首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study describes a protocol to determine acute cerebrovascular and ventilatory (AHVR) responses to hypoxia. Thirteen subjects undertook a protocol twice, 5 days apart. The protocol started with 8 min of eucapnic euoxia (end-tidal P(CO2) (PET(CO2)= 1.5 Torr) above rest; end-tidal P(O2) (PET(O2)) = 88 Torr) followed by six descending 90 s hypoxic steps (PET(O2) = 75.2, 64.0, 57.0, 52.0, 48.2, 45.0 Torr). Then, PET(O2) was elevated to 300 Torr for 10 min while PET(O2) remained at eucapnia (5 min) then raised by 7.5 Torr (5 min). Peak blood flow velocity in the middle cerebral artery (MCA) and regional cerebral oxygen saturation (Sr(O2)) were measured with transcranial Doppler ultrasound and near-infrared spectroscopy, respectively, and indices of acute hypoxic sensitivity were calculated (AHR(CBF) and AHRSr(O2)). Values for AHR(CBF), AHRSr(O2) and AHVR were 0.43 cm s(-1) % desaturation(-1), 0.80% % desaturation(-1) and 1.24l min(-1) % desaturation(-1), respectively. Coefficients of variation for AHR(CBF), AHRSr(O2) and AHVR were small (range = 8.0-15.2%). This protocol appears suitable to quantify cerebrovascular and ventilatory responses to acute isocapnic hypoxia.  相似文献   

2.
During acclimatization to the hypoxia of altitude, the cerebral circulation is exposed to arterial hypoxia and hypocapnia, two stimuli with opposing influences on cerebral blood flow (CBF). In order to understand the resultant changes in CBF, this study examined the responses of CBF during a period of constant mild hypoxia both with and without concomitant regulation of arterial P(CO2). Nine subjects were each exposed to two protocols in a purpose-built chamber: (1) 48 h of isocapnic hypoxia (Protocol I), where end-tidal P(O2) (P(ET,O2)) was held at 60 Torr and end-tidal P(CO2) (P(ET,CO2)) at the subject's resting value prior to experimentation; and (2) 48 h of poikilocapnic hypoxia (Protocol P), where P(ET,O2) was held at 60 Torr and P(ET,CO2) was uncontrolled. Transcranial Doppler ultrasound was used to assess CBF. At 24 h intervals during and after the hypoxic exposure CBF was measured and the sensitivity of CBF to acute variations in P(O2) and P(CO2) was determined. During Protocol P, P(ET,CO2) decreased by 13% (P < 0.001) and CBF decreased by 6% (P < 0.05), whereas during Protocol I, P(ET,CO2) and CBF remained unchanged. The sensitivity of CBF to acute variations in P(O2) and P(CO2) increased by 103% (P < 0.001) and 28% (P < 0.01), respectively, over the 48 h period of hypoxia. These changes did not differ between protocols. In conclusion, CBF decreases during mild poikilocapnic hypoxia, indicating that there is a predominant effect on CBF of the associated arterial hypocapnia. This fall occurs despite increases in the sensitivity of CBF to acute variations in P(O2)/P(CO2) arising directly from the hypoxic exposure.  相似文献   

3.
The purpose of this study was to determine the changes in human cerebrovascular function associated with intermittent poikilocapnic hypoxia (IH). Healthy men (n=8; 24+/-1 years) were exposed to IH for 10 days (12% O(2) for 5min followed by 5min of normoxia for 1h). During the hypoxic exposures, oxyhemoglobin saturation (SaO(2)) was 85% and the end-tidal partial pressure of CO(2) was permitted to fall as a result of hypoxic hyperventilation. Pre- and post-IH intervention subjects underwent a progressive isocapnic hypoxic test where ventilation, blood pressure, heart rate, and cerebral blood flow velocity (middle cerebral artery, transcranial Doppler) were measured to determine the ventilatory, cardiovascular and cerebrovascular sensitivities to isocapnic hypoxia. When compared to the pre-IH trial, cerebrovascular sensitivity to hypoxia significantly decreased (pre-IH=0.28+/-0.15; post-IH=0.16+/-0.14cms(-1)%SaO(2)(-1); P<0.05). No changes in ventilatory, blood pressure or heart rate sensitivity were observed (P>0.05). We have previously shown that the ability to oxygenate cerebral tissue measured using spatially resolved near infrared spectroscopy is significantly reduced following IH in healthy humans. Our collective findings indicate that intermittent hypoxia can blunt cerebrovascular regulation. Thus, it appears that intermittent hypoxia has direct cerebrovascular effects that can occur in the absence of changes to the ventilatory and neurovascular control systems.  相似文献   

