率及毒性分级。 结果与结论:扫描电镜显示磺酸化壳聚糖微球具有良好的形态结构,粒径大小50 nm,红外图谱提示存在磺化取代。体外凝血实验表明磺酸化壳聚糖微球具有显著抗凝血作用,抗凝血效果呈剂量效应关系。磺酸化壳聚糖微球符合国标关于溶血率小于5%的安全标准,无致溶血性。细胞毒性实验表明磺酸化壳聚糖微球浸提液无明显细胞毒性,其生物安全性符合国家标准。 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   

3.
背景:有关纳米含氟羟基磷灰石牙种植体材料生物相容性的报道较少。 目的:检测纳米含氟羟基磷灰石牙种植体材料的体外生物相容性。 方法:采用溶胶凝胶技术分别制备羟基磷灰石与纳米含氟羟基磷灰石。①溶血性实验:在0.2 mL稀释兔抗凝血中分别加入0.01,0.15,0.2 g/L纳米含氟羟基磷灰石溶液、生理盐水及蒸馏水各10 mL,检测各组上清液吸光度值。②体外细胞毒性实验:分别以100%,50%纳米含氟羟基磷灰石浸提液、100%羟基磷灰石浸提液、苯酚溶液及RPMI1640培养液培养传至第2代的L929细胞,MTT法检测培养2,4,7 d的吸光度值。 结果与结论:体外溶血性实验显示,各浓度梯度纳米含氟羟基磷灰石的溶血率均在5%以内,符合医用材料的溶血要求。体外细胞毒性实验显示,随着培养时间的增加,100%,50%纳米含氟羟基磷灰石浸提液组细胞贴壁覆盖率增加,细胞密度增高,细胞为长梭形或多角形,细胞增殖及形态与RPMI1640培养液组、羟基磷灰石组无明显差别,细胞毒性为0级。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

4.
背景:BIOSSN4无镍不锈钢是一种奥氏体医用不锈钢材料,在中国药品生物制品检定所通过了标准的溶血实验、细胞毒性实验和致敏实验。 目的:评价新型医用BIOSSN4无镍不锈钢的体外细胞毒性及抗腐蚀性。 方法:将小鼠L929成纤维细胞悬液以1×108 L-1的浓度接种于96孔板,分5组培养,分别加入BIOSSN4无镍不锈钢浸提液、316L不锈钢浸提液、金合金浸提液、铅材料浸提液(阳性对照)及RPMI1640培养液(阴性对照)。培养1,2,3 d,观察细胞形态,采用MTT法检测各组吸光度值,计算细胞相对增殖率,评价毒性分级。在模拟口腔环境中,检测BIOSSN4无镍不锈钢、316L不锈钢及金合金的自腐蚀电位、自腐蚀电流密度及极化电阻。 结果与结论:培养3 d内,铅材料浸提液组细胞皱缩,细胞数量明显减少,细胞相对增殖率低于其余4组(P < 0.05);其余4组细胞形态良好,增殖旺盛,细胞相对增殖率均在75%以上。BIOSSN4无镍不锈钢浸提液、316L不锈钢浸提液与金合金浸提液的毒性均为1级,铅材料浸提液的毒性为2至3级,表明BIOSSN4无镍不锈钢具有良好的生物相容性。BIOSSN4无镍不锈钢的抗腐蚀性高于316L不锈钢,低于金合金。 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   

5.
背景:温敏性壳聚糖与多种细胞相容性良好,是组织工程中不可多得的优良载体,但其对成骨细胞毒性研究相对缺乏。 目的:验证温敏性壳聚糖水凝胶对成骨细胞的毒性。 方法:成骨细胞在温敏性壳聚糖水凝胶中进行培养,显微镜下观察细胞形态及扩增情况,同时,SD大鼠成骨细胞在不同浓度的温敏性壳聚糖水凝胶浸提液中体外培养24,48,72,96 h,MTT法测定细胞相对增殖率,判断细胞毒性的级别。 结果与结论:SD大鼠成骨细胞在温敏性壳聚糖水凝胶中培养24 h内镜下观察呈圆形,48 h后开始伸出触角并扩增;温敏性壳聚糖水凝胶浸提液中培养的各组细胞在不同时间点相对增殖率在92%~112%之间,各浓度的温敏性壳聚糖水凝胶材料浸提液的细胞毒性均为0级或1级,完全符合生物材料的安全评价标准。  相似文献   

