首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phasic and tonic inhibitory currents of hippocampal pyramidal neurons exhibit distinct pharmacological properties. Picrotoxin and bicuculline methiodide inhibited both components, consistent with a role for GABAA receptors; however, gabazine, at a concentration that abolished miniature GABAergic inhibitory postsynaptic currents and responses to exogenous GABA, had no effect on tonic currents. Because all GABA-activated GABAA receptors in pyramidal neurons are gabazine-sensitive, it follows that tonic currents are not GABA-activated. Furthermore, picrotoxin-sensitive spontaneous single-channel events recorded from outside-out patches had the same chord conductance as GABA-activated channels and were gabazine-resistant. Therefore, we hypothesize that GABAA receptors, constitutively active in the absence of GABA, mediate tonic current; the failure of gabazine to block tonic current reflects a lack of negative intrinsic efficacy of the antagonist. We compared the negative efficacies of bicuculline and gabazine using the general anesthetic propofol to directly activate GABAA receptors native to pyramidal neurons or alpha1beta3gamma2 receptors recombinantly expressed in human embryonic kidney 293 cells. Propofol activated gabazine-resistant, bicuculline-sensitive currents when applied to either preparation. Although gabazine had negligible efficacy as an inhibitor of propofol-activated currents, it prevented inhibition by bicuculline, which acts as an inverse agonist inhibiting GABA-independent gating. Recombinant alpha1beta1/3gamma2 receptors also mediated agonist-independent tonic currents that were resistant to gabazine and inhibited by bicuculline. Thus, gabazine is a competitive antagonist with negligible negative efficacy and is therefore unable to inhibit GABAA receptors that are active in the absence of GABA because of either anesthetic or spontaneous gating. Moreover, spontaneously active GABAA receptors mediate gabazine-resistant tonic currents in pyramidal neurons.  相似文献   

2.
In the hippocampus, two distinct forms of GABAergic inhibition have been identified, phasic inhibitory postsynaptic currents that are the consequence of the vesicular release of GABA and a tonic conductance that is activated by low ambient concentrations of extracellular GABA. It is not known what accounts for the distinct properties of receptors that mediate the phasic and tonic inhibitory conductances. Moreover, the physiological role of the tonic inhibitory conductance remains uncertain because pharmacological tools that clearly distinguish tonic and phasic receptors are lacking. Here, we demonstrate that GABAA receptors that generate a tonic conductance in cultured hippocampal neurons from embryonic mice have different pharmacological properties than those in cerebellar granule neurons or pyramidal neurons in the dentate gyrus. The tonic conductance in cultured hippocampal neurons is enhanced by the benzodiazepine, midazolam, and is insensitive to the inhibitory effects of the competitive antagonist, gabazine (< or =10 microM). We also identify penicillin as an uncompetitive antagonist that selectively inhibits the synaptic but not tonic conductance. GABA was applied to hippocampal neurons to investigate the properties of synaptic and extrasynaptic receptors. GABA-evoked current was composed of two components: a rapidly desensitizing current that was blocked by penicillin and a nondesensitizing current that was insensitive to penicillin blockade. The potency of GABA was greater for the penicillin-insensitive nondesensitizing current. Single-channel studies show that the gabazine-insensitive GABAA receptors have a lower unitary conductance (12 pS) than that estimated for synaptic receptors. Thus, specialized GABAA receptors with an apparent higher affinity for GABA that do not readily desensitize mediate the persistent tonic conductance in hippocampal neurons. The receptors underlying tonic and phasic inhibitory conductances in hippocampal neurons are pharmacologically and biophysically distinct, suggesting that they serve different physiological roles.  相似文献   

