首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Midbrain somatodendritic 5-HT1A autoreceptors play a central inhibitory role in the regulation of serotonergic neurotransmission. Given that serotonergic neurotransmission appears to be altered in experimental cholestatic liver disease we examined alterations in midbrain 5-HT1A autoreceptor binding and physiological responses in rats with experimental cholestatic liver disease in comparison to non-cholestatic controls. Using a standard receptor binding assay cholestatic rats exhibited an increase in midbrain 5-HT1A receptor number but no change in receptor affinity compared to controls. Midbrain 5-HT1A receptor mRNA expression as determined by semiquantitative RT–PCR was similar in cholestatic and non-cholestatic animals. In addition, cholestatic rats exhibited enhanced 5-HT1A autoreceptor-mediated hypothermic and hyperphagic responses compared to non-cholestatic controls after the administration of the highly specific 5-HT1A receptor agonist LY293284. These findings indicate that experimental cholestatic liver injury is associated with enhanced 5-HT1A autoreceptor-mediated physiological responsiveness in the setting of increased midbrain 5-HT1A receptor number but not affinity.  相似文献   

2.
3.
Brain blood volume changes in the rat in response to 5-HT1A agonist and antagonist administration were measured using susceptibility contrast enhanced magnetic resonance imaging (MRI). Administration of the 5-HT1A agonist 8-OH-DPAT resulted in decreases in fractional brain blood volumes. Administration of the 5-HT1A antagonist WAY-100635 following a dose of 8-OH-DPAT resulted in increases in fractional blood volumes greatest in hippocampus and cortex and smallest in thalamus and caudate-putamen. The magnitude of the regional increases in blood volumes paralleled the distribution of 5-HT1A receptors in the rat brain. Administration of WAY-100635 alone resulted in decreases in cortical blood volume and increases in cerebellar blood volume.  相似文献   

4.
Selective labeling of 5-HT1A and 5-HT1B binding sites in bovine brain   总被引:1,自引:0,他引:1  
Stephen J. Peroutka   《Brain research》1985,344(1):167-171
Drug interactions with serotonin(1A) 5-HT1A and serotonin(1B) (5-HT1B) binding sites were analyzed in bovine brain membranes. 5-HT1A binding sites were directly labeled with [3H]8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) in bovine hippocampal membranes. 5-HT1B binding sites were labeled by [3H]5-HT in bovine striatal membranes where less than 15% of specific binding sites are sensitive to nanomolar concentrations of 8-OH-DPAT. Each of the 12 agents tested was more potent at the 5-HT1A than 5-HT1B binding site. 5-HT, bufotenine, N,N-dimethyltryptamine (DMT) and quipazine were only slightly more potent at the 5-HT1A binding site. By contrast, 8-OH-DPAT, TVX Q 7821 and buspirone were significantly more potent at [3H]8-OH-DPAT binding sites in bovine hippocampus than at [3H]5-HT binding sites in bovine striatum. These findings suggest that 5-HT1A, and 5-HT1B binding sites have distinct pharmacological profiles and can be directly labeled with appropriate [3H]ligands in specific brain regions.  相似文献   

5.
8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a potent 5-HT1A receptor agonist, was infused in the dorsal hippocampus of rats and its effect on acquisition and performance of a 2-platform spatial discrimination task was studied using a water maze. The infusion (0.5 microliter/min) of 2 but not 0.4 microgram 8-OH-DPAT in the CA1 region of the dorsal hippocampus impaired rats' accuracy with no effect on latency (except day 3). At 5 micrograms 8-OH-DPAT impaired rats' accuracy and significantly increased choice latencies from day 2 to day 5 of the training period. The dose of 2 micrograms significantly increased the errors of omissions on the first day of training and animals which had received 5 micrograms 8-OH-DPAT made significantly more errors of omission on the first and second days of training. Intrahippocampal administration of 1 microgram spiroxatrine, a 5-HT1A receptor antagonist, antagonized the effect of 5 micrograms 8-OH-DPAT on accuracy and choice latency with no significant effect on the errors of omission on days 1 and 2 of training. Infusion of 2 and 5 micrograms 8-OH-DPAT in the dorsal hippocampus also impaired accuracy in well-trained rats. The results suggest that stimulation of 5-HT1A receptors in the CA1 region of the dorsal hippocampus causes an impairment of spatial discrimination in rats.  相似文献   