6.
背景:人们对壳聚糖/羟基磷灰石复合多孔生物支架在体内的降解过程并非十分清楚,而且有关其降解产物对成骨细胞的影响研究也较少。 目的:分析大鼠成骨细胞与壳聚糖/羟基磷灰石复合多孔生物支架降解产物的生物相容性。 方法:将培养的第2代大鼠成骨细胞分别在壳聚糖/羟基磷灰石复合支架降解产物浸提液和含体积分数10%胎牛血清的DMEM培养液中培养,培养第2,4,6,8,10天分别对两组细胞做MTT细胞计数,采用联合会推荐法测定细胞碱性磷酸酶活性,采用BCA蛋白定量法测定总蛋白。 结果与结论:在壳聚糖/羟基磷灰石复合多孔生物支架降解产物浸提液中培养的大鼠成骨细胞增殖速度、细胞碱性磷酸酶活性、细胞总蛋白合成及碱性磷酸酶与总蛋白的比值明显高于在体积分数为10%胎牛血清DMEM培养液中培养的细胞(P < 0.05)。表明壳聚糖/羟基磷灰石复合多孔生物支架的降解产物不仅可促进大鼠成骨细胞的黏附、生长和增殖,还可增强其骨化功能,具有较好的生物相容性。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

7.
背景:用壳聚糖包裹海藻酸钠制备微囊,可以改善海藻酸钠水凝胶的力学性能,如何获得理想的海藻酸钠壳聚糖微囊以及该微囊体系的应用前景是这一研究的关键。 目的:探讨海藻酸钠壳聚糖微胶囊载体的制备方法、成型机制,分析影响微胶囊膜强度性能的几个重要因素及探讨海藻酸钠-壳聚糖微胶囊在固定化细胞技术、药物载体和组织工程方面的应用前景。 方法:由第一作者采用计算机检索PubMed数据库、Elsevier ScienceDirect、中国知网库、万方数据库1987至2013年有关海藻酸钠壳聚糖微囊制备方法、反应机制及应用前景的文章。 结果与结论:海藻酸盐水凝胶在药物释放和组织工程领域具有很多优势,但是凝胶溶蚀现象和力学性能缺陷限制了它的应用,壳聚糖与海藻酸钠通过静电相互作用形成聚电解质络合物,弥补了海藻酸钠凝胶的不足。通过控制壳聚糖溶液的性质-壳聚糖的分子质量、壳聚糖溶液的pH值和浓度制备膜强度高的微囊,海藻酸钠-壳聚糖微囊在固定化技术、药物释放和组织工程领域表现出了广阔的应用前景。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

8.
目的评价对比不同配比壳聚糖/聚磷酸钙复合支架的体外生物相容性,观察半月板纤维软骨细胞在不同配比支架材料上的生长情况,选出最佳配比CS/CPP生物材料用于半月板的治疗。方法利用ADA将CS与CPP混合液交联,制备不同配比的CS/CPP复合支架材料。采用扫描电镜检测半月板细胞在支架材料上的生长情况。采用MTT法检测不同配比CS/CPP支架材料浸提液的毒性,通过细胞接种的方法评价支架材料的生物相容性。结果扫描电镜下,CS/CPP复合支架材料均呈三维多孔结构;细胞在支架材料上粘性良好,分布均匀,生长良好,其中配比为3∶7CS/CPP复合支架材料上细胞粘性最好,黏附细胞数量最多。不同配比CS/CPP复合支架材料不同浓度浸提液的毒性均不高于1级,全部合格,配比为3∶7CS/CPP复合支架材料浸提液细胞相对增殖高、毒性小,细胞相容性最好,与其它配比相比,差异有统计学意义(0.05)。结论不同配比壳聚糖/聚磷酸钙均具有良好的细胞相容性,其中配比为3∶7CS/CPP复合支架材料生物相容性最好,有望成为组织工程半月板的支架载体。  相似文献   