3.
Metabotropic gamma-aminobutyric acid receptors (GABA(B)Rs) play a critical role in inhibitory synaptic transmission in the hippocampus but the ontogeny of their subunit synthesis and synaptic localisation has not been determined. Here we report the distributions and developmental profiles of GABA(B1) and GABA(B2) subunits in cultured rat embryonic hippocampal neurons. Limited levels of GABA(B1) and GABA(B2) immunoreactivity were present at 3 days in vitro (DIV). At 7 DIV, when baclofen-evoked inwardly rectifying K(+) channel-mediated responses first appear in the cells, there was a more widespread expression within the soma and proximal dendrites. Levels of the K(+) channel GIRK 1 were relatively constant at all time points suggesting channel availability does not limit the appearance of functional GABA(B)Rs. At 14 DIV the staining displayed a punctate dendritic distribution and near maximal GABA(B)R-mediated electrophysiological responses were obtained. About half of the puncta for each GABA(B)R subunit in dendrites co-localised with the synaptic marker SV2a suggesting that these subunits are at or very near to synapses. Interestingly, at all ages strong GABA(B)R immunoreactivity was also present in the nuclei of neurons. These results provide an important developmental baseline for future studies aimed at investigating, for example, the trafficking and functional regulation of these receptors.  相似文献   

4.
Miltirone, a tanshinone isolated from the root of Salvia miltiorrhiza, has been characterized as a low-affinity ligand for central benzodiazepine receptors. We have now shown that this compound bound with low affinity (micromolar range) to central benzodiazepine recognition sites but did not interact with peripheral benzodiazepine receptors. It failed to potentiate Cl(-) currents induced by gamma-aminobutyric acid (GABA) both in Xenopus oocytes expressing recombinant human GABA(A) receptors and in cultured rat hippocampal pyramidal cells, but it inhibited the ability of diazepam to potentiate the effect of GABA in these systems. Miltirone (1-10 microM) also partially inhibited the increase in the abundance of the mRNA for the alpha(4) subunit of the GABA(A) receptor induced by ethanol withdrawal in cultured hippocampal neurons. These results suggest that miltirone might ameliorate the symptoms associated with discontinuation of long-term administration of ethanol or of other positive modulators of the GABA(A) receptor.  相似文献   

5.

Background and Purpose

The histaminergic tuberomamillary nucleus (TMN) of the posterior hypothalamus controls the cognitive aspects of vigilance which is reduced by common sedatives and anxiolytics. The receptors targeted by these drugs in histaminergic neurons are unknown. TMN neurons express nine different subunits of the GABAA receptor (GABAAR) with three α- (α1, α2 and α5) and two γ- (γ1, γ 2) subunits, which confer different pharmacologies of the benzodiazepine-binding site.

Experimental Approach

We investigated the actions of zolpidem, midazolam, diazepam, chlordiazepoxide, flumazenil (Ro15-1788) and methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM) in TMN neurons using mouse genetics, electrophysiological and molecular biological methods.

Key Results

We find the sensitivity of GABAAR to zolpidem, midazolam and DMCM significantly reduced in TMN neurons from γ2F77I mice, but modulatory activities of diazepam, chlordiazepoxide and flumazenil not affected. Potencies and efficacies of these compounds are in line with the dominance of α2- and α1-subunit containing receptors associated with γ2- or γ1-subunits. Functional expression of the γ1-subunit is supported by siRNA-based knock-down experiments in γ2F77I mice.

Conclusions and Implications

GABAAR of TMN neurons respond to a variety of common sedatives with a high affinity binding site (γ2F77I) involved. The γ1-subunit likely contributes to the action of common sedatives in TMN neurons. This study is relevant for understanding the role of neuronal histamine and benzodiazepines in disorders of sleep and metabolism.

Linked Articles

This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2013.170.issue-1  相似文献   

6.
Neurosteroids, GABAA receptors, and ethanol dependence   总被引:3,自引:0,他引:3  
Rationale Changes in the expression of type A receptors for γ-aminobutyric acid (GABA) represent one of the mechanisms implicated in the development of tolerance to and dependence on ethanol. The impact of such changes on the function and pharmacological sensitivity of GABAA receptors (GABAARs) has remained unclear, however. Certain behavioral and electrophysiological actions of ethanol are mediated by an increase in the concentration of neuroactive steroids in the brain that results from stimulation of the hypothalamic–pituitary–adrenal (HPA) axis. Such steroids include potent modulators of GABAAR function.Objectives We have investigated the effect of ethanol exposure and withdrawal on subunit expression and receptor function evaluated by subunit selective compounds, as well as the effects of short-term exposure to ethanol on both neurosteroid synthesis and GABAAR function, in isolated neurons and brain tissue.Results Chronic treatment with and subsequent withdrawal from ethanol alter the expression of genes for specific GABAAR subunits in cultured rat neurons, and these changes are associated with alterations in receptor function and pharmacological sensitivity to neurosteroids, zaleplon, and flumazenil. Acute ethanol exposure increases the amount of 3α-hydroxy-5α-pregnan-20-one (allopregnanolone) in hippocampal slices by a local action independent of the activity of the HPA axis. This effect of ethanol was associated with an increased amplitude of GABAAR-mediated miniature inhibitory postsynaptic currents recorded from CA1 pyramidal neurons in such slices.Conclusions Chronic ethanol exposure elicits changes in the subunit composition of GABAARs, which, in turn, likely contribute to changes in receptor function associated with the altered pharmacological and behavioral sensitivity characteristic of ethanol tolerance and dependence. Ethanol may also modulate GABAAR function by increasing the de novo synthesis of neurosteroids in the brain in a manner independent of the HPA axis. This latter mechanism may play an important role in the central effects of ethanol.  相似文献   

