首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In order to study the factors that govern the expression of sodium channel α-, β1- and β2-subunits, the influence that Schwann cells (SC) exert in the expression of sodium channels in DRG neurons was examined with in situ hybridization, immunocytochemistry, and patch clamp recording. The expression of sodium channel α-, β1-, and β2-subunit mRNAs in DRG neurons isolated from E15 rats cultured in defined medium in the absence (control) or presence of SC, or in SC-conditioned medium, was examined with isoform-specific riboprobes for sodium channel α-subunits I, II, III, NaG, Na6, hNE/PN1, SNS, and β1- and β2-subunits. DRG neurons cultured in the presence of SC displayed a significant (P < 0.05) increase in the hybridization signal for NaG, Na6, SNS, and Naβ2 mRNAs in comparison to control DRG neurons. In contrast, in SC-conditioned medium, only the hybridization signal for SNS mRNA was significantly increased. The upregulation of sodium channel mRNAs in DRG neurons co-cultured with SC was paralleled by an increase in sodium channel immunoreactivity of these cells. An increase in the mean sodium current density in DRG neurons in the presence of SC was also observed. These results demonstrate that a SC-derived factor selectively upregulates sodium channel α- and β-subunit mRNAs in DRG neurons isolated from E15 rats that is reflected in an increase in functional sodium channels in these cells. This culture system may allow elucidation of the SC factor(s) that modulate the expression of sodium channels in DRG neurons. GLIA 21:339–349, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Unmyelinated nerve fibers (Remak bundles) in the rodent sciatic nerve typically contain multiple axons. This study asked whether C-fiber bundles contain axons arising from more than one type of neuron. Most small neurons of the lumbar dorsal root ganglion (DRG) are either glial cell line-derived neurotrophic factor dependent or nerve growth factor dependent, binding either isolectin B4 (IB4) or antibodies to calcitonin gene-related peptide (CGRP), respectively. Injection of IB4-conjugated horseradish peroxidase into a lumbar DRG resulted in intense labeling of IB4 axons, with very low background. Visualized by confocal fluorescence, IB4-binding and CGRP-positive nerve fibers originating from different DRG neurons came together and remained closely parallel over long distances, suggesting that these two types of axon occupy the same Remak bundle. With double-labeling immunogold electron microscopy (EM), we confirmed that IB4 and CGRP axons were distinct and were found together in single Remak bundles. Previous studies indicate that some DRG neurons express both CGRP and IB4 binding. To ensure that our immunogold results were not a consequence of coexpression, we studied large populations of unmyelinated axons by using quantitative single-label EM. Tetramethylbenzidine, a chromogen with strong intrinsic signal amplification of IB4-horseradish peroxidase, labeled as many as 52% of unmyelinated axons in the dorsal root. Concomitantly, 97% of the Remak bundles with more than one axon contained at least one IB4-labeled axon. Probabilistic modeling using binomial distribution functions rejected the hypothesis that IB4 axons segregate into IB4-specific bundles (P < 0.00001). We conclude that most Remak bundle Schwann cells simultaneously support diverse axon types with different growth factor dependences.  相似文献   

4.
Following nerve injury, primary sensory neurons (dorsal root ganglion [DRG] neurons, trigeminal neurons) exhibit a variety of electrophysiological abnormalities, including increased baseline sensitivity and/or hyperexcitability, which can lead to abnormal burst activity that underlies pain, but the molecular basis for these changes has not been fully understood. Over the past several years, it has become clear that nearly a dozen distinct sodium channels are encoded by different genes and that at least six of these (including at least three distinct DRG- and trigeminal neuron-specific sodium channels) are expressed in primary sensory neurons. The deployment of different types of sodium channels in different types of DRG neurons endows them with different physiological properties. Dramatic changes in sodium channel expression, including downregulation of the SNS/PN3 and NaN sodium channel genes and upregulation of previously silent type III sodium channel gene, occur in DRG neurons following axonal transection. These changes in sodium channel gene expression are accompanied by a reduction in tetrodotoxin (TTX)-resistant sodium currents and by the emergence of a TTX-sensitive sodium current which recovers from inactivation (reprimes) four times more rapidly than the channels in normal DRG neurons. These changes in sodium channel expression poise DRG neurons to fire spontaneously or at inappropriately high frequencies. Changes in sodium channel gene expression also occur in experimental models of inflammatory pain. These observations indicate that abnormal sodium channel expression can contribute to the molecular pathophysiology of pain. They further suggest that selective blockade of particular subtypes of sodium channels may provide new, pharmacological approaches to treatment of disease involving hyperexcitability of primary sensory neurons.  相似文献   

