首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Obstructive sleep apnoea (OSA) is characterized by periods of upper airway collapse accompanied by repeated episodes of hypoxia. In experimental animals repeated bouts of hypoxia may evoke sustained augmentation of phrenic nerve activity, known as phrenic long‐term facilitation (pLTF). This form of physiological compensation might contribute to stable breathing, minimizing the occurrence of apnoeas and/or hypopnoeas during sleep in patients with OSA. Serotonin (5‐HT) has been shown to modulate respiratory neuronal activity, possibly via projections originating in the raphe nuclei. Our model focuses on the effects of 5‐HT1A receptors blockade by selective antagonist WAY‐100635 into the caudal raphe region on phrenic long‐term facilitation after exposure to acute intermittent hypoxia (AIH) episodes. Adult, male, urethane‐anaesthetized, vagotomized, paralyzed and mechanically ventilated Sprague–Dawley rats were exposed to AIH protocol. Experimental group received microinjection of WAY‐100635 into the caudal raphe nucleus, whereas the control group received saline into the same site. Peak phrenic nerve activity and respiratory rhythm parameters were analysed during five hypoxic episodes, as well as at 15, 30 and 60 min after the end of hypoxias. In the control group, 1 h post‐hypoxia pLTF was developed. Microinjections of selective 5‐HT1A receptor antagonist WAY‐100635 into the raphe nuclei prior to the AIH protocol prevented induction of pLTF. These results suggest that 5‐HT1A receptor activation at supraspinal level is important for induction of pLTF, which is suggested to be an important respiratory neuroplasticity model in animal studies that possibly correlates with OSA in humans.  相似文献   

2.
Lipopolysaccharide (LPS) induces inflammatory responses, including microglial activation in the central nervous system. Since LPS impairs certain forms of hippocampal and spinal neuroplasticity, we hypothesized that LPS would impair phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) in outbred Sprague-Dawley (SD) and inbred Lewis (L) rats. Approximately 3h following a single LPS injection (i.p.), the phrenic response during hypoxic episodes is reduced in both rat strains versus vehicle treated, control rats (SD: 84 ± 7% vs. 128 ± 14% baseline for control, p < 0.05; L: 62 ± 10% vs. 90 ± 9% baseline for control, p < 0.05). At 60 min post-AIH, pLTF is also diminished by LPS in both strains: (SD: 22 ± 5% vs. 73.5 ± 14% baseline for control, p < 0.05; L: 18 ± 15% vs. 56 ± 8% baseline for control, p < 0.05). LPS alone does not affect phrenic burst frequency in either rat strain, suggesting that acute LPS injection has minimal effect on brainstem respiratory rhythm generation. Thus, systemic LPS injections and (presumptive) inflammation impair pLTF, a form of spinal neuroplasticity in respiratory motor control. These results suggest that ongoing infection or inflammation must be carefully considered in studies of respiratory plasticity, or during attempts to harness spinal plasticity as a therapeutic tool in the treatment of respiratory insufficiency, such as spinal cord injury.  相似文献   

3.
Acute intermittent hypoxia (AIH) elicits a form of respiratory plasticity known as long-term facilitation (LTF). LTF is a progressive and sustained increase in respiratory motor output as expressed in phrenic and hypoglossal (XII) nerve activity. Since reactive oxygen species (ROS) play important roles in several forms of neuroplasticity, and ROS production is increased by intermittent hypoxia, we tested the hypothesis that ROS are necessary for phrenic and XII LTF following AIH. Urethane-anesthetized, paralyzed, vagotomized and pump-ventilated Sprague-Dawley rats were exposed to AIH (11% O2, 3, 5 min episodes, 5 min intervals), and both phrenic and XII nerve activity were monitored for 60 min post-AIH. Although phrenic and XII LTF were observed in control rats, i.v. manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP), a superoxide anion scavenger, attenuated both phrenic and XII LTF in a dose dependent manner. Localized application of MnTMPyP (5.5 mM; 10 microl) to the intrathecal space of the cervical spinal cord (C4) abolished phrenic, but not XII LTF. Thus, ROS are necessary for AIH-induced respiratory LTF, and the relevant ROS appear to be localized near respiratory motor nuclei since cervical MnTMPyP injections impaired phrenic (and not XII) LTF. Phrenic LTF is a novel form of ROS-dependent neuroplasticity since its ROS-dependence resides in the spinal cord.  相似文献   