7.
The agonist actions of two AMPA receptor analogues, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) and (RS)-2-amino-3-(3-hydroxy-5-trfluoromethyl-4-isoxazolyl)prop ionic acid (Tri-F-AMPA) have been studied on cultured rat hippocampal neurons. Whole-cell recordings with semi-rapid application of the agonists were used to study steady-state (plateau) responses. ACPA was the most potent agonist (EC50, 1.2 microM), followed by AMPA (4.3 microM) and Tri-F-AMPA (4.6 microM), corresponding to a potency ratio of 4:1:1. Hill coefficients were close to 1 for AMPA and ACPA and close to 2 for Tri-F-AMPA, respectively. Plateau responses to maximal concentrations of the three agonists varied more than 2-fold. ACPA responses were 2.1 times greater and responses to Tri-F-AMPA were 1.6 times greater than responses to AMPA, respectively. Peak responses and desensitization were studied by using a fast piezoelectric device to apply agonists rapidly to outside-out patches. The time constants of desensitization were 8 ms for AMPA, 12 ms for Tri-F-AMPA and 17 ms for ACPA. There were no significant differences in the time-to-peak and 10-90% rise-time of the responses. The results indicate that of the three agonists tested, ACPA is the most potent at AMPA receptors expressed in cultured hippocampal neurons and that the maximum response to the agonists is inversely related to the rate of desensitization.  相似文献   

8.
Hypothermia is a powerful neuroprotective method when induced following cardiac arrest, stroke, and traumatic brain injury. The physiological effects of hypothermia are multifaceted and therefore a better knowledge of its therapeutic targets will be central to developing innovative combination therapies to augment the protective benefits of hypothermia. Altered neuronal calcium dynamics have been implicated following stroke, status epilepticus and traumatic brain injury. This study was therefore initiated to evaluate the effect of hypothermia on various modes of calcium entry into a neuron. Here, we utilized various pharmacological agents to stimulate major routes of calcium entry in primary cultured hippocampal neurons. Fluorescent calcium indicator Fura-2AM was used to compare calcium ratio under normothermic (37 °C) and hypothermic (31 °C) conditions. The results of this study indicate that hypothermia preferentially reduces calcium entry through N-methyl-D-aspartate receptors and ryanodine receptors. Hypothermia, on the other hand, did not have a significant effect on calcium entry through the voltage-dependent calcium channels or the inositol tri-phosphate receptors. The ability of hypothermia to selectively affect both N-methyl-D-aspartate receptors and ryanodine receptors-mediated calcium systems makes it an attractive intervention for alleviating calcium elevations that are present following many neurological injuries.  相似文献   

9.
The influence of the xanthohumol from Humulus lupulus L. on the binding of muscimol-Alexa Fluor 532 (Mu-Alexa), a fluorescently labeled GABAA receptor agonist, was studied by fluorescence correlation spectroscopy. An incubation of hippocampal neurons with 75 nM of xanthohumol increased the specific Mu-Alexa binding by approximately 17%, which was selectively found in GABAA receptor Mu-Alexa complexes with hindered lateral mobility [D(bound2) = (0.11 +/- 0.03) microm2/s] as described with midazolam.  相似文献   