6.
The interaction between serotonin (5-HT)1A and nicotinic cholinergic reptors in the regulation of spatial navigation behavior in the Morris water maze (WM) test was studied. Pretraining intraperitoneal (i.p.) injections of a combination of subthreshold doses of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (a 5-HT1A receptor agonist) at 30 μg/kg and mecamylamine (a nicotinic cholinergic receptor antagonist) at 2500 μg/kg greatly impaired WM navigation to a hidden platform and slightly, but not statistically significantly, impaired WM navigation to a visible platform. Post-training i.p. injections of this combination had no effect on WM navigation performance. Serotonin depletion induced byp-chlorophenylalanine (PCPA) increased the performance impairing action of pretraining injected combination of 8-OH-DPAT 30 μg/kg and mecamylamine 2500 μg/kg. In trained rats combined injections of 8-OH-DPAT 30 μg/kg and mecamylamine 2500 μg/kg given pretraining had no effect on the navigation to a hidden platform located in a familiar or in a novel position. Pretraining trial injected combination of hexamethonium 2000 μg/kg (a peripherally acting nicotinic antagonist) and 8-OH-DPAT 30 μg/kg had no effect on navigation. These data suggest that a combined treatment with a 5-HT1a receptor agonist and a nicotinic cholinergic receptor antagonist more severely impair non-mnemonic acquisition performance processes than consolidation and retrieval processes.  相似文献   

7.
Recent studies have established that the expression of defensive rage behavior in the cat is mediated over a descending pathway from the medial hypothalamus to the dorsolateral quadrant of the midbrain periaqueductal gray matter (PAG). The present study was designed to determine the roles played by 5-HT1A and 5-HT2/1C receptors in this region of PAG in modulating defensive rage behavior elicited from the cat's medial hypothalamus. Monopolar stimulating electrodes were implanted into the medial hypothalamus from which defensive rage behavior could be elicited by electrical stimulation. During the course of the study, the `hissing' component of the defensive rage response was used as a measure of defensive rage behavior. Cannula-electrodes were implanted into sites within the PAG from which defensive rage could also be elicited by electrical stimulation in order that 5-HT compounds could be microinjected into behaviorally identifiable regions of the PAG at a later time. Microinjections of the selective 5-HT1A agonist, (+)-8-hydroxy-dipropylaminotetralin hydrobromide (8-OHDPAT) (50 pmol, 2.0 and 3.0 nmol), into the PAG suppressed the hissing response in a dose-dependent manner. Administration of the selective 5-HT1A antagonist, 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl] ethyl]-N-2-pyridinyl-benzamide hydrochloride (p-MPPI) (1.5 and 3.0 nmol), blocked the suppressive effects of 8-OHDPAT upon hissing. In contrast, microinjections of the 5-HT2/1C receptor agonist (+)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane hydrochloride ((+)-DOI hydrochloride) (0.01, 1.0 and 1.5 nmol) facilitated the occurrence of hissing elicited from the medial hypothalamus in a dose-dependent manner. Immunohistochemical analysis revealed the presence of 5-HT axons and preterminals throughout the PAG, and in particular, in its dorsolateral aspect which receives major inputs from the medial hypothalamus in association with defensive rage behavior. The overall findings of the study provide evidence that activation of 5-HT1A and 5-HT2/1C receptors within the midbrain PAG differentially modulate the expression of defensive rage behavior elicited from the medial hypothalamus of the cat.  相似文献   

8.
The thyroid hormone triiodothyronine (T3) augments and accelerates the effects of antidepressant drugs. Although the majority of studies showing this have used tricyclics, a few studies have shown similar effects with the selective serotonin re-uptake inhibitor (SSRI) fluoxetine. In this study we investigated the effects of fluoxetine (5 mg/kg), T3 (20 μg/kg) and the combination of these drugs, each administered daily for 7 days, on serotonergic function in the rat brain, using in vivo microdialysis. Fluoxetine alone induced a trend towards desensitization of 5-HT1A autoreceptors as shown by a reduction in the effect of 8-OH-DPAT to lower 5-HT levels in frontal cortex, and desensitized 5-HT1B autoreceptors in frontal cortex. The combination of fluoxetine and T3 induced desensitization of 5-HT1B autoreceptors in hypothalamus. Since there is evidence linking hypothalamic function and depression, we suggest that this effect may partly account for the therapeutic efficacy of the combination of an SSRI and T3.  相似文献   