4.
目的:长时程易化(long-term facilitation,LTF)是反映呼吸可塑性的重要电生理指标,与睡眠呼吸紊乱疾病密切相关。3~5个低氧周期的急性间断性缺氧可以诱导膈神经LTF,而持续一周以上的慢性间断性缺氧(chronic intermittent hypoxia,CIH)可以诱导更大的增强的LTF(enhanced LTF)。以往制备CIH大鼠LTF模型多用氧(10%)+氮(90%)混合气(5 min)、常氧(5 min)交替通气,每天12 h,连续7 d以上,实验需要大量混合气,费用较高。我们模拟高原缺氧制备了低压氧舱大鼠CIH模型,表达增强的膈神经LTF。方法:成年SD大鼠置于密闭容器内进行5 min低压缺氧、5 min常氧交替通气,每天12 h,持续7 d。通过空气抽提进行低压缺氧,使舱内气压逐渐下降到210~220 mmHg,相当于海拔约9000 m。第8 d,动物进行急性间断性缺氧,诱导膈神经LTF表达。对照组大鼠只进行急性间断性缺氧,统计学分析两组动物膈神经LTF的表达变化。结果:低压氧舱CIH大鼠较正常对照组对缺氧反应更加敏感,表现为缺氧期膈神经放电的频率和幅度快速增加。在急性间断性缺氧结束后30 min和60 min,CIH组大鼠膈神经放电幅度较基础水平分别增加了(116.3±6.5)%和(106.1±19.2)%,而对照组分别增加(60.4±7.8)%和(48.2±11.0)%,两组之间有显著性差别(P(0.01),表明CIH诱导了比对照组更加强大的LTF,形成增强的LTF。结论:我们建立了低压氧舱CIH大鼠膈神经LTF模型,为进一步研究LTF的发生机理、揭示与睡眠呼吸紊乱疾病的相关性提供了实验平台。  相似文献   

5.
Intermittent hypoxia-induced long-term facilitation (LTF) is variably expressed in the motor output of several inspiratory nerves, such as the phrenic and hypoglossal. Compared to phrenic LTF (pLTF), less is known about hypoglossal LTF (hLTF), although it is often assumed that cellular mechanisms are the same. While fundamental mechanisms appear to be similar, potentially important differences exist in the modulation of pLTF and hLTF. The primary objectives of this paper are to: (1) review similarities and differences in pLTF and hLTF, pointing out knowledge gaps and (2) present new data suggesting that reduced respiratory neural activity elicits differential plasticity in phrenic and hypoglossal output (inactivity-induced phrenic and hypoglossal motor facilitation, iPMF and iHMF), suggesting that these motor pool-specific differences are not unique to LTF. Differences in fundamental mechanisms or modulation of plasticity among motor pools may confer the capacity to mount a complex ventilatory response to specific challenges, particularly in motor pools with different "jobs" in the control of breathing.  相似文献   

6.
In order to clarify the morphological features of peripheral motor nerves and motoneurons that innervate trunk muscles, the size distribution of external oblique (EO) peripheral motor fibers and motoneurons of the thoracic and the lumbar segments were examined. Histograms of the size distribution of EO motor fibers in peripheral nerves after ganglionectomy clearly had a bimodal distribution of small fiber groups and large fiber groups. It is very likely that small fiber groups correspond to gamma motor fibers and large fiber groups to alpha motor fibers. Gamma and alpha motor fiber groups were separated at 8-14 microm. The average diameter of the gamma and alpha motor fibers were different in each segment. The ratio of gamma and alpha motor fibers was approximately 1:2.0 in the thoracic segments and from 1:1.8 to 1:0.9 in the lumbar segments. Horseradish peroxidase was applied to the central stump of EO nerves, and the size distribution of EO motoneuron cell bodies in the thoracic and the lumbar spinal cords was examined. The size distribution of motoneuron cell bodies was bimodal in one cat (small and large motoneurons) and unimodal in three cats. When the ratio of small motor fibers to large motor fibers in peripheral nerves was applied to that of small motoneurons to large motoneurons, the separation of small and large motoneurons was approximately 40 microm. These results suggest that the morphological characteristics in peripheral nerves of trunk muscles are not reflected in motoneurons.  相似文献   