10.
The N-methyl-D-aspartate (NMDA) receptor has been implicated as a putative sight of action for acamprosate, a novel drug that reduces craving for alcohol. The purpose of this study was to assess the effect of acamprosate on the function of native NMDA receptors expressed in primary cultured striatal and cerebellar granule cells, as well as ethanol inhibition and spermine modulation of these receptors, using whole-cell patch-clamp electrophysiological techniques. Under all circumstances, acamprosate (0.1-300 microM) did not alter NMDA- or glutamate-induced currents. Acamprosate did not alter the inhibitory effects of ethanol (10-100 mM) on receptor function. In a subpopulation of striatal neurons, acamprosate did reverse the potentiating effects of spermine. These findings indicate that although acamprosate may modify polyamine modulation of the NMDA receptor, acamprosate alone does not alter receptor function nor does it modify ethanol inhibition of this receptor expressed in primary cultured striatal and cerebellar granule neurons.  相似文献   

11.
Prenatal toluene exposure may lead to significant developmental neurotoxicity known as fetal solvent syndrome. Emerging evidence suggests that toluene embryopathy may arise from an elusive deviation of the neurogenesis process. One key event during neural development is synaptogenesis, which is essential for the progression of neuronal differentiation and the establishment of neuronal network. We therefore aim to test the hypothesis that toluene may interfere with synaptogenesis by applying toluene to cultured hippocampal neurons dissected from embryonic rat brains. In the presence of toluene, hippocampal neurons displayed a significant loss of the immunostaining of synapsin and densin-180 punctas. Notably, a dramatic reduction was also discerned for the colocalization of the two synaptic markers. Moreover, Western blotting analyses revealed that toluene exposure resulted in considerable down-regulation of the expression of synapse-specific proteins. None of the preceding observations can be attributed to toluene-induced cell death effects, since toluene treatments failed to affect the viability of hippocampal neurons. Overall, our data are consistent with the idea that toluene may alter the expression and localization of essential synaptic proteins, thereby leading to a disruption of synapse formation and maintenance.  相似文献   

12.
Channels were activated, in ripped-off patches from rat-cultured hippocampal neurons, by propofol alone, propofol plus 0.5 μM GABA (γ-aminobutyric acid) or GABA alone. The propofol-activated currents were chloride-selective, showed outward-rectification and were enhanced by 1 μM diazepam. The maximum propofol-activated channel conductance increased with propofol concentration from less than 15 pS (10 μM) to about 60 pS (500 μM) but decreased to 40 pS in 1 mM propofol. Fitting the data from 10 to 500 μM propofol with a Hill-type equation gave a maximum conductance of 64 pS, an EC50 value of 32 μM and a Hill coefficient of 1.1. Addition of 0.5 μM GABA shifted the propofol EC50 value to 10 μM and increased the maximum channel conductance to about 100 pS. The Hill coefficient was 0.8. The maximum channel conductance did not increase further when 1 μM diazepam was added together with a saturating propofol concentration and GABA. The results are compared to effects other drugs have on GABAA channels conductance.  相似文献   

13.
P2X7 receptors have been suggested to be located both on neurons and astrocytes of the central and peripheral nervous systems. In the present Ca2+-imaging and patch-clamp study, we reinvestigated these findings on mixed neuronal–astrocytic cell cultures prepared from embryonic or newborn rat hippocampi. We found in a Mg2+-free bath medium that the prototypic P2X7 receptor agonist dibenzoyl-adenosine triphosphate (Bz-ATP) increased the intracellular Ca2+ concentration ([Ca2+]i) both in the neuronal cell bodies and in their axo-dendritic processes only to a very minor extent. However, Bz-ATP produced marked [Ca2+]i transients in the neuronal processes, when they grew above a glial carpet, which was uniformly sensitive to Bz-ATP. These glial signals might be misinterpreted as neuronal responses because of the poor focal discrimination by a fluorescent microscope. Most astrocytes had a polygonal shape without clearly circumscribable boundaries, but a subgroup of them had neuron-like appearance. The cellular processes of this astrocytic subgroup, just as their cell somata and their polygonal counterparts, appeared to possess a high density of functional P2X7 receptors. In contrast to astrocytes, in a low Ca2+/no Mg2+-containing bath medium, hippocampal neurons failed to respond to Bz-ATP with membrane currents. In addition, neither the amplitude nor the frequency of spontaneous excitatory postsynaptic currents, representing the quantal release of glutamate, was modified by Bz-ATP. We conclude that cultured hippocampal neurons, in contrast to astrocytes, possess P2X7 receptors, if at all, only at a low density.  相似文献   