9.
We evaluated the effects of adrenalectomy (ADX) and replacement with glucocorticoid receptor agonists on serotonin (5-HT) 5-HT1A and 5-HT2 receptor binding in rat brain. 5-HT1A receptor binding was increased in the CA2–CA4 and the dentate gyrus of the hippocampus 1 week after ADX. This effect was prevented by the systemic administration of aldosterone (10 μg/μl/h) but not by RU28362 (10 μg/μl/h). No significant effect was observed on 5-HT2 receptor binding in rat cortex. The expression of 5-HT transporter mRNA was unchanged in the raphe nucleus as measured by in situ hybridization.  相似文献   

10.
Mitsukuni Murasaki and Sadanori Miura: The Future of 5-HT1A Receptor Agonists. (Aryl-Piperazine Derivatives) Prog. Neuro- Psychopharmacol-& Biol Psychiat, 1992, 16(6): 833–845.
1. 1. At present the dominant position among anti-anxiety medications has changed from meprobamate to the benzodiazepine derivatives.
2. 2. In order to avoid benzodiazepine's (BZ) undesirable side effects such as impairment of psycho-motor function, memory impairment, low dose dependence and withdrawal symptoms, a third generation anxiolytic agent, buspirone, the focus of the aryl-piperazine group of anti-anxiety agents, has been introduced recently.
3. 3. Aryl-piperazine derivatives work as 5-HT1A receptor partial agonists and are known as serotonin normalizers.
4. 4. Therefore, they are expected to have not only an anxiolytic function but also an anti-depressant effect as well.
5. 5. A characteristic of the aryl-piperazine derivatives is that they have no sedative and muscle relaxant effects, and they do not have BZ's undesirable side-effects, especially in regard to withdrawal symptoms. However they have a rather weak anxiolytic action and a slow onset of action.
6. 6. Aryl-piperazine derivatives will not take the place of BZ, but the use of BZ and buspirone as bridge medications, making the most of the strong points of both, can be proposed as a way to compensate for their respective disadvantages.
Keywords: aryl-piperazine derivatives; future of new anxiolytics; 5-HT1A receptor agonist; nonbenzodiazepine anxiolytic  相似文献   

11.
12.
We have used intracellular recording techniques to examine the effects of 5-hydroxytryptamine (5-HT, serotonin) on 5-HT-containing neurones of the guinea pig dorsal raphe nucleus in vitro. Bath-applied 5-HT (30–300 μM) had two opposing effects on the membrane excitability of these cells, reflecting the activation of distinct 5-HT receptor subtypes. As demonstrated previously in the rat, 5-HT evoked a hyperpolarization and inhibition of 5-HT neurones, which appeared to involve the activation of an inwardly rectifying K+ conductance. This hyperpolarizing response was blocked by the 5-HT1A receptor-selective antagonist WAY-100635 (30–100 nM). In the presence of WAY-100635, 5-HT induced a previously unreported depolarizing, excitatory response of these cells, which was often associated with an increase in the apparent input resistance of the neurone, likely due to the suppression of a K+ conductance. Like the hyperpolarizing response to 5-HT, this depolarization could be recorded in the presence of the Na+ channel blocker tetrodotoxin. In addition, the response was not significantly attenuated by the α1-adrenoceptor antagonist prazosin (500 nM), indicating that it is not due to the release of noradrenaline, or to the direct activation of α1-adrenoceptors by 5-HT. The 5-HT3 receptor antagonist granisetron (1 μM) and the 5-HT4 receptor antagonist SB 204070 (100 nM) failed to reduce the depolarizing response to 5-HT; however, ketanserin (100 nM), mesulergine (100 nM) and lysergic acid diethylamide (1 μM) significantly reduced or abolished the depolarization, indicating that this effect of 5-HT is mediated by 5-HT2 receptors.  相似文献   