9.
背景:高分子材料聚四氟乙烯膨体作为隆鼻填充材料具有耐腐蚀、化学性质稳定等优点,但其线膨胀系数较大,易引发感染及排异反应,故应用有一定局限性。目的:对比聚四氟乙烯和聚四氟乙烯联合Ⅰ型胶原作为隆鼻填充材料的细胞毒性、埋植后的炎性浸润及体内生物相容性。方法:采用MTT法检测聚四氟乙烯浸提液和聚四氟乙烯联合Ⅰ型胶原浸提液培养L929细胞的细胞增殖。采用电子显微镜观察聚四氟乙烯浸提液和聚四氟乙烯联合Ⅰ型胶原浸提液培养L929细胞后的细胞生长情况。将聚四氟乙烯和聚四氟乙烯联合Ⅰ型胶原材料分别埋置于新西兰白兔鼻背筋膜下7 d,苏木精-伊红染色观察鼻黏膜上皮组织炎性浸润情况。兔耳缘静脉分别注射聚四氟乙烯浸提液和聚四氟乙烯联合Ⅰ型胶原浸提液后,观察兔的全身毒性、过敏、热源反应及死亡情况。结果与结论:作为隆鼻填充材料,聚四氟乙烯联合Ⅰ型胶原材料在细胞毒性、埋植后的炎性浸润方面均优于单纯聚四氟乙烯材料(P < 0.05);兔耳缘静脉注射聚四氟乙烯联合Ⅰ型胶原材料后发生的过敏反应、热源反应少于注射单纯聚四氟乙烯材料(P < 0.05)。表明聚四氟乙烯联合Ⅰ型胶原作为隆鼻填充材料具有良好的生物相容性。 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   

10.
背景:如何在体外将支架材料和种子细胞高效地复合以构建组织工程牙周组织是目前牙周病治疗及牙周缺损修复研究的重要方向。 目的:比较传统沉淀接种法和胶原包裹接种法的细胞黏附状况,优化细胞接种方式。 方法:将一定浓度的犬牙龈成纤维细胞,分别采用传统沉淀接种法和胶原包裹接种法接种到聚乳酸-壳聚糖-明胶梯度孔径和均匀孔径支架上,通过细胞计数测定支架上贴附的细胞数量,计算其接种率,并进行对比分析。 结果与结论:采用胶原凝胶包裹接种法将细胞接种至均匀孔径支架和梯度孔径支架上,其接种率均明显高于传统的沉淀接种法(P < 0.01)。用胶原凝胶包裹种子细胞行细胞接种可以有效提高种子细胞的接种率,增加支架上的细胞初始浓度,可以选用胶原凝胶包裹细胞接种方式用于牙龈工程组织构建。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

