首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To protect human and ecosystem health, it is necessary to develop sensitive assays and to identify responsive cells and species (and their life stages). In this study, the relative genotoxicity of two inorganic arsenicals: trivalent sodium arsenite (As(3+)) and pentavalent sodium arsenate (As(5+)), was evaluated in two cell lines of phylogenetically different origin, using alkaline single-cell gel electrophoresis (i.e., the Comet assay) and the cytokinesis-block micronucleus (MN) assay. The cell lines were the rainbow trout gonad-2 (RTG-2) and Chinese hamster ovary-K1 (CHO-K1) lines. Following optimization and validation of both assays using reference chemicals (i.e., 1-100 microM hydrogen peroxide for the Comet assay and 1-10 mM ethylmethane sulfonate for the MN assay), cells were exposed to 1-10 microM of both arsenicals to determine the relative extent of genetic damage. The unexposed controls showed similar (background) levels of damage in both cell lines and for both assays. Treatment with the arsenicals induced concentration-dependent increases in genetic damage in the two cell lines. Arsenite was more potent than arsenate in inducing DNA strand breaks in the Comet assay; at the highest concentration (10 microM) arsenite produced similar levels of DNA damage in CHO-K1 and RTG-2 cells, while 10 microM arsenate was significantly more genotoxic in RTG-2 cells. MN induction was consistently higher in RTG-2 cells than in CHO-K1 cells, with 10 microM arsenite inducing an approximate 10-fold increase in both cell lines. MN induction also was positively correlated with DNA strand breaks for both arsenicals. Overall, the study demonstrated that the fish cells are more sensitive than the mammalian cells at environmentally realistic concentrations of both arsenicals, with arsenite being more toxic.  相似文献   

2.
We showed that resistance to severe hypoxia defines hierarchical levels within normal hematopoietic populations and that hypoxia modulates the balance between generation of progenitors and maintenance of hematopoietic stem cells (HSC) in favor of the latter. This study deals with the effects of hypoxia (0.1% oxygen) in vitro on Friend's murine erythroleukemia (MEL) cells, addressing the question of whether a clonal leukemia cell population comprise functionally different cell subsets characterized by different hypoxia resistance. To identify leukemia stem cells (LSC), we used the Culture Repopulating Ability (CRA) assay we developed to quantify in vitro stem cells capable of short-term reconstitution (STR). Hypoxia strongly inhibited the overall growth of MEL cell population, which, despite its clonality, comprised progenitors characterized by markedly different hypoxia-resistance. These included hypoxia-sensitive colony-forming cells and hypoxia-resistant STR-type LSC, capable of repopulating secondary liquid cultures of CRA assays, confirming what was previously shown for normal hematopoiesis. STR-type LSC were found capable not only of surviving in hypoxia but also of being mostly in cycle, in contrast with the fact that almost all hypoxia-surviving cells were growth-arrested and with what we previously found for HSC. However, quiescent LSC were also detected, capable of delayed culture repopulation with the same efficiency as STR-like LSC. The fact that even quiescent LSC, believed to sustain minimal residual disease in vivo, were found within the MEL cells indicates that all main components of leukemia cell populations may be present within clonal cell lines, which are therefore suitable to study the sensitivity of individual components to treatments. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

3.
Laser scanning cytometry (LSC) is a powerful tool for qualitative and quantitative analysis of tissue sections in preclinical drug development. LSC combines the strengths of flow cytometry with tissue architecture retention. This technology has been used predominantly with immunofluorescent techniques on cell culture and tissue sections, but recently LSC has shown promise in evaluating chromogenic immunohistochemistry (IHC) and histochemical products in paraffin-embedded and/or frozen tissue sections. Inverted light scatter measurements or a combination of inverted scatter and fluorescence allows automated determination of cell/nuclear counts (e.g., proliferation labeling indices), cell area (e.g., cellular hypertrophy), stromal elements, and labeling intensity (e.g., cytoplasmic/organellar proteins) in chromogen-labeled IHC or histochemical stained sections that correlates well with standard manual quantification methods. Segmentation with autofluorescence or dual immunolabeling facilitates capture of labeling data from specific cell populations. LSC evaluation of HE-stained sections is accomplished using autofluorescence/eosin fluorescence and inverse scatter. A standardized fluorescent approach with archivability, a lack of fluorescence quenching (photobleaching), and amenability to evaluation of multiple markers in a section has been demonstrated using Qdot nanocrystals. Examples of LSC use in chromogenic IHC, routine histopathology, and Qdot labeling will be reviewed, and advantages and disadvantages of this technology will be discussed.  相似文献   

