首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared three techniques for enhancement of microcatheter tips in fluoroscopic images: conventional subtraction technique (CST); averaged image subtraction technique (AIST), which we have developed; and double average filtering (DAF) technique, which uses nonlinear background estimates. A pulsed fluoroscopic image sequence was obtained as a microcatheter was passed through a carotid phantom that was on top of a head phantom. The carotid phantom was a silicone cylinder containing a simulated vessel with the shape and curvatures of the internal carotid artery. The three techniques were applied to the images of the sequence, then the catheter tip was manually identified in each image, and 100 x 100 pixel images, centered at the indicated microcatheter tip positions, were extracted for the evaluations. The signal-to-noise ratio (SNR) was calculated in each of the extracted images from which the mean value of the SNR and its standard deviation (SD) were calculated for each technique. The mean values and the standard deviations were 4.36 (SD 3.40) for CST, 6.34 (SD 3.62) for AIST, and 3.55 (SD 1.27) for DAF. AIST had a higher SNR compared to CST in almost all frames. Although DAF yielded the smallest mean SNR value, it yielded the best SNR in those frames in which the microcatheter tip did not move between frames. We conclude that AIST provides the best SNR for a moving microcatheter tip and that DAF is optimal for a temporarily stationary microcatheter tip.  相似文献   

2.
The images generated in modern IC laboratories are created with high-quality standard (1,024×1,024 pixels and 10-12 bits/pixel) enabling cardiologists to perform interventions in the best conditions. But these images are in most of the cases archived in a basic quality standard (512×512 pixels and 8 bits/pixel). The purpose of this work is to complete the research developed in a previous paper and analyze the influence of the matrix size and the bit depth reduction on the image quality acquired on a polymethylmethacrylate (PMMA) phantom with a test object. The variation in contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) were investigated when the matrix size and the bit depth were independently modified for different phantom thicknesses. These two image quality parameters did not suffer noticeable alterations under bits depth reduction from 10 to 8 bits. Such a result seems to imply that bits depth reduction could be used to reduce file sizes with a suitable algorithm and without losing perceptible image quality information. But when the matrix size was reduced from 1,024×1,024 to 512×512 pixels, a reduction from 17% to 25% in HCSR was noticed when changing phantom thickness, and an increase of 27% in CNR was observed. These findings should be taken into account and it would be wise to conduct further investigations in the field of clinical images.  相似文献   

3.
Modern fluoroscopic systems used for invasive cardiology typically acquire digital images in a 1,024 × 1,024 × 12 bits. These images are maintained in the original format while they remain on the imaging system itself. However, images are usually stored using a reduced 512 × 512 × 8-bits format. This paper presents a method for digital analysis of test objects images. The results obtained using image-intensifier and flat-detector systems are given for the original and reduced matrices. Images were acquired using a test object (TO) and a range of polymethyl methacrylate (PMMA) thicknesses from 4 to 28 cm. Adult patient protocols were evaluated for 16–28 cm of PMMA using the image-intensifier system. Pediatric protocols were evaluated for 4–16 cm of PMMA using the flat-detector system. The TO contains disks of various thicknesses to evaluate low contrast sensitivity and a bar pattern to evaluate high-contrast spatial resolution (HCSR). All available fluoroscopic and cine modes were evaluated. Entrance surface air kerma was also measured. Signal-to-noise ratio (SNR) was evaluated using regions of interest (ROI). HCSR was evaluated by comparing the statistical analysis of a ROI placed over the image of the bar pattern against a reference ROI. For both systems, an improvement of approximately 20% was observed for the SNR on the reduced matrices. However, the HCSR parameter was substantially lower in the reduced metrics. Cardiologists should consider the clinical influence of reduced spatial resolution when using the archived images.  相似文献   