4.
5.
A multi-organ systems model of O(2) and CO(2) transport is developed to analyze the control of ventilation and blood flow during hypoxia. Among the aspects of the control processes that this model addressed are possible mechanisms responsible for the second phase of the ventilatory hypoxic response to mild hypoxia, i.e., hypoxic ventilatory decline (HVD). Species mass transport processes are described by compartmental mass balances in brain, heart, skeletal muscle, and "other tissues" connected in parallel via the circulation. In pulmonary and systemic capillaries and in the vasculature connecting the systemic tissues, species transport processes are represented by a one-dimensional, convection-dispersion model. The effects of bicarbonate acid-base buffering, hemoglobin, and myoglobin on the transport processes are included. The model incorporates feedback control mechanisms through a cardiorespiratory control system in which peripheral and central chemoreceptors sense O(2) and CO(2) partial pressures. Model simulations of the ventilatory responses to isocapnic and poikilocapnic hypoxia show two phases with distinct dynamics. A fast phase is discernable immediately after switching from normoxic to hypoxic conditions, while a delayed slow phase (HVD) typically becomes manifested after several minutes. Model simulations allow quantitative evaluation of several proposed mechanisms to account for HVD. Under isocapnic hypoxia, simulations indicate that an increase in brain blood flow has no effect on HVD, but that HVD can be entirely described by central ventilatory depression (CVD). Under poikilocapnic hypoxia, the hypocapnia caused by hypoxic hyperventilation has no effect on HVD.  相似文献   

6.
We simultaneously measured respiratory, cerebrovascular and cardiovascular responses to 10-min of isoxic hypoxia at three constant CO(2) tensions in 15 subjects. We observed four response patterns, some novel, for ventilation, middle cerebral artery blood flow velocity, heart rate and mean arterial blood pressure. The occurrence of the response patterns was correlated between some measures. Isoxic hyperoxic and hypoxic ventilatory sensitivities to CO(2) derived from these responses were equivalent to those measured with modified (Duffin) rebreathing tests, but cerebrovascular sensitivities were not. We suggest the different ventilatory response patterns reflect the time course of carotid body afferent activity; in some individuals, carotid body function changes during hypoxia in more complex ways than previously thought. We concluded that isoxic hyperoxic and hypoxic ventilatory sensitivities to CO(2) can be measured using multiple hypoxic ventilatory response tests only if care is taken choosing the isocapnic CO(2) levels used, but a similar approach to measuring the cerebrovascular response to isocapnic hyperoxia and hypoxia is unfeasible.  相似文献   

7.
Summary Twenty-four active judo athletes were examined by an isocapnic progressive hypoxia test. The results of ventilatory and heart rate responses to hypoxia were analyzed by the hyperbolic equations, E= o+A VE /( –C VE ) andHR=HR O+A HR /( –C HR ), respectively, where Eand HR are observed ventilation and heart rate, O andHR O, the horizontal asymptote in ventilation and heart rate for infinite endtidal ,A VE andA HR the slope constant indicating the magnitude of hypoxic sensitivity, andC VE andC HR the vertical asymptote in for infinite ventilation and heart rate.A VE was further re-calculated after inlineE was normalized for a 70 kg body mass, using an allometric coefficient, and was defined asA VEN . 1)A VE andA VEN significantly increased with increasing body weight (BW) as has been reported previously, but no such correlation was found betweenA HR and BW. 2) at rest was found to be positively correlated withA VE andA VEN but not withA HR . 3) The relationship betweenA VE andA HR was not significant. Thus, the characteristic feature seen in hypoxic ventilatory activity was not accompanied by a similar trend in heart rate response.  相似文献   

8.
The c-ret proto-oncogene encodes a tyrosine-kinase receptor involved in survival and differentiation of neural crest cell lineages. Previous studies have shown that homozygous c-ret-/- mice die soon after birth and have impaired ventilatory responses to hypercapnia. Heterozygous c-ret +/- mice develop normally, but their respiratory phenotype has not been described in detail. We used whole-body flow plethysmography to compare baseline breathing and ventilatory and arousal responses to chemical stimuli in unrestrained heterozygous c-ret +/- newborn mice and their wild-type c-ret +/+ littermates at 10-12 h of postnatal age. The hyperpnoeic and arousal responses to hypoxia and hypercapnia were not significantly different in these two groups. However, the number and total duration of apnoeas and periodic breathing episodes were significantly higher in c-ret +/- than in c-ret +/+ pups during hypoxia and post-hypoxic normoxia. These results are further evidence that respiratory control at birth is heavily dependent on genes involved in the neural determination of neural crest cells.  相似文献   