5.
Q P Ma 《Neuroreport》2001,12(17):3693-3695
The capsaicin receptor (VR1) homologue, VRL1, is thought to be responsible for transducing high-threshold heat responses in Adelta-fiber neurons. In the present study, the expression of VRL1 by A- or C-fiber sensory neurons in rats was investigated by using a VRL1 and 200 kDa neurofilament (NF200, an A-fiber marker) double immunohistochemical staining method. Approximately 46% of VRL-positive neurons were NF200 positive. Though double-labeled neurons tended to be medium to large, many VRL1 single-labeled neurons were large. Dense VRL1 immunoreactivity was also found in laminae I and II of the spinal dorsal horn, where nociceptive Adelta- and C-fibers normally terminate. These results suggest that both C-fiber and Adelta-fiber primary sensory neurons express VRL1, and VRL1 may play an important role in nociception.  相似文献   

6.
7.
Tetrodotoxin-resistant (TTX-R) sodium channels Na(v)1.8/SNS and Na(v)1.9/NaN are preferentially expressed in small diameter dorsal root ganglia (DRG) neurons. The urinary bladder is innervated by small afferent neurons from L6/S1 DRG, of which approximately 75% exhibit high-threshold action potentials that are mediated by TTX-R sodium channels. Following transection of the spinal cord at T8, the bladder becomes areflexic and then gradually hyper-reflexic, and there is an attenuation of the TTX-R sodium currents in bladder afferent neurons. In the present study, we demonstrate that Na(v)1.8 is expressed in both bladder and non-bladder afferent neurons, while Na(v)1.9 is expressed in non-bladder afferent neurons but is rarely observed in bladder afferent neurons. In spinal cord transected rats 28-32 days following transection, there is a decreased expression of Na(v)1.8 sodium channels in bladder afferents, but no change in the expression of Na(v)1.8 in non-bladder afferent neurons. Both bladder and non-bladder afferent neurons exhibit limited increases in Na(v)1.9 expression following spinal cord transection. These results demonstrate that the expression of TTX-R channels in bladder afferent neurons changes after spinal cord transection, and these changes may contribute to the increased excitability of these neurons following spinal cord injury.  相似文献   

8.
Tetrodotoxin-resistant sodium currents contribute to the somal and axonal sodium currents of small diameter primary sensory neurons, many of which are nociceptive. NaN is a recently described tetrodotoxin-resistant sodium channel expressed preferentially in IB4-labeled dorsal root ganglion (DRG) neurons. We employed an antibody raised to a NaN specific peptide to show that NaN is preferentially localized along axons of IB4-positive unmyelinated fibers in the sciatic nerve and in axon terminals in the cornea. NaN immunoreactivity was also found at some nodes of Ranvier of thinly myelinated axons of the sciatic nerve, where it was juxtaposed to Kv1.2 potassium channel immunoreactivity. This distribution of NaN is consistent with a role for NaN sodium channels in nociceptive transmission.  相似文献   

9.
Small‐fiber neuropathy (SFN) is characterized by injury to small‐diameter peripheral nerve axons and intraepidermal nerve fibers (IENF). Although mechanisms underlying loss of IENF in SFN are poorly understood, available data suggest that it results from axonal degeneration and reduced regenerative capacity. Gain‐of‐function variants in sodium channel NaV1.7 that increase firing frequency and spontaneous firing of dorsal root ganglion (DRG) neurons have recently been identified in ~30% of patients with idiopathic SFN. In the present study, to determine whether these channel variants can impair axonal integrity, we developed an in vitro assay of DRG neurite length, and examined the effect of 3 SFN‐associated variant NaV1.7 channels, I228M, M932L/V991L (ML/VL), and I720K, on DRG neurites in vitro. At 3 days after culturing, DRG neurons transfected with I228M channels exhibited ~20% reduced neurite length compared to wild‐type channels; DRG neurons transfected with ML/VL and I720K variants displayed a trend toward reduced neurite length. I228M‐induced reduction in neurite length was ameliorated by the use‐dependent sodium channel blocker carbamazepine and by a blocker of reverse Na‐Ca exchange. These in vitro observations provide evidence supporting a contribution of the I228M variant NaV1.7 channel to impaired regeneration and/or degeneration of sensory axons in idiopathic SFN, and suggest that enhanced sodium channel activity and reverse Na‐Ca exchange can contribute to a decrease in length of peripheral sensory axons. Ann Neurol 2012  相似文献   