4.
The purpose of this research is to develop a new method of digital subtraction angiography (DSA) that can be applied to real time with reducing motion artifacts caused by heart movement and respiration. To create the mask image for DSA, the maximum pixel value at each pixel (which is the opposite pixel value to that of a vessel filled by contrast medium) was selected from the previous 14 image frames. The search area for the maximum pixel value was selected using the value of the standard deviation (SD) for each pixel from the previous 14 image frames. When the SD value in the 14 frames was greater than a threshold level, the search area of the maximum value became 1 pixel × 1 pixel × 14 frames; otherwise, 7 pixels × 7 pixels × 7 frames. The image quality of new DSA was evaluated on 20 coronary arteriogram images, including various degrees of occlusion or stenosis. The results indicated a considerable improvement in DSA image quality; thus, the coronary arteries, carotid artery, and vein were clearly enhanced.  相似文献   

5.
This paper presents a new method for guidewire tracking on fluoroscopic images from endovascular brain intervention. The combination of algorithms chosen can be implemented in real time, so that it can be used in an augmented reality 3D representation to assist physicians performing these interventions. A ribbon-like morphing process combined with a minimal path optimization algorithm is used to track lateral motion between successive frames. Forward motions are then tracked with an endpoint tracking algorithm, based on a circular window processed with the Radon transform. The proposed method was tested on 6 fluoroscopic sequences presenting high-speed motions, which were saved during endovascular brain interventions. The experiments showed above-average precision and robust guidewire tracking, without any permanent error requiring manual correction.  相似文献   

6.
In this paper, the performance of an 8 cm x 8 cm three-side buttable charge-coupled device (CCD)-based imager specially designed for high-resolution fluoroscopy and operating in fluoroscopic (30 frames/second) mode is presented in terms of the presampling modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). The 8 cm x 8 cm CCD imager is coupled to a 450 microm thick CsI:Tl scintillator by nondemagnifying (straight, 1:1) fiberoptics. The CCD imager has a fundamental pixel pitch of 39 microm and incorporates an optically opaque interline (data) channel. The CCD imager was operated at 156 microm pixel pitch by binning 4 x 4 adjacent pixels prior to readout. The fluoroscopic image lag was measured and accounted for in the DQE estimate to provide lag-corrected DQE. The measured limiting spatial resolution at 10% presampling MTF with the imager operated at 156 microm pixel pitch (Nyquist sampling limit: 3.21 cy/mm) was 3.6 cy/mm. In the pulsed fluoroscopic mode, the first-frame image lag was less than 0.9%. The lag-corrected DQE(0) of approximately 0.62 was achieved even at a low fluoroscopic exposure rate of 1 microR/frame. Grid phantom measurements indicate no appreciable distortion. Results from DQE and image lag measurements at fluoroscopic exposure rates combined with the high spatial resolution observed from the MTF suggest that this type of imager or its variants may be a potential candidate for high-resolution neuro-interventional imaging, cardiovascular imaging, pediatric angiography, and small animal imaging. Since the CCD is three-side buttable, four such CCD modules can be joined to form a 2 x 2 matrix providing a field of view of 16 cm x 16 cm.  相似文献   

7.
The detection of pulsatile blood flow velocity through one section of a curved branching frog mesenteric microvessel during a flow cycle, by analysis of a sequence of videomicroscopic images recorded at a frame rate 25 frames s−1, is presented. From these data, 64 sequential digitised frames of 128×128 pixels and 256 grey level were selected. By processing sequential pairs of frames by image velocimetry, the corresponding displacement vector was calculated. Dividing this by the frame rate gave the vector velocity. The same procedure was repeated for all frames, and the corresponding maximum (0.36–0.38 mm s−1), minimum (0.0–0.025 mm s−1) and other velocity values were obtained and plotted. The preliminary data analysis showed that the separation between two velocity maxima was about 20 video frames, which corresponded to one cardiac cycle of time interval 0.8 s.  相似文献   