4.
The high frequency of false or irrelevant positive results in in vitro mammalian cell genotoxicity tests is a critical concern for regulators. Here, we tested whether such results may be due to the mammalian cells used in the tests being deficient in p53, which is involved in the maintenance of genomic stability. We compared the in vitro responses of two human lymphoblastoid cell lines derived from the same progenitor cell-p53-competent (TK6) and p53-deficient (WTK-1) cells-in a micronucleus (MN) test and a thymidine kinase gene (TK) mutation assay. We tested 14 chemicals including three mutagens and 11 clastogens and spindle poisons. The three mutagens evoked clear positive responses in both assays in both cell lines. The responses to the clastogens and spindle poisons, on the other hand, depended on the assay endpoint and/or the cell line. Most of clastogens and spindle poisons were positive in the MN test in both cell lines. In the TK mutation assay, on the other hand, WTK-1 cells but not TK6 cells detected spindle poisons, which may have been due to the disturbance of the spindle checkpoint and lack of apoptosis in the p53-deficient cells. Some chemicals that induced chromosome aberrations in rodent cells were negative in both TK6 and WTK-1 cells, indicating that a species-specific factor rather than p53 status was associated with the response. In conclusion, the p53 status did not seriously influence the MN test results but it did influence the TK mutation assay results.  相似文献   

5.
The micronucleus assay is a count of cells containing fragments of nuclear content (micronuclei, MN) that arise during errors in cell division and when animals are exposed to genotoxic agents such as chemicals or radiation. The assay can be performed (via light microscopy) using any nucleated cell type, such as erythrocytes in amphibians, birds, fish, and reptiles. Most prior studies of MN in amphibians have been performed in laboratory settings. The goal of this project was to determine baseline levels of genotoxic stress (i.e., frequency of MN in erythrocytes) in a free-living population of eastern hellbenders (Cryptobranchus alleganiensis alleganiensis, a species of giant salamander that lives in rocky streams) in northern Georgia, USA. We obtained and examined blood smears from 51 hellbenders from eight streams during a 3-month survey (June–August) in 2012. Counts of erythrocytes with MN were made from stained thin blood films and expressed as a percentage of total cells counted (1,000 per animal). Micronuclei were detected in 1.16 % of erythrocytes on average in the hellbenders, and there was a negative relationship between snout–vent length and MN frequency, indicating an age-related increase in clearance of cells with nuclear damage. This relationship with size should be factored into future MN assessments of this and other free-living salamander populations.  相似文献   

6.
The relationship between the formation of micronuclei (MN) followingthe treatment of cell lines with ionizing radiation and theradiation survival of cell lines is important as the MN assayhas the potential to predict radiation survival. Studies investigatingthe relationship have reached conflicting conclusions. We examinedthe relationship between MN formation and radiation survivalmeasured by a clonogenic assay in six lymphoblastoid cell linesover a dose range of 0–2.0 Gy. We did not find a predictiverelationship between the radiation induced MN frequency andthe radiation survival in these cell lines. Possible reasonsfor the lack of correlation include variations in the percentageof scorable cells after irradiation and culture with cytochalasinB, different numbers of cells in the G1 phase of the cell cycleat the time of irradiation, a greater toleration of the lossof MN by hyperdiploid cell lines compared to diploid cell linesand quantitative differences in the conversion of chromosomalfragments into MN for the cell lines.  相似文献   