10.
The inferior alveolar nerve is a sensory branch of the trigeminal nerve that is frequently damaged, and such nerve injuries can give rise to persistent paraesthesia and dysaesthesia. The mechanisms behind neuropathic pain following nerve injury is poorly understood. However, remodeling of voltage-gated sodium channels in the neuronal membrane has been proposed as one possible mechanism behind injury-induced ectopic hyperexcitability. The TTX-resistant sodium channel SNS/PN3 has been implicated in the development of neuropathic pain after spinal nerve injury. We here study the effect of chronic axotomy of the inferior alveolar nerve on the expression of SNS/PN3 mRNA in trigeminal sensory neurons. The organization of sodium channels in the neuronal membrane is maintained by binding to ankyrin, which help link the sodium channel to the membrane skeleton. Ankyrin(G), which colocalizes with sodium channels in the initial segments and nodes of Ranvier, and is necessary for normal neuronal sodium channel function, could be essential in the reorganization of the axonal membrane after nerve injury. For this reason, we here study the expression of ankyrin(G) in the trigeminal ganglion and the localization of ankyrin(G) protein in the inferior alveolar nerve after injury. We show that SNS/PN3 mRNA is down-regulated in small-sized trigeminal ganglion neurons following inferior alveolar nerve injury but that, in contrast to the persistent loss of SNS/PN3 mRNA seen in dorsal root ganglion neurons following sciatic nerve injury, the levels of SNS/PN3 mRNA appear to normalize within a few weeks. We further show that the expression of ankyrin(G) mRNA also is downregulated after nerve lesion and that these changes persist for at least 13 weeks. This decrease in the ankyrin(G) mRNA expression could play a role in the reorganization of sodium channels within the damaged nerve. The changes in the levels of SNS/PN3 mRNA in the trigeminal ganglion, which follow the time course for hyperexcitability of trigeminal ganglion neurons after inferior alveolar nerve injury, may contribute to the inappropriate firing associated with sensory dysfunction in the orofacial region.  相似文献   

11.
Voltage-gated sodium channels consist of a pore-containing alpha-subunit and one or more auxiliary beta-subunits, which may modulate channel function. We previously demonstrated that sodium channel SNS/PN3 alpha-subunits were decreased in human sensory cell bodies after spinal root avulsion injury, and accumulated at injured nerve terminals in pain states. Using specific antibodies for immunohistochemistry, we have now detected sodium channel beta1 and beta2 subunits in sensory cell bodies within control human postmortem sensory ganglia (78% of small/medium (< or = 50 microm) and 68% of large (> or = 50 microm) cells); their changes in cervical sensory ganglia after avulsion injury paralleled those described for SNS/PN3 alpha-subunits. Our results suggest that alpha- and beta-subunits share common regulatory mechanisms, but present distinct targets for novel analgesics.  相似文献   

12.
A cyclic GMP (cGMP) signaling pathway, comprising C‐type natriuretic peptide (CNP), its guanylate cyclase receptor Npr2, and cGMP‐dependent protein kinase I, is critical for the bifurcation of dorsal root ganglion (DRG) and cranial sensory ganglion axons when entering the mouse spinal cord and the hindbrain respectively. However, the identity and functional relevance of phosphodiesterases (PDEs) that degrade cGMP in DRG neurons are not completely understood. Here, we asked whether regulation of the intracellular cGMP concentration by PDEs modulates the branching of sensory axons. Real‐time imaging of cGMP with a genetically encoded fluorescent cGMP sensor, RT‐PCR screens, in situ hybridization, and immunohistology combined with the analysis of mutant mice identified PDE2A as the major enzyme for the degradation of CNP‐induced cGMP in embryonic DRG neurons. Tracking of PDE2A‐deficient DRG sensory axons in conjunction with cGMP measurements indicated that axon bifurcation tolerates increased cGMP concentrations. As we found that the natriuretic peptide scavenger receptor Npr3 is expressed by cells associated with dorsal roots but not in DRG neurons itself at early developmental stages, we analyzed axonal branching in the absence of Npr3. In Npr3‐deficient mice, the majority of sensory axons showed normal bifurcation, but a small population of axons (13%) was unable to form T‐like branches and generated turns in rostral or caudal directions only. Taken together, this study shows that sensory axon bifurcation is insensitive to increases of CNP‐induced cGMP levels and Npr3 does not have an important scavenging function in this axonal system.  相似文献   

13.
Expression of interleukin-1 beta in rat dorsal root ganglia   总被引:8,自引:0,他引:8  
The expression of interleukin-1beta was examined in dorsal root ganglion (DRG) neurons from adult rats using non-radioactive in situ hybridization and immunocytochemistry. At all spinal levels, approximately 70% of the DRG neurons appeared to express IL-1beta mRNA; about 80% of these DRG neurons actually appeared to produce the IL-1beta protein at markedly varying levels. The expression of IL-1beta was found in large as well as in intermediate diameter sensory neurons but only sporadically in the population of small sensory neurons. The population of IL-1beta immunopositive sensory neurons included most of the large calretinin-positive Ia afferents, but only a few of the small substance P/CGRP positive sensory neurons. In situ hybridization staining for the detection of type 1 IL-1 receptor showed expression of this receptor by most of the sensory neurons as well as by supportive glial-like cells, presumably satellite cells. The functional significance of IL-1beta in the DRG neurons needs to be elucidated, but we speculate that IL-1beta produced by DRG neurons may be an auto/paracrine signalling molecule in sensory transmission.  相似文献   