11.
文题释义:                                                                                                     天然骨:主要由无机的羟基磷灰石和有机的胶原成分构成,并具有一定的力学性能。以羟基磷灰石和磷酸三钙为主的磷酸盐材料拥有良好的骨传导性和部分骨诱导性,能够与宿主的骨直接发生骨结合,已成为目前临床应用最多的骨移植材料。 锻烧骨:是经高温锻烧异体动物骨所获得的无机材料,主要成分是羟基磷灰石,其钙磷比接近于人骨,拥有极好的生物相容性和优越的骨引导性。与人工合成的羟基磷灰石相比,不用考虑煅烧骨材料的结构形貌,而且材料来源广泛、制作成本低。 背景:壳聚糖具备优异的理化性能与良好的生物相容性,但其缺乏骨结合的生物活性,需要与其他材料复合用于骨组织修复中。 目的:将煅烧骨与壳聚糖复合,分析其理化性能和细胞毒性。 方法:采用溶液共混法制备煅烧骨与壳聚糖质量比分别为1/2、1/1、2/1的复合材料,表征3种复合材料的理化性能。在第5代小鼠成纤维细胞 L929中分别加入3种复合材料浸提液,CCK-8法检测复合材料的细胞毒性。 结果与结论:①X射线衍射和红外光谱显示,3种复合材料的主要成分均为羟基磷灰石与β-磷酸三钙,并且随着煅烧骨比例的增加,复合材料中的羟基磷灰石/β-磷酸三钙的特征衍射峰逐渐增强;②扫描电镜显示,煅烧骨颗粒较均匀地分散于壳聚糖介质中;③随着煅烧骨比例的增加,复合材料的抗压强度逐渐降低;④培养7 d时,3种复合材料浸提液中的细胞生长良好,形态无明显变化;培养9 d的时间内,3种复合材料浸提液中的细胞相对增殖率均在90%以上,细胞毒性均为1级,符合生物材料的安全标准;⑤结果表明,煅烧骨/壳聚糖复合材料具备良好的结构特征、理化性能及合适的抗压强度,并且安全无毒。 ORCID: 0000-0003-3519-4485(廖健) 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   

12.
部分水凝胶材料具有良好的生物相容性、低细胞毒性和生物可降解性,广泛应用于组织工程和生物医药等领域,其中采用天然高分子明胶、壳聚糖和海藻酸钠制备复合凝胶材料,负载骨髓间充质干细胞用于修复和治疗骨缺损成为近年来的研究热点之一。因为水凝胶材料抗张强度低和化学稳定性差,所以研究凝胶反应机理和凝胶反应动力学对提高水凝胶的性能具有重要意义。本文总结了明胶、壳聚糖和海藻酸钠凝胶材料的制备方法和凝胶反应机理,比较了不同凝胶反应动力学研究方法,介绍凝胶复合材料在骨修复中的应用,为天然高分子凝胶材料的分子设计和临床应用提供思路。  相似文献   

13.
Marine biopolymer composite materials provide a technological platform for launching biomedical applications. Biomaterials demand good biocompatibility without the possibility of inflammation or foreign body reactions. In this study, we prepared two biocomposite hydrogels namely; HAC (hydroxyapatite, alginate & chitosan) and HACF (hydroxyapatite, alginate, chitosan & fucoidan) followed by calcium chloride cross linking. The prepared scaffolds were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Porosity measurement, swelling, biodegradation, hemolysis, RBC aggregation, plasma protein adsorption and cytotoxicity studies were also done. The hydrogel scaffold HACF possessed a well-defined porous architecture, sufficient water holding capacity, better hemocompatibility and biodegradability. The biocompatibility was confirmed through in vitro cytotoxicity studies such as MTT assay, Neutral red uptake, DAPI staining, Trypan blue dye exclusion test and direct contact assay in L929 mouse fibroblast cells. In addition, immunomodulatory and anti-inflammatory properties of both of these scaffolds were revealed by the mRNA expressions of major inflammatory marker genes in cytotoxic condition such as TNF-α, IL-6 and NF-κB. The physiochemical characterization and biological responses of HACF hydrogel signifies its suitability for various tissue engineering applications.  相似文献   

14.
背景:生物活性玻璃/胶原复合材料具有优良的成骨活性和的生物学性能,然而其在人体环境中易降解而导致支架溃散、力学性能下降。 目的:构建具有良好力学性能、抗降解性能和骨修复特性的胶原/生物活性玻璃/壳聚糖增强型复合支架。 方法:以壳聚糖作为分散剂,将生物活性玻璃粉体预先在壳聚糖溶液中均匀分散,然后与胶原溶液混合,结合冷冻干燥法制备多孔胶原/生物活性玻璃/壳聚糖增强型复合骨修复支架。采用傅里叶变换红外光谱仪、场发射扫描电子显微镜、X射线衍射仪、动态生物力学试验机等对复合支架的结构和性能进行表征。 结果与结论:由于壳聚糖和生物活性玻璃粉体在微酸性环境下的电荷吸引,使在壳聚糖中预分散的生物活性玻璃颗粒在复合支架中分散更均匀;壳聚糖的引入大量增加了机体中的羟基和氨基,使分子间的相互作用增强,显著提高了材料的抗压模量和强度;壳聚糖和胶原在分子尺度的混合,使胶原分子被壳聚糖包裹,降低了胶原酶对胶原分子的酶切能力,显著提高了复合支架的抗胶原酶解性;壳聚糖分子使生物活性玻璃颗粒更均匀的包裹在大分子基相中,减少了生物活性玻璃颗粒的团聚和暴露,导致复合支架在模拟体液中的矿化活性略微降低。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