7.
For many years, the analysis of micronuclei (MN) has been successfully applied to human biomonitoring of in vivo genotoxin exposure and provides a sensitive and relatively easy methodology to assess genomic instability. However, there is a need for automation of MN analysis for rapid, more reliable and non-subjective MN detection. In this review, we evaluate the application of automated image analysis of the in vitro cytokinesis-block MN assay on human lymphocytes for human biomonitoring, starting with the requirements that should be fulfilled by a valid and efficient image analysis system. Considering these prerequisites, we compare the automated facility developed in the framework of the European Union-project NewGeneris with other already published systems for automated scoring of MN. Although the automated scoring of MN is now put into place, extension to other cytome assay end points such as apoptosis, necrosis, nuclear buds and nucleoplasmic bridges would greatly enhance the specificity and sensitivity of future biomonitoring studies. Inclusion of these end points would also allow an automated approach to in vitro genotoxicity testing. In addition, automated scoring of the MN assay in exfoliated buccal cells would be very beneficial for large-scale biomonitoring studies, as cells can be collected in a minimally invasive manner.  相似文献   

8.
One of the main problems of in vitro genotoxicity tests is the inadequate representation of drug metabolizing enzymes in most indicator cell lines which are currently used. We identified recently a human derived liver cell line (Huh6) which detected induction of DNA damage by representatives of different groups of promutagens without enzyme mix and showed that these cells are more suitable in terms of reproducibility and sensitivity as other currently used liver derived lines. We developed a protocol for micronucleus (MN) cytome assays with these cells and validated the procedure in experiments with representatives of different groups of directly and indirectly acting genotoxic carcinogens (MMS, cisplatin, PhIP, IQ, NDMA, B(a)P, AFB1, etoposide, and H2O2). The optimal cytochalasin B concentration in combination with 48 hr treatment was found to be 1.5 μg/mL and leads to a cytokinesis block proliferation index in the range between 1.7 and 2.0. The morphological characteristics of different nuclear anomalies which reflect DNA damage (MN, nuclear bridges, and buds) and their baseline frequencies in untreated cells were characterized, and the rates which are required to cause significant effects were calculated. All compounds caused dose dependent induction of MN when the cells were treated for 24 hr, longer and shorter exposure times were less effective. Experiments with different serum levels (fetal bovine serum [FBS]) showed that 10% FBS in the medium (instead of 4%) causes a substantial increase of the sensitivity of the cells. Our results indicate that the new protocol is a promising approach for routine testing of chemicals. Environ. Mol. Mutagen. 60: 134–144, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.  相似文献   

9.
Rosefort C  Fauth E  Zankl H 《Mutagenesis》2004,19(4):277-284
The human in vitro micronucleus (MN) test has become a fast and reliable assay for mutagenicity testing. Currently, this assay is mostly performed with cytochalasin B, which prevents cytokinesis, resulting in polynucleated cells. The number of nuclei per cell indicates the number of nuclear divisions that have occurred since the addition of cytochalasin B. It is recommended that MN are only counted in binucleated lymphocytes, because these cells have finished one nuclear division. Therefore, almost no attention has been paid to MN in mononucleated cells. However, recent studies have indicated that aneugens, but not clastogens, also induce MN in mononucleates. In order to evaluate mononucleates to distinguish between aneugenic and clastogenic effects, we tested some typical aneugens and clastogens in whole blood lymphocyte cultures of four donors with the cytokinesis block micronucleus (CBMN) assay. Results showed that the aneugens diethylstilbestrol (80 microM), griseofulvin (25 microg/ml) and vincristine sulphate (15 microg/ml) increased MN frequencies in mononucleated and binucleated cells, whilst the clastogens mitomycin C (500 ng/ml), bleomycin (6 microg/ml) and doxorubicin (20 microg/ml) increased MN frequency only in binucleates. We also tested the Y heterochromatin decondensing drug berenil (300 microg/ml). Berenil induced an extremely high number of MN in mononucleated as well as in binucleated cells, indicating an aneugenic action. This was confirmed by centromere labelling. The results suggest that MN in mononucleates may be an interesting additional parameter in the CBMN assay. Future studies should clarify whether the micronucleated mononucleate cells have escaped the cytokinesis block and become polyploid.  相似文献   