13.
Sleep, waking, and EEG power spectra were investigated in rats after intrathecal (IT) administration of a 5-HT1A agonist and a 5-HT1A antagonist. Total slow wave sleep (TSWS) was increased and waking was decreased over the 8-h recording period after the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (38 nmol). Within TSWS, SWS1 was unchanged while SWS-2 tended to be increased. The 5-HT1A antagonist 1-[2-Methoxyphenyl)-4-(4-(2-phthalimido)-butyl]piperazine hydrobomide (NAN-190) did not change and sleep/waking stages. Combined treatment with 8-OH-DPAT and NAN-190 increased variance. Following the combination, sleep and waking were not significantly different from control. SWS-2 tended to be reduced compared to the effect of 8-OH-DPAT alone. There were no systematic changes in neither waking nor TSWS fronto-frontal or fronto-parietal EEG power spectrum after any of the treatments, indicating that sleep quality was not changed. The results confirm earlier data suggesting that in the spinal cord, stimulation of 5-HT1A receptors have a dampening effect on transmission of sensory information, leading to deactivation and thereby increased sleep tendency. The reason why the 8-OH-DPAT effect was not clearly antagonized by the putative 5-HT1A antagonist NAN-190, may be due to the generally weak antagonistic and also partial agonistic effect of NAN-190 as reported in the literature.  相似文献   

14.
The modulating effect of an intrathecally (i.t.) administered 5-HT1A agonist and an NMDA antagonist on sleep, waking and EEG power spectra was investigated in rats. The 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (38 nmol) increased total slow wave sleep (TSWS) and decreased waking over the 8 h recording period. The TSWS increase was mostly due to an increase in SWS1. Sleep latency to SWS1 was also reduced. The NMDA antagonist dl-2-amino 5-phosphonovaleric acid (AP-5) (31.5 nmol) reduced waking. SWS1 was increased, but TSWS was not changed. An increase in REM sleep was seen during the last part of the recording. Combined treatment with 8-OH-DPAT and AP-5 reduced waking and increasd TSWSS. No change in REM sleep was seen. There were no systematic changes in either waking, TSWS or REM fronto-frontal or fronto-parietal EEG power spectrum after any of the treatments. The results suggest that in the spinal cord stimulation of 5-HT1A receptors have a dampening effect on transmission of sensory information, leading to deactivation and thereby increased possibilities for sleep induction. Blockade of the NMDA receptors may also lead to a small dampening of sensory transmission with similar consequences.  相似文献   

15.
We investigated the possible role of 5-HT1A somatodendritic autoreceptors in the dorsal raphe nucleus (DRN) on salt intake response during basal conditions and following natriorexigenic challenge aroused by sodium depletion in rats. Acute systemic administration (76–1520 nmol/kg s.c.) of 8-OH-DPAT, a selective 5-HT1A somatodendritic autoreceptor agonist, induced a clear and dose-dependent preference for salt intake through free choice between water and 0.3 M NaCl simultaneously offered under basal conditions. Acute intra-DRN microinjection (7.5 nmol/rat) of 8-OH-DPAT significantly mimicked the acute systemic protocol in sodium-replete rats. Interestingly, microinjection of 8-OH-DPAT into the DRN raised an additional long-lasting increase of 0.3 M NaCl intake in sodium-depleted rats despite a high volume ingested 30 min after central injection. Conversely, chronic systemic treatment (1520 nmol/kg s.c.) with 8-OH-DPAT for 2 and 3 weeks or repeated intra-DRN microinjection (7.5 nmol/rat) evoked a significant long-term decrease in 0.3 M NaCl intake in sodium-depleted rats given only water and a sodium-deficient diet over the course of 24 h after furosemide injection. These results show a clear-cut involvement of the DRN 5-HT1A somatodendritic autoreceptors in sodium satiety signaling under basal conditions and during the consummatory phase of salt intake in sodium-depleted rats.  相似文献   