15.
文题释义:甲基丙烯酸钠:是一种具有双功能的化学基团的有机小分子,一端含有2-甲基丙烯酰基,该基团具有良好的化学活性,可与化合物中的多种基团反应而修饰化合物;另一个功能集团就是拥有负电荷基团,能给修饰过的化合物材料表面带来稳定的负电荷。 光引发剂:又称光敏剂,是一类能在紫外光区(250-420 nm)或可见光区(400-800 nm)吸收一定波长的能量,产生自由基、阳离子等,从而引发单体聚合交联固化的化合物。引发剂分子在紫外光区(250-400 nm)或可见光区(400-800 nm)有一定吸光能力,在直接或间接吸收光能后,引发剂分子从基态跃迁到激发单线态,经系间窜跃至激发三线态;在激发单线态或三线态经历单分子或双分子化学作用后,产生能够引发单体聚合的活性碎片,这些活性碎片可以是自由基、阳离子、阴离子等。按照引发机制不同,光引发剂可分为自由基聚合光引发剂与阳离子光引发剂,其中以自由基聚合光引发剂应用最为广泛。 背景:光交联海藻酸盐水凝胶因具有良好的生物相容性、可微创注射等优势已为热门的组织工程研究材料,但是仍然存在强度不足、细胞黏附能力不足等问题。 目的:构建载负电荷的光交联海藻酸盐水凝胶材料,探索其物理性能和细胞黏附性能变化。 方法:利用海藻酸钠和2-氨乙基甲基丙烯酸酯盐酸盐制备甲基丙烯酸酯化海藻酸盐后,再与光引发剂和不同浓度甲基丙烯酸钠(0,20,40,60 mmol/L)混合制备载负电荷光交联海藻酸盐水凝胶,利用傅里叶红外光谱仪分析水凝胶的功能基团变化情况,扫面电镜观察水凝胶的表面形态,并测量其溶胀率。将MC3T3-E1细胞与各组水凝胶共培养48 h,采用活死染色与CCK-8法分析水凝胶的细胞毒性;接种MC3T3-E1细胞于4组水凝胶表面,在第4小时活死染色观察细胞早期黏附情况,第3天活死染色观察细胞伸展情况。 结果与结论:①傅里叶红外光谱分析显示,甲基丙烯酸钠的引入可在水凝胶红外波普波数1 600 cm-1左右处出现来自甲基丙烯酸钠的新波峰;②扫描电镜显示随着甲基丙烯酸钠浓度的增加,光交联海藻酸盐水凝胶的致密度增加,孔径减小;③溶胀率测试显示随着甲基丙烯酸钠浓度的升高,光交联海藻酸盐水凝胶的溶胀率逐渐降低;④活死染色显示4种水凝胶表面的细胞生长状态良好,细胞活性均在95%以上;CCK-8检测显示,载负电荷的光交联海藻酸盐水凝胶材料无细胞毒性;⑤随着甲基丙烯酸钠引入量的增加,载负电荷光交联海藻酸盐水凝胶表面的早期细胞黏附率逐渐增加,细胞伸展状态明显改善;⑥结果表明,甲基丙烯酸钠修饰的引入调节了光交联海藻酸盐水凝胶物理性能,并明显提高了其细胞黏附性能。 ORCID: 0000-0002-1054-6002(赵德路) 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   