14.
目的:观察不同浓度脑源性神经营养因子(BDNF)对大鼠海马神经元γ-氨基丁酸(GABA)A受体效应的影响。方法:原代培养海马神经元,应用BDNF(100、300及1000 ng/L)处理20 min后,施加GABA(终浓度为100μmol/L),5 min后应用流式细胞仪测定细胞内钙离子浓度。采用全细胞膜片钳记录模式,向锥体细胞施加BDNF(100、300及1000 ng/L)2 min,再施加GABA 100μmol/L并持续5 s,记录钳制电位为-60 mV时的GABAA受体电流。将神经元钳制电位从-100 mV至0 mV以10 mV递增,记录BDNF作用下GABAA受体电流的幅度和方向,并绘制电流电压曲线,计算GABAA受体电流的反转电位。结果:BDNF 100 ng/L和300 ng/L对GABA诱发的细胞内钙浓度、GABAA受体电流及反转电位均无影响,但在BDNF 1000 ng/L作用下,GABA诱发的细胞内钙浓度显著增加(P<0.05),GABAA受体电流在钳制电位-60 mV时变为外向电流,并且反转电位由对照的0 mV左移至-93 mV。结论:高浓度BDNF可使GABAA受体电流反转电位左移,导致GABA诱发锥体细胞内钙浓度增高而发挥兴奋效应。  相似文献   

15.
1. The diuretic amiloride is known to modulate the activity of several types of ion channels and membrane receptors in addition to its inhibitory effects on many ion transport systems. However, the effects of amiloride on some important ion channels and receptors, such as GABAA receptors, in the central nervous system have not been characterized. 2. In the present study, we investigated the functional action of amiloride on native GABAA receptors in cultured neurons of rat inferior colliculus using whole‐cell patch‐clamp recordings. 3. Amiloride reversibly inhibited the amplitude of the GABA‐induced current (IGABA) in a concentration‐dependent manner (IC50 454 ± 24 μmol/L) under conditions of voltage‐clamp with a holding potential at ?60 mV. The inhibition depended on drug application mode and was independent of membrane potential. Amiloride did not change the reversal potential of IGABA. Moreover, amiloride induced a parallel right‐ward shift in the concentration–response curve for IGABA without altering the maximal value and Hill coefficient. 4. The present study shows that amiloride competitively inhibits the current mediated by native GABAA receptors in the brain region, probably via a direct action on GABA‐binding sites on the receptor. The findings suggest that the functional actions of amiloride on GABAA receptors may result in possible side‐effects on the central nervous system in the case of direct application of this drug into the cerebrospinal fluid for treatment of diseases such as brain tumours.  相似文献   

16.
Endocannabinoids block status epilepticus in cultured hippocampal neurons   总被引:3,自引:0,他引:3  
Status epilepticus is a serious neurological disorder associated with a significant morbidity and mortality. Antiepileptic drugs such as diazepam, phenobarbital and phenytoin are the mainstay of status epilepticus treatment. However, over 20% of status epilepticus cases are refractory to the initial treatment with two or more antiepileptic drugs. Endocannabinoids have been implicated as playing an important role in regulating seizure activity and seizure termination. This study evaluated the effects of the major endocannabinoids methanandamide and 2-arachidonylglycerol (2-AG) on status epilepticus in the low-Mg(2+) hippocampal neuronal culture model. Status epilepticus in this model was resistant to treatment with phenobarbital and phenytoin. Methanandamide and 2-AG inhibited status epilepticus in a dose-dependent manner with an EC(50) of 145+/-4.15 nM and 1.68+/-0.19 microM, respectively. In addition, the anti-status epilepticus effects of methanandamide and 2-AG were mediated by activation of the cannabinoid CB(1) receptor since they were blocked by the cannabinoid CB(1) receptor antagonist AM251. These results provide the first evidence that the endocannabinoids, methanandamide and 2-AG, are effective inhibitors of refractory status epilepticus in the hippocampal neuronal culture model and indicate that regulating the endocannabinoid system may provide a novel therapeutic approach for treating refractory status epilepticus.  相似文献   