8.
Precise lung tumor localization in real time is particularly important for some motion management techniques, such as respiratory gating or beam tracking with a dynamic multi-leaf collimator, due to the reduced clinical tumor volume (CTV) to planning target volume (PTV) margin and/or the escalated dose. There might be large uncertainties in deriving tumor position from external respiratory surrogates. While tracking implanted fiducial markers has sufficient accuracy, this procedure may not be widely accepted due to the risk of pneumothorax. Previously, we have developed a technique to generate gating signals from fluoroscopic images without implanted fiducial markers using a template matching method (Berbeco et al 2005 Phys. Med. Biol. 50 4481-90, Cui et al 2007 Phys. Med. Biol. 52 741-55). In this paper, we present an extension of this method to multiple-template matching for directly tracking the lung tumor mass in fluoroscopy video. The basic idea is as follows: (i) during the patient setup session, a pair of orthogonal fluoroscopic image sequences are taken and processed off-line to generate a set of reference templates that correspond to different breathing phases and tumor positions; (ii) during treatment delivery, fluoroscopic images are continuously acquired and processed; (iii) the similarity between each reference template and the processed incoming image is calculated; (iv) the tumor position in the incoming image is then estimated by combining the tumor centroid coordinates in reference templates with proper weights based on the measured similarities. With different handling of image processing and similarity calculation, two such multiple-template tracking techniques have been developed: one based on motion-enhanced templates and Pearson's correlation score while the other based on eigen templates and mean-squared error. The developed techniques have been tested on six sequences of fluoroscopic images from six lung cancer patients against the reference tumor positions manually determined by a radiation oncologist. The tumor centroid coordinates automatically detected using both methods agree well with the manually marked reference locations. The eigenspace tracking method performs slightly better than the motion-enhanced method, with average localization errors less than 2 pixels (1 mm) and the error at a 95% confidence level of about 2-4 pixels (1-2 mm). This work demonstrates the feasibility of direct tracking of a lung tumor mass in fluoroscopic images without implanted fiducial markers using multiple reference templates.  相似文献   

9.
According to a view that has dominated the field for over a century, the brain programs muscle commands and uses a copy of these commands [efference copy (EC)] to adjust not only resulting motor action but also ongoing perception. This view was helpful in formulating several classical problems of action and perception: (1) the posture-movement problem of how movements away from a stable posture can be made without evoking resistance of posture-stabilizing mechanisms resulting from intrinsic muscle and reflex properties; (2) the problem of kinesthesia or why our sense of limb position is good despite ambiguous positional information delivered by proprioceptive and cutaneous signals; (3) the problem of visual space constancy or why the world is perceived as stable while its retinal image shifts following changes in gaze. On closer inspection, the EC theory actually does not solve these problems in a physiologically feasible way. Here solutions to these problems are proposed based on the advanced formulation of the equilibrium-point hypothesis that suggests that action and perception are accomplished in a common spatial frame of reference selected by the brain from a set of available frames. Experimental data suggest that the brain is also able to translate or/and rotate the selected frame of reference by modifying its major attributes—the origin, metrics and orientation—and thus substantially influence action and perception. Because of this ability, such frames are called physical to distinguish them from symbolic or mathematical frames that are used to describe system behavior without influencing this behavior. Experimental data also imply that once a frame of reference is chosen, its attributes are modified in a feedforward way, thus enabling the brain to act in an anticipatory and predictive manner. This approach is extended to sense of effort, kinesthetic illusions, phantom limb and phantom body phenomena. It also addresses the question of why retinal images of objects are sensed as objects located in the external, physical world, rather than in internal representations of the brain.  相似文献   

10.
Magnetic resonance imaging (MRI) guided minimally invasive interventions are an emerging technology. We developed a microcatheter that utilizes micro-electromagnets manufactured on the distal tip, in combination with the magnetic field of a MRI scanner, to perform microcatheter steering during endovascular surgery. The aim of this study was to evaluate a user control system for operating, steering and monitoring this magnetically guided microcatheter. The magnetically-assisted remote control (MARC) microcatheter was magnetically steered within a phantom in the bore of a 1.5 T MRI scanner. Controls mounted in an interventional MRI suite, along with a graphical user interface at the MRI console, were developed with communication enabled via MRI compatible hardware modules. Microcatheter tip deflection measurements were performed by evaluating MRI steady-state free precession (SSFP) images and compared to models derived from magnetic moment interactions and composite beam mechanics. The magnitude and direction of microcatheter deflections were controlled with user hand, foot, and software controls. Data from two different techniques for measuring the microcatheter tip location within a 1.5 T MRI scanner showed correlation of magnetic deflections to our model (R2: 0.88) with a region of linear response (R2: 0.98). Image processing tools were successful in autolocating the in vivo microcatheter tip within MRI SSFP images. Our system showed good correlation to response curves and introduced low amounts of MRI noise artifact. The center of the artifact created by the energized microcatheter solenoid was a reliable marker for determining the degree of microcatheter deflection and auto-locating the in vivo microcatheter tip.  相似文献   