9.
10.
Neural mediation of the human cardiac response to isocapnic (IC) steady-state hypoxaemia was investigated using coarse-graining spectral analysis of heart rate variability (HRV). Six young adults were exposed in random order to a hypoxia or control protocol, in supine and sitting postures, while end-tidal PCO2 (PET,CO2) was clamped at resting eucapnic levels. An initial 11 min period of euoxia (PET,O2 100 mmHg; 13.3 kPa) was followed by a 22 min exposure to hypoxia (PET,O2 55 mmHg; 7.3 kPa), or continued euoxia (control). Harmonic and fractal powers of HRV were determined for the terminal 400 heart beats in each time period. Ventilation was stimulated (P < 0.05) and cardiac dynamics altered only by exposure to hypoxia. The cardiac interpulse interval was shortened (P < 0.001) similarly during hypoxia in both body positions. Vagally mediated high-frequency harmonic power (Ph) of HRV was decreased by hypoxia only in the supine position, while the fractal dimension, also linked to cardiac vagal control, was decreased in the sitting position (P < 0.05). However, low-frequency harmonic power (Pl) and the HRV indicator of sympathetic activity (Pl/Ph) were not altered by hypoxia in either position. These results suggest that, in humans, tachycardia induced by moderate IC hypoxaemia (arterial O2 saturation Sa,O2 85 %) was mediated by vagal withdrawal, irrespective of body position and resting autonomic balance, while associated changes in HRV were positionally dependent.  相似文献   

11.
12.
The regulatory effect of substance P on respiration is mediated via neurokinin (NK) receptors. While previous studies suggest that NK-1 receptors are involved, little is known about the role NK-2 receptors in ventilatory responses to hypoxia. Ventilatory responses to acute hypoxia (8% O2 in N2) were measured by indirect plethysmography in unanaesthetized, unrestrained NK-1 receptor gene deficient (NK-1-/-) and wild-type mice. In additional experiments mice were treated with an NK-2 receptor antagonist prior to hypoxic challenge. Resting ventilatory parameters were not different between groups. NK-1-/- mice displayed significantly greater shortening of expiratory time and higher increase of breathing frequency during hypoxia than wild-type mice. Treatment with the NK-2 receptor antagonist SR 48968 (1 mg/kg) resulted in a further shortening of inspiratory and expiratory time in NK-1-/- but not wild-type mice. These results demonstrate that both NK-1 and NK-2 receptors are involved in the modification of ventilation in response to acute hypoxia.  相似文献   

13.
Summary The present investigation examined the relationship between CO2 sensitivity [at rest (S R) and during exercise (S E)] and the ventilatory response to exercise in ten elderly (61–79 years) and ten younger (17–26 years) subjects. The gradient of the relationship between minute ventilation and CO2 production ( E/ CO2) of the elderly subjects was greater than that of the younger subjects [mean (SEM); 32.8 (1.6) vs 27.3 (0.4); P<0.01]. At rest, S R was lower for the elderly than for the younger group [10.77 (1.72) vs 16.95 (2.13) 1 · min–1 · kPa–1; 1.44 (0.23) vs 2.26 (0.28) 1 · min–1 · mmHg–1; P<0.05], but S E was not significantly different between the two groups [17.85 (2.49) vs 19.17 (1.62) l · min–1 · kPa–1; 2.38 (0.33) vs 2.56 (0.21) 1 · min–1 · mmHg–1]. There were significant correlations between both S R and S E, and E/ CO2 (P<0.05; P<0.001) for the younger group, bot none for the elderly. The absence of a correlation for the elderly supports the suggestion that E/ CO2 is not an appropriate index of the ventilatory response to exercise for elderly humans.  相似文献   