7.
Acute spinal cord injury evolves rapidly to produce secondary damage even to initially spared areas. The result is loss of locomotion, rarely reversible in man. It is, therefore, important to understand the early pathophysiological processes which affect spinal locomotor networks. Regardless of their etiology, spinal lesions are believed to include combinatorial effects of excitotoxicity and severe stroke-like metabolic perturbations. To clarify the relative contribution by excitotoxicity and toxic metabolites to dysfunction of locomotor networks, spinal reflexes and intrinsic network rhythmicity, we used, as a model, the in vitro thoraco-lumbar spinal cord of the neonatal rat treated (1 h) with either kainate or a pathological medium (containing free radicals and hypoxic/aglycemic conditions), or their combination. After washout, electrophysiological responses were monitored for 24 h and cell damage analyzed histologically. Kainate suppressed fictive locomotion irreversibly, while it reversibly blocked neuronal excitability and intrinsic bursting induced by synaptic inhibition block. This result was associated with significant neuronal loss around the central canal. Combining kainate with the pathological medium evoked extensive, irreversible damage to the spinal cord. The pathological medium alone slowed down fictive locomotion and intrinsic bursting: these oscillatory patterns remained throughout without regaining their control properties. This phenomenon was associated with polysynaptic reflex depression and preferential damage to glial cells, while neurons were comparatively spared. Our model suggests distinct roles of excitotoxicity and metabolic dysfunction in the acute damage of locomotor networks, indicating that different strategies might be necessary to treat the various early components of acute spinal cord lesion.  相似文献   

8.
Although the glossopharyngeal nerve (IX) is mainly a sensory nerve, it innervates stylopharyngeus and some other pharyngeal muscles, whose excitations would likely improve upper airway patency since electrical IX stimulation increases pharyngeal airway size. As acute intermittent hypoxia (AIH) induces hypoglossal and genioglossal long-term facilitation (LTF), we hypothesized that AIH induces glossopharyngeal LTF, which requires serotonin 5-HT2 and NMDA receptors. Integrated IX activity was recorded in anesthetized, vagotomized, paralyzed and ventilated rats before, during and after 5 episodes of 3-min isocapnic 12% O2 with 3-min intervals of 50% O2. Either saline, ketanserin (5-HT2 antagonist, 2 mg/kg) or MK-801 (NMDA antagonist, 0.2 mg/kg) was (i.v.) injected 30–60 min before AIH. Both phasic and tonic IX activities were persistently increased (both P < 0.05) after AIH in vehicle, but not ketanserin or MK-801, rats. Hypoxic glossopharyngeal responses were minimally changed after either drug. These data suggest that AIH induces both phasic and tonic glossopharyngeal LTF, which requires activation of 5-HT2 and NMDA receptors.  相似文献   

9.
Upper cervical inspiratory neurons form a distinct neuronal column located near the lateral edge of the intermediate grey matter in the rostral spinal segments. Previous studies conducted in cats have demonstrated synaptic inputs to these neurons from several respiratory related regions of the medulla, and long descending axonal projections mainly towards the motoneurons supplying the intercostal muscles. The aim of this study was to examine the electrophysiological and morphological properties of this propriospinal system in the rat. Extracellular recordings were made from 127 cervical inspiratory units, mainly in the C1 and C2 segments. Eighty-two percent could be antidromically activated from the C7/C8 border. No evidence of monosynaptic connection was obtained by cross-correlating the activity of some of these units with the discharge of the phrenic nerve. Intracellular recordings were made from seven neurons, three of which were labelled with biotinamide (neurobiotin). Long survival times after intracellular injections (up to 23 h) resulted in staining of axons for long distances, at least to the C5 segment. Each of the three labelled axons issued only one short collateral which arborized in the region of the phrenic nucleus. These results demonstrate that upper cervical inspiratory neurons in the rat have features similar to those previously described in the cat, including only a limited projection to the phrenic nucleus. In addition, this study provides the first morphological identification of these neurons.  相似文献   