11.
A multiple projection method for digital tomosynthesis.   总被引:1,自引:0,他引:1  
A new method of optimized efficiency for the retrospective reconstruction of tomograms is presented. The method has been developed for use with isocentric fluoroscopic units and is capable of performing digital tomosynthesis of anatomical planes of user selected orientation and distance from the isocenter. Optimization of efficiency has been achieved by segmenting the reconstruction process into discrete transformations that are specific to groups of pixels, rather than performing pixel by pixel operations. These involve a number of projections of the acquired image matrices as well as parallel translations and summing. Application of this method has resulted in a significant reduction of computing time. The proposed algorithm has been experimentally tested on a radiotherapy simulator unit with the use of a phantom and the obtained results are reported and discussed.  相似文献   

12.
 Prehension movements of the right hand were recorded in normal subjects using a computerized motion analyzer. The kinematics and the spatial paths of markers placed at the wrist and at the tips of the index finger and thumb were measured. Cylindrical objects of different diameters (3, 6, 9 cm) were used as targets. They were placed at six different positions in the workspace along a circle centered on subject’s head axis. The positions were spaced by 10° starting from 10° on the left of the sagittal axis, up to 40° on the right. Both the transport and the grasp components of prehension were influenced by the distance between the resting hand position and the object position. Movement time, time to peak velocity of the wrist and time to maximum grip aperture varied as a function of distance from the object, irrespective of its size. The variability of the spatial paths of wrist and fingers sharply decreased during the phase of the movement prior to contact with the object. This indicates that the final position of the thumb and the index finger is a controlled parameter of visuomotor transformation during prehension. The orientation of the opposition axis (defined as the line connecting the tips of the thumb and the index finger at the end of the movement) was measured. Several different frames of reference were used. When an object-centered frame was used, the orientation of the opposition axis was found to change by about 10° from one object position to the next. By contrast, when a body-centered frame was used (with the head or the forearm as a reference), this orientation was found to remain relatively invariant for different object positions and sizes. The degree of wrist flexion was little affected by the position of the object. This result, together with the invariant orientation of the opposition axis, shows that prehension movements aimed at cylindrical objects are organized so as to minimize changes in posture of the lower arm. Received: 2 July 1996 / Accepted: 5 October 1996  相似文献   

13.
In the real-time tumor-tracking radiotherapy system, fluoroscopy is used to determine the real-time position of internal fiducial markers. The pattern recognition score (PRS) ranging from 0 to 100 is computed by a template pattern matching technique in order to determine the marker position on the fluoroscopic image. The PRS depends on the quality of the fluoroscopic image. However, the fluoroscopy parameters such as tube voltage, current and exposure duration are selected manually and empirically in the clinical situation. This may result in an unnecessary imaging dose from the fluoroscopy or loss of the marker because of too much or insufficient x-ray exposure. In this study, a novel optimization method is proposed in order to minimize the fluoroscopic dose while keeping the image quality usable for marker tracking. The PRS can be predicted in a region where the marker appears to move in the fluoroscopic image by the proposed method. The predicted PRS can be utilized to judge whether the marker can be tracked with accuracy. In this paper, experiments were performed to show the feasibility of the PRS prediction method under various conditions. The predicted PRS showed good agreement with the measured PRS. The root mean square error between the predicted PRS and the measured PRS was within 1.44. An experiment using a motion controller and an anthropomorphic chest phantom was also performed in order to imitate a clinical fluoroscopy situation. The result shows that the proposed prediction method is expected to be applicable in a real clinical situation.  相似文献   