10.
To investigate the chromosomal radiosensitivity of lymphocytes in cancer patients the micronucleus (MN) assay is often used and performed on freshly drawn peripheral blood lymphocytes. The use of Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines may have a lot of advantages (e.g. large pool of cells) compared with fresh blood samples. In this study we have investigated whether the response of EBV-transformed lymphoblastoid cell lines to irradiation in the G1/S/G2 phases of the cell cycle is the same as in concordant whole blood cultures where primary lymphocytes were irradiated in the G0 phase of the cell cycle. For this study the MN assay (2 Gy) was performed on EBV-transformed cell lines of breast cancer patients and a group of healthy women. Those breast cancer patients were selected who showed an elevated chromosomal radiosensitivity in fresh blood samples in a previous study. The results demonstrated that the enhanced chromosomal radiosensitivity observed in fresh blood cultures of breast cancer patients is not present in EBV-transformed cell lines derived from the same blood samples. Therefore, care must be taken when EBV cell lines are used to assess chromosomal radiosensitivity in breast cancer patients.  相似文献   

11.
Four separate assays of human antibody reactivity to four separate normal and malignant human tissue culture cell lines from two patients have been evaluated using a single highly-reactive allogeneic serum. The visual and end-point cytolysis assay and the 51Chromium release assay were equally sensitive in measuring complement mediated antibody cytoxicity and both were far more sensitive than a trypan blue dye exclusion assay. The assay of antibody reactivity by hemadsorption technique was about 10 times more sensitive than any of the cytotoxicity assays. This latter assay measures only IgG antibody however. These assays showed that cell lines from different patients may differ greatly in 'reactivity' to an allogeneic serum and emphasized the importance of utilizing tumor and normal cells from the same patient when using tissue culture cells to search for tumor specific reactivity. These observations emphasize the importance of utilizing multiple assays against paired normal and malignant cells from the same patient to be certain of the specificity and magnitude of the measured antibody.  相似文献   

12.
Micronucleus (MN) formation has been used extensively as a biomarker of damage from genotoxic exposures. The Buccal MN Cytome (BMCyt) assay provides a noninvasive means of quantifying MN frequency in humans, but it has not been developed for use in wildlife. We adapted the BMCyt assay for use in wild birds, with a focus on feral pigeons (Columba livia) as a potential indicator species. Five of six urban bird species sampled using oral cavity swabs produced sufficient buccal cells for the BMCyt assay. The body size of species sampled ranged almost 100-fold (~60 to 5,000 g), but was a not major factor influencing the number of buccal cells collected. Pigeon cells were stained and scored following published BMCyt assay protocols for humans, but with a modified fixation approach using heat and methanol. Pigeons had the same common nuclear abnormalities reported in human studies, and a similar background MN formation frequency of 0.88 MN/1,000 cells. Adult pigeons had on average a threefold higher rate of MN formation than juveniles, and males had a 1.4- to 2.2-fold higher frequency than females. Domestic and feral pigeons did not differ in overall MN frequency. Our results indicate that the BMCyt assay can be used on wild birds, and could provide a means of assessing environmental genotoxicity in pigeons, a useful indicator species. However, bird age and sex are important factors affecting background MN frequency, and thereby the design of environmental studies.  相似文献   