16.
5-HT1 receptor agonists have been shown to reduce abnormal involuntary movements (AIMs) in the rat and monkey models of l-DOPA-induced dyskinesia. Different mechanisms have been proposed to underlie this effect. Activation of pre-synaptic 5-HT1 receptors has been suggested to inhibit dysregulated release of dopamine from the serotonin terminals, and thus, abnormal activation of striatal dopamine receptors. Activation of post-synaptic 5-HT1 receptors expressed in non-serotonergic neurons in different brain areas, by contrast, has been shown to result in decreased glutamate and GABA release, which may also contribute to the antidyskinetic effect.To unveil the relative contribution of these mechanisms, we have investigated the effect of increasing doses of 5-HT1A and 5-HT1B receptor agonists on AIMs induced by either l-DOPA or apomorphine. In contrast to l-DOPA-induced AIMs, which were dampened already at low doses of 5-HT1 agonists, reduction of apomorphine-induced AIMs required higher doses. Removal of the serotonin innervation suppressed l-DOPA-induced AIMs, but neither affected apomorphine-induced AIMs nor the inhibiting effect of 5-HT1 agonists on AIMs induced by the direct dopamine agonist, suggesting that such effect is independent on activation of pre-synaptic 5-HT1 receptors.  相似文献   

17.
R(+)-8-OH-DPAT (0.05, but not 0.025, 0.1, 1 mg/kg), a 5-HT1A receptor agonist, decreased l-3,4-dihydroxyphenylalanine (DOPA) accumulation in rat striatum following NSD-1015, an l-aromatic amino acid decarboxylase inhibitor. Amphetamine (1 mg/kg) increased striatal DOPA accumulation, an effect attenuated by R(+)-8-OH-DPAT (0.05 mg/kg). However, both amphetamine (1 mg/kg) and R(+)-8-OH-DPAT (0.05 mg/kg) decreased cortical DOPA accumulation; there were no additional decreases from their combination. Neither amphetamine (1 mg/kg), R(+)-8-OH-DPAT (0.05 mg/kg), or the combination, significantly affected DOPA accumulation in the nucleus accumbens. The significance of and possible mechanisms for these findings are discussed.  相似文献   

18.
Fluoxetine has been reported to suppress food intake in animal models of feeding. Fluoxetine increases extracellular serotonin in the brain. 5HT1A autoreceptors regulate synaptic levels of serotonin. A combination of a 5HT1A receptor antagonist and fluoxetine has been previously reported to enhance extracellular levels of serotonin over what is obtained with fluoxetine alone. Thus, a combination of fluoxetine and a 5HT1A antagonist could enhance the ability of fluoxetine to suppress appetite. Fluoxetine was tested in a model of feeding, in which CD-1 mice were trained to drink sweetened condensed milk. Fluoxetine was found to attenuate milk drinking, in a dose-dependent manner, at doses greater than 10 mg/kg, i.p. A 10 mg/kg dose of fluoxetine, which was ineffective by itself, was then combined either with 5-hydroxytryptophan (5HTP), a serotonin precursor, or with S(−) pindolol, a 5HT1A/β adrenergic receptor antagonist or with LY206130, a more selective 5HT1A receptor antagonist. These treatment paradigms resulted in significant attenuation of the consumption of sweetened condensed milk. Since fluoxetine has been shown to be useful in the treatment of eating disorders and to promote weight loss in obese humans, although at doses greater than those required for the treatment of depression, a combination of fluoxetine with a 5HT1A receptor antagonist could be of clinical utility in the treatment of eating disorders and obesity.  相似文献   

19.
We investigated the effect of the 5-HT1A receptor agonist (±)-8-hydroxy-2-(di-N-propylamino)tetralin (8-OH-DPAT) and the 5-HT2A/2C receptor agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) on monosynaptic transmission in spinalized rats. 8-OH-DPAT significantly inhibited the excitation of α-motoneurons evoked by monosynaptic transmission without a direct effect on α-motoneuron excitation. DOI potentiated the excitation of α-motoneurons by both direct stimulation and monosynaptic transmission. These results indicate that activation of 5-HT1A receptors inhibits monosynaptic transmission, whereas activation of 5-HT2A/2C receptors enhances it.  相似文献   

20.
Age-dependent differences in the ability of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) to irreversibly inactivate 5-HT1A receptors were investigated in female Fischer 344 rats (ages 3 and 22 months). In the hippocampus, frontal cortex and amygdala, EEDQ reduced 5-HT1A receptor density (33–70%) and drug affinity (2.3–6.2 fold) as determined by Scatchard analyses using [3H]8-hydroxy-2-(di-N-propylamino)tetralin. In the frontal cortex, the reduction in Bmax values was significantly greater in 3 months vs. 22 months groups. These region-specific and age-dependent alterations in 5-HT1A receptors may be of pathophysiological significance in age-related cognitive decline and Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号