14.
15.
An automated procedure for the detection of the position and the orientation of radioactive seeds on fluoroscopic images or scanned radiographs is presented. The extracted positions of seed centers and the orientations are used for three-dimensional reconstruction of permanent prostate implants. The extraction procedure requires several steps: correction of image intensifier distortions, normalization, background removal, automatic threshold selection, thresholding, and finally, moment analysis and classification of the connected components. The algorithm was tested on 75 fluoroscopic images. The results show that, on average, 92% of the seeds are detected automatically. The orientation is found with an error smaller than 50 for 75% of the seeds. The orientation of overlapping seeds (10%) should be considered as an estimate at best. The image processing procedure can also be used for seed or catheter detection in CT images, with minor modifications.  相似文献   

16.
Although Gram-negative micro-organisms are frequently associated with catheter-related bloodstream infections, the prognostic value and clinical implication of a positive catheter tip culture with Gram-negative micro-organisms without preceding bacteremia remains unclear. We determined the outcomes of patients with intravascular catheters colonized with these micro-organisms, without preceding positive blood cultures, and identified risk factors for the development of subsequent Gram-negative bacteremia. All patients with positive intravascular catheter tip cultures with Gram-negative micro-organisms at the University Medical Center, Utrecht, The Netherlands, between 2005 and 2009, were retrospectively studied. Patients with Gram-negative bacteremia within 48 h before catheter removal were excluded. The main outcome measure was bacteremia with Gram-negative micro-organisms. Other endpoints were length of the hospital stay, in-hospital mortality, secondary complications of Gram-negative bacteremia, and duration of intensive care admission. A total of 280 catheters from 248 patients were colonized with Gram-negative micro-organisms. Sixty-seven cases were excluded because of preceding positive blood cultures, leaving 213 catheter tips from 181 patients for analysis. In 40 (19%) cases, subsequent Gram-negative bacteremia developed. In multivariate analysis, arterial catheters were independently associated with subsequent Gram-negative bacteremia (odds ratio [OR] = 5.00, 95% confidence interval [CI]: 1.20–20.92), as was selective decontamination of the digestive tract (SDD) (OR = 2.47, 95% CI: 1.07–5.69). Gram-negative bacteremia in patients who received SDD was predominantly caused by cefotaxime (part of the SDD)-resistant organisms. Mortality was significantly higher in the group with subsequent Gram-negative bacteremia (35% versus 20%, OR = 2.12, 95% CI: 1.00–4.49). Patients with a catheter tip colonized with Gram-negative micro-organisms had a high chance of subsequent Gram-negative bacteremia from any cause. This may be clinically relevant, as starting antibiotic treatment pre-emptively in high-risk patients with Gram-negative micro-organisms cultured from arterial intravenous catheters may be beneficial.  相似文献   

17.
The motivation is to introduce new shape features and optimize the classifier to improve performance of differentiating obstructive lung diseases, based on high-resolution computerized tomography (HRCT) images. Two hundred sixty-five HRCT images from 82 subjects were selected. On each image, two experienced radiologists selected regions of interest (ROIs) representing area of severe centrilobular emphysema, mild centrilobular emphysema, bronchiolitis obliterans, or normal lung. Besides 13 textural features, additional 11 shape features were employed to evaluate the contribution of shape features. To optimize the system, various ROI size (16 × 16, 32 × 32, and 64 × 64 pixels) and other classifier parameters were tested. For automated classification, the Bayesian classifier and support vector machine (SVM) were implemented. To assess cross-validation of the system, a five-folding method was used. In the comparison of methods employing only the textural features, adding shape features yielded the significant improvement of overall sensitivity (7.3%, 6.1%, and 4.1% in the Bayesian and 9.1%, 7.5%, and 6.4% in the SVM, in the ROI size 16 × 16, 32 × 32, 64 × 64 pixels, respectively; t test, P < 0.01). After feature selection, most of cluster shape features were survived ,and the feature selected set shows better performance of the overall sensitivity (93.5 ± 1.0% in the SVM in the ROI size 64 × 64 pixels; t test, P < 0.01). Adding shape features to conventional texture features is much useful to improve classification performance of obstructive lung diseases in both Bayesian and SVM classifiers. In addition, the shape features contribute more to overall sensitivity in smaller ROI.  相似文献   