17.
Vignes M 《Neuropharmacology》2001,40(6):737-748
The regulation of gamma-aminobutyric acid (GABA)-mediated spontaneous inhibitory synaptic transmission by endogenously released glutamate was studied in cultured rat hippocampal neurons. After 7 days in vitro (DIV), both spontaneous excitatory postsynaptic currents (sEPSCs) and spontaneous inhibitory postsynaptic currents (sIPSCs) could be detected. After 15 DIV, most postsynaptic spontaneous currents occurred as sEPSC/sIPSC sequences when recorded at a holding voltage of -30 mV. In the presence of the glutamate alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subtype antagonist LY303070, both the frequency and amplitude of sIPSC were strongly and reversibly reduced. The N-methyl-D-aspartate (NMDA) receptor antagonist, 2-amino-5-phosphonopentanoic acid (AP5), had no effect on sIPSC while cyclothiazide strongly increased sIPSC frequency. Under blockade of AMPA receptors, the kainate- and GluR5-selective kainate receptor agonists, (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid) (ATPA) and (S)-5-iodowillardiine (5IWill), induced a large enhancement of the frequency of small-amplitude sIPSC which was blocked by the non-NMDA receptor antagonist, 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX). All of these effects were sensitive to tetrodotoxin (TTX). In the presence of LY303070 and TTX, kainate could induce a small inward current while GluR5 agonists had no effect. In the presence of NMDA and AMPA receptor antagonists, the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (t-PDC) could restore sIPSC. When NBQX was used as an AMPA antagonist, the stimulatory effect of t-PDC was blocked while the group I metabotropic glutamate agonist, 3,5-dihydroxyphenylglycine (DHPG), induced a strong enhancement of sIPSC. Therefore, both AMPA and kainate receptors can regulate inhibitory synaptic transmission in cultured hippocampal neurons, the former by tonic activation, the latter when the glutamate concentration is increased by impairing glutonate uptake.  相似文献   

18.
We investigated the effect of hypoxia on beta-amyloid (Abeta)-induced apoptosis in rat cultured hippocampal neurons. Abeta (25 microM for 48 h) decreased the number of neuronal cells and increased the number of TUNEL-positive cells. Hypoxia (6 h) also decreased the number of neuronal cells, but did not increase the number of TUNEL-positive cells. Moreover, combined treatment with both Abeta and hypoxia (Abeta/hypoxia) significantly enhanced the decrease in the number of neuronal cells and the increase in the number of TUNEL-positive cells. Z-Asp-CH(2)-DCB, an inhibitor of interleukin-1beta-converting enzyme (ICE), or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-N-methyl-D-aspartate (non-NMDA) receptor antagonist, decreased the number of TUNEL-positive cells with Abeta/hypoxia. These findings suggest that ischemia or hypoxia is an important factor that facilitates the symptoms of Alzheimer's disease and that non-NMDA receptors are involved in the induction of apoptosis in patients suffering from both cerebrovascular disease and Alzheimer's disease.  相似文献   

19.
GABAA receptors are sensitive to ethanol in distinct brain regions and are clearly involved in the acute actions of ethanol, ethanol tolerance, ethanol dependence and ethanol self-administration. Data from a variety of perspectives such as molecular, cellular and behavioral analysis have elucidated the role of GABAA receptors in these processes. GABAA receptor activation mediates many of the behavioral effects of ethanol including motor incoordination, anxiolysis and sedation. The actions of ethanol at GABAA receptors are influenced by endogenous modulators such as the neuroactive steroids. Sensitization to these compounds influences ethanol dependence and withdrawal and may explain gender differences in the molecular effects of ethanol. Furthermore, GABAA receptors may also play a role in ethanol self-administration via the mesolimbic reward system. Ethanol tolerance and dependence may be explained, in part, by changes in the function of GABAA receptors. We have proposed that alterations in native GABAA receptor subunit assembly could alter the functional properties of these receptors. However, post-translational modifications or other post-synaptic mechanisms may also explain changes in GABAA receptor function. Genetic animal models of ethanol dependence have also identified GABAA receptor genes as likely mediators of the behavioral adaptations associated with ethanol dependence and withdrawal. A better understanding of the effects of ethanol at GABAA receptors has highlighted important potential mechanisms involved in the development of alcoholism. Received: 17 December 1997/Final version: 6 February 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号