14.
The purpose of this study was to clarify the changes in hypercapnic and hypoxic ventilatory responses (HCVR and HVR) after intermittent hypoxia and following the cessation of hypoxic exposure. Twenty-nine males were assigned to one of four groups, i.e., a hypoxic (EX1-H, n=7) or a control (EX1-C, n=7) group in Experiment 1, and a hypoxic (EX2-H, n=8) or a control (EX2-C, n=7) group in Experiment 2. In each experiment, the hypoxic tent system was utilized for intermittent hypoxia, and the oxygen levels in the tent were maintained at 12.3+/-0.2%. In Experiment 1, the EX1-H group spent 3 h/day in the hypoxic tent for 1 week. HCVR and HVR were determined before and after 1 week of intermittent hypoxia, and again 1 and 2 week after the cessation of hypoxic exposure. In Experiment 2, the subjects in the EX2-H group performed 3 h/day for 2 weeks in intermittent hypoxia. HCVR and HVR tests were carried out before and after intermittent hypoxia, and were repeated again after 2 weeks of the cessation of hypoxic exposure. The slope of the HCVR in the EX1-H group did not show a significant increase after 1 week of intermittent hypoxia, while HCVR in the EX2-H group increased significantly after 2 weeks of intermittent hypoxia. The HCVR intercept was unchanged following 1 or 2 weeks of intermittent hypoxia. There was a significant increase in the slope of the HVR after 1 and 2 weeks of intermittent hypoxia. The increased HCVR and HVR returned to pre-hypoxic levels after 2 weeks of the cessation of hypoxia. These results suggest that 3 h/day for 2 weeks of intermittent hypoxia leads to an increase in central hypercapnic ventilatory chemosensitivity, which is not accompanied by a re-setting of the central chemoreceptors, and that the increased hypercapnic and hypoxic chemosensitivities are restored within 2 weeks after the cessation of hypoxia.  相似文献   

15.
The c-ret proto-oncogene encodes a tyrosine-kinase receptor involved in survival and differentiation of neural crest cell lineages. Previous studies have shown that homozygous c-ret−/− mice die soon after birth and have impaired ventilatory responses to hypercapnia. Heterozygous c-ret+/− mice develop normally, but their respiratory phenotype has not been described in detail. We used whole-body flow plethysmography to compare baseline breathing and ventilatory and arousal responses to chemical stimuli in unrestrained heterozygous c-ret+/− newborn mice and their wild-type c-ret+/+ littermates at 10–12 h of postnatal age. The hyperpnoeic and arousal responses to hypoxia and hypercapnia were not significantly different in these two groups. However, the number and total duration of apnoeas and periodic breathing episodes were significantly higher in c-ret+/− than in c-ret+/+ pups during hypoxia and post-hypoxic normoxia. These results are further evidence that respiratory control at birth is heavily dependent on genes involved in the neural determination of neural crest cells.  相似文献   

16.
This study seeks to confirm the progressive changes in cardiac output and heart rate previously reported with 8 h exposures to constant hypoxia, and to examine the role of sympathetic mechanisms in generating these changes. Responses of ten subjects to four 8 h protocols were compared: (1) air breathing with placebo; (2) isocapnic hypoxia (end-tidal PO2 = 50 mm Hg) with placebo; (3) isocapnic hypoxia with beta-blockade; and (4) air breathing with beta -blockade. Regular measurements of heart rate and cardiac output (using ultrasonography and N2O rebreathing techniques) were made with subjects seated in the upright position. The sensitivity of heart rate to rapid variations in hypoxia (GHR) and heart rate in the absence of hypoxia were measured at times 0, 4 and 8 h. No significant progressive effect of hypoxia on cardiac output was detected. There was a gradual rise in heart rate with hypoxia of 11+/-2 beats min(-1) in the placebo protocol and of 10+/-2 beats min(-1) in the beta-blockade protocol over 8 h, compared to the air breathing protocols. The rise in heart rate was progressive (P<0.001) and accompanied by progressive increases in both GHR (P<0.001) and heart rate measured in the absence of hypoxia (P<0.05). No significant effect of beta-blockade was detected on any of these progressive changes. We conclude that sympathetic mechanisms that act via beta -receptors play little role in the progressive changes in heart rate observed over 8 h of moderate hypoxia.  相似文献   