10.
Throughout normal life, activity-dependent plasticity occurs in the spinal cord as well as in brain. Like other central nervous system (CNS) plasticity, spinal cord plasticity can occur at numerous neuronal and synaptic sites and through a variety of mechanisms. Spinal cord plasticity is prominent early in life and contributes to mastery of standard behaviours like locomotion and rapid withdrawal from pain. Later in life, spinal cord plasticity has a role in acquisition and maintenance of new motor skills, and in compensation for peripheral and central changes accompanying ageing, disease and trauma. Mastery of the simplest behaviours is accompanied by complex spinal and supraspinal plasticity. This complexity is necessary, in order to preserve the complete behavioural repertoire, and is also inevitable, due to the ubiquity of activity-dependent CNS plasticity. Explorations of spinal cord plasticity are necessary for understanding motor skills. Furthermore, the spinal cord's comparative simplicity and accessibility makes it a logical starting point for studying skill acquisition. Induction and guidance of activity-dependent spinal cord plasticity will probably play an important role in realization of effective new rehabilitation methods for spinal cord injuries, cerebral palsy and other motor disorders.  相似文献   

11.
In newborn and adult mammals, chemosensory drive exerted by CO(2) and H(+) provides an essential tonic input: without it the rhythm of respiration is abolished. It is not known, however, whether this chemosensory drive and the respiratory rhythm appear simultaneously during development. In isolated brainstem-spinal cord preparations from fetal mice, we determined at what stage of fetal life the respiratory rhythm appeared in third to fifth cervical ventral roots (phrenic motoneurons) and whether this fetal rhythm was sensitive to chemosensory inputs. A respiratory-like rhythm consisting of short duration bursts of discharges recurring at 2-16 min(-1) was detected in two of nine embryonic day 13 fetuses; it was abolished by transection of the spinal cord between the first to second cervical segments and was phase-related to rhythmic activity from medullary units of the ventral respiratory group. At embryonic day 13, it coexisted with a slow rhythm (0.1-2.0 min(-1)) of long duration bursts of action potentials which was generated by the spinal cord. At later fetal stages, the respiratory-like rhythm became more robust and of higher frequency, while the spinal cord rhythm became less obvious. At all fetal stages, acidification of the superfusion medium from pH 7.5-7.2 or 7.4-7.3 or 7.4 to 7.2 increased the frequency of both the respiratory-like and the spinal cord rhythms. In addition, acidification reduced the amplitude of the integrated burst activity of the spinal cord rhythm of embryonic day 13-embryonic day 16 fetuses and the respiratory-like rhythm of embryonic day 17 and older fetuses. Our results indicate that the rhythms transmitted by phrenic motoneurons during fetal development are chemosensitive from early fetal stages. Through its effects on induction and patterning of the rhythm, chemosensory drive may play a role in activity-dependent formation of respiratory neural networks.  相似文献   

12.
目的分析创伤性颈脊髓损伤(TCSCI)患者咳嗽音的一般特征,并探讨其与呼吸肌力量的相关性。方法选取南部战区总医院收治的29例TCSCI患者作为TCSCI组,并随机选取同时段的26例非TCSCI患者作为对照组。分别收集患者咳嗽音信号、呼吸肌力量指标最大吸气压力(MIP)和最大呼气压力(MEP),同时记录2组患者年龄、身高、体质量以及基础疾病等基线资料,记录TCSCI组ASIA分级、损伤节段以及呼吸衰竭发生情况。分析比较2组咳嗽音差异及其与MIP、MEP的相关性,并探讨咳嗽音指标对呼吸衰竭的预测价值。结果2组患者基线资料比较,差异无统计学意义(P>0.05)。TCSCI组咳嗽音评分高于对照组(P<0.01),MIP、MEP、咳嗽峰值流量(CPF)、最大强度、平均强度、有效声压及声压级均低于对照组(P<0.01)。相关性分析显示,咳嗽音评分与MIP、MEP呈负相关(P<0.01),CPF、最大强度、平均强度、有效声压、声压级与MIP、MEP均呈正相关(P<0.01)。亚组分析显示,咳嗽音评分能很好预测TCSCI患者是否发生呼吸衰竭,曲线下面积(AUC)为0.745。结论TCSCI患者咳嗽音指标会发生显著改变且同呼吸肌力量存在相关性,可用于评估TCSCI患者呼吸功能;咳嗽音评分可作为预测TCSCI患者是否发生呼吸衰竭的指标。  相似文献   

13.
14.
The first Kavli Prize in Neuroscience recognizes a confluence of career achievements that together provide a fundamental understanding of how brain and spinal cord circuits are assembled during development and function in the adult. The members of the Kavli Neuroscience Prize Committee have decided to reward three scientists (Sten Grillner, Thomas Jessell, and Pasko Rakic) jointly “for discoveries on the developmental and functional logic of neuronal circuits”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号