16.
Some chemicals or thermal burns may result in abnormal reepithelialization by conjunctival epithelial cells and it causes different types of damage on the cornea surface. When reepithelialization does not occur, chronic inflammation and neovascularization develop, often leading to stroma scarring and/or ulceration. The aim of this study is to restore the human corneal surface with autologous corneal epithelial sheets generated by serial cultivation of the limbal epithelial cells over the different compositions of composite membranes. The composite membranes were prepared by coating the alginate membrane with chitosan. In this method, alginate membrane was prepared by precipitation of the sodium alginate solution in calcium chloride solution. Alginate membranes were washed, dried and immersed into the chitosan solutions to prepare composite membranes. The composite membranes were characterized based on their morphology, hydrophilicity, swellability, and chemical structure. In the last part of the study, composite membranes were used as base matrices for limbal epithelial cell cultivation. The cell cultivation on polymeric membranes was investigated as the in vitro studies. In these studies cell attachment, spreading and growth on polymeric membranes were evaluated.  相似文献   

17.
Betigeri SS  Neau SH 《Biomaterials》2002,23(17):3627-3636
The purpose of this study was to immobilize lipase (triacylglycerol ester hydrolase, E.C. 3.1.1.3) from Candida rugosa using various polymers in the form of beads, to evaluate enzyme loading, leaching, and activity; and to characterize the beads. Agarose, alginate, and chitosan were the polymers selected to immobilize lipase by entrapment. Agarose beads exhibited undesirable swelling in the leaching and activity medium and the polymer was not used further. Alginate or chitosan beads were prepared by ionic gelation using calcium chloride or sodium tripolyphosphate, respectively, as the cross-linking agent in the gelling solution. Some hatches of beads of each polymer were freeze dried. The results show that alginate beads leached substantially more enzyme than did chitosan beads. Entrapment efficiency, however, was the same for different chitosan levels as well as different alginate levels (43-50%). Activity in alginate was low at 240 +/- 33 and 220 +/- 26, compared to 1,110 +/- 51 and 1,150 +/- 11 units/ml in chitosan, for fresh and freeze-dried beads, respectively. The higher lipase activity in chitosan beads compared to that in alginate beads could be attributed to an alginate-enzyme interaction. It can be concluded that chitosan is a polymer worthy of pursuit to immobilize lipase.  相似文献   

18.
A series of chitosan-modified zein composite films were fabricated from zein and chitosan by a process involving blending, solution casting and evaporation. Effects of chitosan content on the structure and physical properties of the composite films were investigated by Fourier transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, tensile testing, water absorption measurement and water contact angle measurement. The results showed that the zein/chitosan composite films were fabricated successfully due to the formation of hydrogen bonds between zein and chitosan, and the thermal stability, water absorption, hydrophilicity, tensile strength, flexibility of the composite films increased with an increase in chitosan content from 0 to 50%. The cytotoxicity and cytocompatibility of the composite films were evaluated by 3-[45-dimethyl-2-thiazoly1]-25-diphenyl-2H-tetrazolium bromide (MTT) assay and in vitro cell culture, which showed that the films have non- or low-cytotoxicity, and chitosan promoted the growth, adhesion and proliferation of the cells. These results indicated that chitosan-modified zein composite films might have potentials applications as biomaterials.  相似文献   

19.
Two chitosan-alginate gel systems in the form of membranes were produced and evaluated. The first membrane was produced by a novel gel system formed after blending N-(methylsulfonic acid) chitosan with ammonium alginate (CAG1) and the second was an N-(methylsulfonic acid) chitosan-sodium alginate blend cross-linked with glutaraldehyde and calcium chloride (CAG2). The cytocompatibility and hemocompatibility of the gels were examined by assessing the cell viability of 3T3 Swiss mouse fibroblasts, whole blood hemolysis, and platelet activation. Cell viability was not significantly different by exposure to these gels compared to the controls. Both gel types had minimal effect on hemolysis of whole heparinized rabbit blood after 1-h exposure. Further platelet activation by the surfaces was also minimal. These results indicate that these novel gels merit further investigation for blood contact applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号