17.
The effect of airway anaesthesia by lidocaine inhalation on the hypoxic ventilatory response was examined together with the heart rate response by the isocapnic progressive hypoxia test in human subjects. During the test, end-tidal PCO2 (PETCO2) was maintained at the resting level. However, because resting PETCO2 tends to decrease by airway anaesthesia, we conducted the test at the resting PETCO2 determined both before (normocapnic) and after lidocaine (hypocapnic). Ventilatory and heart rate response were evaluated as a linear function of oxygen saturation of the arterial blood (SaO2). In the "hypocapnic" runs, ventilatory responses tended to be depressed, while the slope of heart rate response-PETCO2 relationship increased after lidocaine. However, when PETCO2 was restored to the normocapnic level, ventilation apparently increased from the control, and the augmented slope in the heart rate response disappeared. Although the elevated ventilation in normocapnic hypoxia might be due simply to the increased ventilatory response to CO2, we suggested that the augmented slope in the heart rate response in hypocapnic hypoxia might be related not only to PETCO2 level itself but also to the direct effect of airway anaesthesia.  相似文献   

18.
Intermittent hypoxia (IH) is thought to be responsible for many of the long-term cardiovascular consequences associated with obstructive sleep apnoea (OSA). Experimental human models of IH can aid in investigating the pathophysiology of these cardiovascular complications. The purpose of this study was to determine the effects of IH on the cardiovascular and cerebrovascular response to acute hypoxia and hypercapnia in an experimental human model that simulates the hypoxaemia experienced by OSA patients. We exposed 10 healthy, male subjects to IH for 4 consecutive days. The IH profile involved 2 min of hypoxia (nadir     = 45.0 mmHg) alternating with 2 min of normoxia (peak     = 88.0 mmHg) for 6 h. The cerebral blood flow response and the pressor responses to hypoxia and hypercapnia were assessed after 2 days of sham exposure, after each day of IH, and 4 days following the discontinuation of IH. Nitric oxide derivatives were measured at baseline and following the last exposure to IH. After 4 days of IH, mean arterial pressure increased by 4 mmHg ( P < 0.01), nitric oxide derivatives were reduced by 55% ( P < 0.05), the pressor response to acute hypoxia increased ( P < 0.01), and the cerebral vascular resistance response to hypoxia increased ( P < 0.01). IH alters blood pressure and cerebrovascular regulation, which is likely to contribute to the pathogenesis of cardiovascular and cerebrovascular disease in patients with OSA.  相似文献   

19.
Heart rate response to isocapnic hypoxia in conscious man   总被引:1,自引:0,他引:1  
We studied the effect of acute progressive hypoxia on heart rate in conscious healthy subjects. The PCO2 was held constant (+/- 1.5 mmHg) midway between the resting end-tidal and mixed-venous levels. Hypoxia was induced by having the subject rebreathe from a small bag so that the PO2 fell at a rate related to the subject's oxygen consumption. Arterial oxygen saturation (Sao2) was measured continuously during the procedure with an ear oximeter. We found that heart rate (HR) was best fitted to an inverse linear relation to arterial oxygen saturation and a power relation to PO2. The range of deltaHR/deltaSao2 was 0.62-1.46 beats/min per 1% fall in Sao2 (mean +/- SE = 0.98 +/- 0.06). There was no relationship between heart rate and ventilatory responses to hypoxia.  相似文献   

20.
1. Ventilatory, tidal volume and frequency responses to progressive isocapnic hypoxia have been measured in twenty-nine healthy subjects by a rebreathing technique. 2. A strong correlation was found between ventilatory response to hypoxia (deltaVI/DELTASaO2) and frequency response to hypoxia (deltaf/deltaSaO2) (r=0-82, P less than 0-001). There was a lesser correlation between deltaV1/deltaSaO2 and tidal volume response (deltaVT/deltaSaO2) (r=0-50, P less than 0-01). These findings suggest that the wide range of ventilatory response to hypoxia among subjects is mainly determined by differences in frequency response and contrast with previous findings in studies of the response to progressive hypercapnia. 3. The breathing pattern during progressive hypoxia and hypercapnia was compared in ten subjects. Ventilation/tidal volume plots were constructed and patterns of response were further analysed in terms of inspiratory duration (TI), expiratory duration (TE) and mean inspiratory flow rate (VI). 4. Increments in ventilation during hypoxia were achieved with a greater respiratory frequency and a smaller tidal volume than during hypercapnia in eight of the ten subjects studied. In two subjects no difference in breathing pattern during hypoxia and hypercapnia was observed. 5. Changes in respiratory frequency during progressive hypoxia were achieved in all subjects by a progressive shortening of TI and TE. By contrast, TI remained constant during hypercapnia until VT had increased to 3-5 times the eupnoeic value; during hypercapnia the increase in frequency was achieved mainly by a progressive shortening of TE. 6. It is concluded that different mechanisms may be involved in altering respiratory frequency when ventilation is driven progressively by these different chemical stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号