13.
The International Human Micronucleus (HUMN) Project (www.humn.org) was founded in 1997 to coordinate worldwide research efforts aimed at using micronucleus (MN) assays to study DNA damage in human populations. The central aims were to (i) collect databases on baseline MN frequencies and associated methodological, demographic, genetic and exposure variables, (ii) determine those variables that affect MN frequency, (iii) establish standardised protocols for performing assays so that data comparisons can be made more reliably across laboratories and countries and (iv) evaluate the association of MN frequency with disease outcomes both cross-sectionally and prospectively. In the first 10 years of the HUMN project, all of these objectives were achieved successfully for the MN assay using the cytokinesis-block micronucleus (CBMN) assay in human peripheral blood lymphocytes and the findings were published in a series of papers that are among the most highly cited in the field. The CBMN protocol and scoring criteria are now standardised; the effect of age, gender and smoking status have been defined, and it was shown prospectively using a database of almost 7000 subjects that an increased MN frequency in lymphocytes predicts cancer risk. More recently in 2007, the HUMN coordinating group decided to launch an equivalent project focussed on the human MN assay in buccal epithelial cells because it provides a complementary method for measuring MN in a tissue that is easily accessible and does not require tissue culture. This new international project is now known as the human MN assay in exfoliated cells (HUMN(xL)). At present, a database for >5000 subjects worldwide has been established for the HUMN(xL) project. The inter-laboratory slide-scoring exercise for the HUMN(xL) project is at an advanced stage of planning and the analyses of data for methodological, demographic, genetic, lifestyle and exposure variables are at a final stage of completion. Future activities will be aimed at (i) defining the genetic variables that affect MN frequencies, (ii) validation of the various automated scoring systems based on image analysis, flow cytometry and laser scanning cytometry, (iii) standardisation of protocols for scoring micronuclei (MNi) in cells from other tissues, e.g. erythrocyte and nasal cells and (iv) prospective association studies with pregnancy complications, developmental defects, childhood cancers, cardiovascular disease and neurodegenerative diseases.  相似文献   

14.
In research, pharmacologic drug-screening and medical diagnostics, the trend towards the utilization of functional assays using living cells is persisting. Research groups working with living cells are confronted with the problem, that common endpoint measurement methods are not able to map dynamic changes. With consideration of time as a further dimension, the dynamic and networked molecular processes of cells in culture can be monitored. These processes can be investigated by measuring several extracellular parameters. This paper describes a high-content system that provides real-time monitoring data of cell parameters (metabolic and morphological alterations), e.g., upon treatment with drug compounds. Accessible are acidification rates, the oxygen consumption and changes in adhesion forces within 24 cell cultures in parallel. Addressing the rising interest in biomedical and pharmacological high-content screening assays, a concept has been developed, which integrates multi-parametric sensor readout, automated imaging and probe handling into a single embedded platform. A life-maintenance system keeps important environmental parameters (gas, humidity, sterility, temperature) constant.  相似文献   

15.
To investigate the potential genetic changes underlying the progression of human hormone-resistant prostate cancer, we related chromosomal alterations of the DU 145 cell line and a subline isolated form a metastasis in an orthotopic model to tumorigenicity, metastasis and chemoresistance. In 15 mice 1 x 10(5) DU 145 cells were injected into the dorsal prostate. From a resulting paraaortic lymphnode metastasis, we isolated a subline (DU 145 MN1), which was injected into 15 nude mice. The sulforhodamine B (SRB) assay was used to analyze cell doubling time and the IC(50) of cisplatin and 5-fluorouracil for both cell lines. Cytogenetic characterization was performed with conventional karyotype analysis and fluorescence in situ hybridization (FISH). After orthotopic implantation of DU 145 cells tumorigenicity was 100% whereas only 2 mice revealed lymphnode metastases. In contrast, the take rate after implantation of DU 145 MN1 was 100%, with lymphnode metastases in 7 mice. The SRB assay revealed a 8-fold increased IC(50) for cisplatin and a 2.5-fold increase for 5-FU in DU 145 MN1 as compared to DU 145 cells. There was gain of a chromosome 8 and only two copies of chromosome 17 in the DU 145 MN1 cells as compared to the parental cell line. The emergence of an i(9)(q10) in addition to two normal chromosome 9 homologues in the DU 145 MN1 cell line was confirmed by FISH using a chromosome 9-specific painting probe. In summary, clonal evolution of the chromosomal changes following repeated orthotopic implantation, may assist in locating the genes involved in the progression and chemoresistance of human hormone-resistant prostate cancer.  相似文献   