14.
Expression of the protein products of the immediate-early genes (IEGs), members of the fos, jun and krox families (Jun, Fos, and Krox, resp.) was investigated in the spinal cord and sensory ganglia (DRG) of normal rats; and following transection of, block of axonal transport in, or electrical stimulation of their peripheral axons. The nuclei of many moto- and DRG neurons showed a faint basal immunoreactivity (IR) for Jun proteins, but not for Fos or Krox proteins. There was a strong and selective induction of Jun-IR in moto- and DRG neurons after peripheral nerve transection or crush, or colchicine- or vinblastine-induced block of axonal transport. The Jun-IR induced by nerve transection disappeared after nerve regeneration. In contrast, Jun, Fos and Krox proteins were all induced transynaptically in spinal dorsal horn neurons following electrical stimulation of the C-fibers in the afferent nerves. Thus in differentiated neurons in vivo these IEG proteins can be expressed either independently or concomitantly depending on the type of stimulus.  相似文献   

15.
Peripheral benzodiazepine receptor (PBR) expression increases in small dorsal root ganglion (DRG) sensory neurons after peripheral nerve injury. To determine the functional significance of this induction, we evaluated the effects of PBR ligands on rodent sensory axon outgrowth. In vitro, Ro5-4864, a PBR agonist, enhanced outgrowth only of small peripherin-positive DRG neurons. When DRG cells were preconditioned into an active growth state by a prior peripheral nerve injury Ro5-4864 augmented and PK 11195, a PBR antagonist, blocked the injury-induced increased outgrowth. In vivo, Ro5-4864 increased the initiation of regeneration after a sciatic nerve crush injury and the number of GAP-43-positive axons in the distal nerve while PK 11195 inhibited the enhanced growth produced by a preconditioning lesion. These results show that PBR has a role in the early regenerative response of small caliber sensory axons, the preconditioning effect, and that PBR agonists enhance sensory axon regeneration.  相似文献   

16.
17.
18.
The annexins are a family of Ca2−-dependent phospholipid-binding proteins. In the present study, the spatial expression patterns of annexins I-VI were evaluated in the rat dorsal root ganglia (DRG) and spinal cord (SC) by using indirect immunofluorescence. Annexin I is expressed in small sensory neurons of the DRG, by most neurons of the SC, and by ependymal cells lining the central canal. Annexin II is expressed by most sensory neurons of the DRG but is primarily expressed in the SC by glial cells. Annexin III is expressed by most sensory neurons, regardless of size, by endothelial cells lining the blood vessels, and by the perineurium. In the SC, annexin III is primarily expressed by astrocytes. In the DRG and the SC, annexin IV is primarily expressed by glial cells and at lower levels by neurons. In the DRG, annexin V is expressed in relatively high concentrations in small sensory neurons in contrast to the SC, where it is expressed mainly by ependymal cells and by small-diameter axons located in the superficial laminae of the dorsal horn areas. Annexin VI is differentially expressed by sensory neurons of the DRG, being more concentrated in small neurons. In the SC, annexin VI has the most striking distribution. It is concentrated subjacent to the plasma membrane of motor neurons and their processes. The differential localization pattern of annexins in cells of the SC and DRG could reflect their individual biological roles in Ca2−-signal transduction within the central nervous system. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Neuropilin-1 on the growth cones of NGF-dependent embryonic dorsal root ganglion (DRG) neurons mediates the repulsive effects of secreted semaphorin3a, but its role in adult neurons is unknown. Here we show that most adult rat DRG neurons, regardless of cell diameter/afferent phenotype, express neuropilin-1 protein in vitro. However, the response of growth cones belonging to these neurons (induced by recombinant collapsin-1/semaphorin3a and blocked by the anti-neuropilin-1 antibody) was restricted to those of small cell body diameter (<30 microm), corresponding primarily to nociceptive sensory afferents. Neurotrophic factors had a differential effect on neuropilin-1 expression in vitro, with DRG neurons cultured in either NGF or GDNF expressing the highest levels on their neurites. These findings suggest that neuropilin-1-mediated repellent effects of semaphorins may regulate the behavior of nociceptive sensory axons in the adult as well as the embryonic peripheral nervous system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号