18.
The use of magnetic resonance (MR) imaging in conjunction with an endorectal coil is currently the clinical standard for the diagnosis of prostate cancer because of the increased sensitivity and specificity of this approach. However, imaging in this manner provides images and spectra of the prostate in the deformed state because of the insertion of the endorectal coil. Such deformation may lead to uncertainties in the localization of prostate cancer during therapy. We propose a novel 3-D elastic registration procedure that is based on the minimization of a physically motivated strain energy function that requires the identification of similar features (points, curves, or surfaces) in the source and target images. The Gauss–Seidel method was used in the numerical implementation of the registration algorithm. The registration procedure was validated on synthetic digital images, MR images from prostate phantom, and MR images obtained on patients. The registration error, assessed by averaging the displacement of a fiducial landmark in the target to its corresponding point in the registered image, was 0.2 ± 0.1 pixels on synthetic images. On the prostate phantom and patient data, the registration errors were 1.0 ± 0.6 pixels (0.6 ± 0.4 mm) and 1.8 ± 0.7 pixels (1.1 ± 0.4 mm), respectively. Registration also improved image similarity (normalized cross-correlation) from 0.72 ± 0.10 to 0.96 ± 0.03 on patient data. Registration results on digital images, phantom, and prostate data in vivo demonstrate that the registration procedure can be used to significantly improve both the accuracy of localized therapies such as brachytherapy or external beam therapy and can be valuable in the longitudinal follow-up of patients after therapy.  相似文献   

19.
Summary.  Sugarcane striate mosaic associated virus (SCSMaV) has slightly flexuous 950 nm × 15 nm filamentous particles and is associated with sugarcane striate mosaic disease in central Queensland, Australia. We report the full sequence of its RNA genome, which comprises 5 open reading frames representing the polymerase, movement function proteins encoded in a triple gene block and coat protein. Phylogenetic analyses based on either the full nucleotide sequence, the polymerase protein, or the coat protein all placed SCSMaV in an intermediate position between the genera Foveavirus and Carlavirus, but outside both genera. In addition, the absence of a sixth open reading frame excludes it from the genus Carlavirus, and the coat protein is approximately half the size of the type member for the genus Foveavirus. Although SCSMaV was most closely allied to Cherry green ring mottle virus by genome analysis, the two viruses are morphologically and biologically dissimilar. SCSMaV may therefore represent a new plant virus taxon. Received January 30, 2001/Accepted May 29, 2001  相似文献   

20.
Su Y  Davis BJ  Herman MG  Robb RA 《Medical physics》2004,31(5):1277-1287
Intraoperative three-dimensional reconstruction of seed locations during prostate brachytherapy for purposes of immediate computation of radiation dosimetry is an active area of current investigation, including methods which use multiple fluoroscopic projections. A simulation study using seed locations extracted from clinical CT data was performed; the result showed that on average one quarter of the seeds had a projection image overlapping with other seeds. The average percentage of non-overlapping seeds for the prostate implants and seed types investigated was 74.5% with a range of 56.9%-92.9%. The distribution of seeds in different cluster sizes was analyzed as well as the distribution of pixel counts of connected components. A statistical classifier was developed to determine the number of seed images in a self-connected component in the segmented images. The classifier was tested with simulation data, and the error rate was below 2%. A method to determine seed image position is also provided. A modified three-film technique was used to reconstruct 3-D seed locations. The algorithm allows unequal number of seed images for each projection as input while current methods require the same number of seed images detected in all projections. An accuracy analysis based on angular and positional uncertainty was performed. The reconstruction and seed localization algorithms were tested with simulation data, and the mean distance error of the reconstructed results was 0.61 mm. A phantom study was performed to validate the seed localization method. Three false positive seeds, 4.7% of the total, in the reconstruction result were observed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号