16.
Micronuclei (MN) frequencies in peripheral blood lymphocytes have been used worldwide as a biomarker of chromosomal damage for genotoxicity testing and biomonitoring studies. Automation of MN analysis would provide faster and more reliable results with minimizing subjective MN identification. We developed an automated facility for the scoring of the in vitro MN cytokinesis-block assay for biomonitoring on Giemsa-stained slides, fulfilling the following criteria: applicable to the cytokinesis-block micronucleus methodology, discriminating between mono-, bi- and polynucleated cells, MN scoring according to HUMN scoring criteria, false-negative MN rate <10% and false-positive (FP) MN rate <1%. We first adapted the slide preparation protocol to obtain an optimal cell density and dispersion, which is important for image analysis. We developed specific algorithms starting from the cell as a detection unit. The whole detection and scoring process was separated into two distinct steps: in the first step, the cells and nuclei are detected; then, in the second step, the MN are searched for in the detected cells. Since the rate of FP MN obtained by the automatic analysis was in the range of 0.5-1.5%, an interactive visual validation step was introduced, which is not time consuming and allows quality control. Validation of the automated scoring procedure was undertaken by comparing the results of visual and automated scoring of micronucleated mono- and binucleated cells in human lymphocytes induced by two clastogens (ionizing radiation and methyl methane-sulphonate), two aneugens (nocodazole and carbendazim) and one apoptogen (staurosporine). Although the absolute MN frequencies obtained with automated scoring were lower as compared to those detected by visual scoring, a clear dose response for MNBN frequencies was observed with the automated scoring system, indicating that it is able to produce biologically relevant and reliable results. These observations, together with its ability to detect cells, nuclei and MN in accordance with the HUMN scoring criteria, confirm the usability of the automated MN analysis system for biomonitoring.  相似文献   

17.
18.
Automated analysis and recognition of cell-nuclear phases using fluorescence microscopy images play an important role for high-content screening. A major task of automated imaging based high-content screening is to segment and reconstruct each cell from the touching cell images. In this paper we present new useful method for recognizing morphological structural models of touching cells, detecting segmentation points, determining the number of segmented cells in touching cell image, finding the related data of segmented cell arcs and reconstructing segmented cells. The conceptual frameworks are based on the morphological structures where a series of structural points and their morphological relationships are established. Experiment results have shown the efficient application of the new method for analysis and recognition of touching cell images of high-content screening.  相似文献   

19.
The human lymphocyte micronucleus (MN) assay is relatively insensitive to genotoxic agents that predominantly induce excision-repairable lesions such as adducts and abasic sites. In this study we have explored the possibility of using cytosine arabinoside (ARA) to convert excision-repairable DNA lesions to micronuclei (MN) within one cell cycle. The system consisted of human lymphocytes as target cells, the cytokinesis-block (CB) method for identifying cells that had completed one nuclear division only, and X-rays, methylnitrosourea (MNU), and ultraviolet light (UV) as mutagens. With each mutagen we have observed significant increments in induced MN in the cultures that had also been treated with ARA during G1. The slope of the dose-response curves for induction of MN was increased by a factor of approximately 1.8 for X-rays and 10.3 for UV and significant MNU induction of MN was only achieved in the cultures treated with ARA. Furthermore, a 24-hr gap between mutagen exposure and the start of the assay did not abolish the increased sensitivity in the cultures treated with ARA. These observations suggested that the combined ARA and cytokinesis-block micronucleus (CBMN) method may enhance the detection of exposure to genotoxic agents that predominantly induce excision-repairable lesions.  相似文献   

20.
The selection of appropriate techniques to assay for markers of cell activity is important for obtaining optimal results in cell culture-based research. This paper is intended as a guide to many of the assays currently available and new techniques that have been recently introduced in the literature. This paper addresses both manual assay techniques, including the use of hemocytometers, phase contrast microscopy, cell staining, and the immunofluorescent antibody assay (IFA), and automated assays for cell activity, including stained optical density, proliferating cell nuclear antigen, creatine kinase assay, DNA quantification, electronic cell counting, flow cytometry, magnetic cell sorting, image analysis, chemiluminescence, radioisotope labeling, precursor incorporation, in-situ hybridization/ligand binding, and enzyme-linked immuno-culture assay (ELICA). Advantages/disadvantages and applicability of these assays to different areas of cell culture research are discussed, and guidelines for selecting an appropriate assay are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号