首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Itch/pruritus is the most common side effect associated with spinal administration of morphine given to humans for analgesia. The aim of this study was to investigate the effectiveness of kappa-opioid receptor (KOR) agonists with diverse chemical structures as antipruritics and to elucidate the receptor mechanism underlying the antipruritic effect in monkeys. In particular, previously proposed non-KOR-1 agonists, including nalfurafine [TRK-820, 17-cyclopropylmethyl-3,14 beta-dihydroxy-4,5 alpha-epoxy-6 beta-[N-methyl-trans-3-(3-furyl)acrylamido]morphinan], bremazocine [(+/-)-6-ethyl-1,2,3,4,5,6-hexahydro-3-[(1-hydroxycyclopropy)-methyl]-11,11-dimethyl-2,6-methano-3-benzazocin-8-ol], and GR 89696 [4-[(3,4-dichlorophenyl)acetyl]-3-(1-pyrrolidinylmethyl)-1-piperazinecarboxylic acid methyl ester] were studied in various behavioral assays for measuring itch/scratching, analgesia, and respiratory depression. Systemic administration of nalfurafine (0.1-1 microg/kg), bremazocine (0.1-1 microg/kg), or GR 89696 (0.01-0.1 microg/kg) dose-dependently attenuated intrathecal morphine (0.03 mg)-induced scratching responses without affecting morphine antinociception. The combination of intrathecal morphine with these KOR agonists did not cause sedation. In addition, pretreatment with effective antiscratching doses of nalfurafine, bremazocine, or GR 89696 did not antagonize systemic morphine-induced antinociception and respiratory depression. The dose-addition analysis revealed that there is no subadditivity for nalfurafine in combination with morphine in the antinociceptive effect. Furthermore, the KOR antagonist study revealed that antiscratching effects of both nalfurafine and a prototypical KOR-1 agonist, U-50488H [trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl)-benzeneacetamide], could be blocked completely by a selective KOR antagonist, nor-binaltorphimine (3 mg/kg). These findings suggest that the agonist action on KOR mainly contributes to the effectiveness of these atypical KOR agonists as antipruritics, and there is no evidence for KOR subtypes or mu-opioid antagonist action underlying the effects of these KOR agonists. This mechanism-based study further supports the clinical potential of KOR agonists as antipruritics under the context of spinal opioid analgesia.  相似文献   

2.
The role of central mu opioid receptors in opioid-induced itch in primates   总被引:6,自引:0,他引:6  
Pruritus (itch sensation) is a significant clinical problem. The aim of this study was to elucidate the roles of opioid receptor types and the site of action in opioid-induced itch in monkeys. Observers who were blinded to the conditions counted scratching after administration of various drugs. Intravenous (i.v.) administration of mu opioid receptor (MOR) agonists (fentanyl, alfentanil, remifentanil, and morphine) evoked scratching in a dose- and time-dependent manner. However, the kappa opioid agonist U-50488H [trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl)-benzeneacetamide] and delta opioid agonist SNC80 [(+)-4-[(alphaR)-alpha-[2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-3-methoxybenzyl]-N,N-diethylbenzamide] did not increase scratching. Intrathecal (i.t.) administration of peptidic MOR agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO, 0.00032-0.01 mg) evoked scratching, but i.v. DAMGO (0.01-1 mg/kg) did not increase scratching. A similar difference between i.t. and i.v. effectiveness was seen with morphine. Antagonist studies revealed that i.v. administration of an opioid receptor antagonist (naltrexone, 0.0032-0.1 mg/kg) dose dependently attenuated scratching induced by i.v. fentanyl (0.018 mg/kg) or morphine (1 mg/kg). However, a peripherally selective opioid antagonist (quaternary naltrexone, 0.0032-0.32 mg/kg) did not block i.v. fentanyl- or morphine-induced scratching. Moreover, a histamine antagonist (diphenhydramine, 0.1-10 mg/kg), failed to attenuate scratching induced by i.t. morphine (0.032 mg) or i.v. morphine (1 mg/kg). Pretreatment with a selective MOR antagonist (clocinnamox, 0.1 mg/kg), but not kappa or delta opioid antagonists (nor-binaltorphimine or naltrindole), blocked i.t. morphine-induced scratching. Together, these data suggest that MOR, not other opioid receptor types or histamine, mediates scratching evoked by opioid analgesics. More important, this study provides in vivo pharmacological evidence that activation of central MOR plays an important role in opioid-induced itch in primates.  相似文献   

3.
The kappa-opioid agonists U50488H, bremazocine, and BRL52537, and the mu-opioid agonist morphine were compared in their ability to modify spontaneous motor activity in male NMRI mice. Higher, analgesic doses of the kappa-agonists reduced rearing, motility, and locomotion in nonhabituated mice. These effects, as well as the analgesic action of U50488H, were blocked by the selective kappa-opioid antagonists nor-binaltorphimine and DIPPA. In contrast, lower, subanalgesic doses (1.25 and 2.5 mg/kg for U50488H; 0.15 and 0.075 mg/kg for bremazocine, and 0.1 mg/kg for BRL52537) time dependently increased motor activity. The stimulatory effects of U50488H and bremazocine were not observed in habituated animals and were reduced by dopamine depletion. Surprisingly, the stimulatory effects of U50488H and bremazocine were not blocked by nor-binaltorphimine and DIPPA but they were completely eliminated by naloxone (0.1 mg/kg). The effects of morphine were dose-dependent; an initial limited suppression was followed by increased motility and locomotion (but not rearing) with a peak effect at 20 mg/kg both in habituated and nonhabituated mice. The selective mu-opioid antagonist beta-funaltrexamine blocked morphine-induced motor stimulation and analgesia but failed to affect the analgesic and motor stimulatory effects of U50488H. The results indicate that kappa-opioid agonists interact with different functional subtypes of opioid receptors. A stimulatory, naloxone-sensitive but nor-binaltorphimine- and DIPPA-insensitive subtype of opioid receptor appears to operate only when the dopamine system is tonically active in nonhabituated animals. At higher doses, kappa-agonists produce analgesia and motor suppression, effects mediated by a "classic" (inhibitory) kappa-opioid receptor.  相似文献   

4.
Nociceptin/orphanin FQ (N/OFQ) is the endogenous peptide for the NOP receptors. Depending on the doses, intrathecal administration of N/OFQ has dual actions (ie, hyperalgesia and antinociception) in rodents. However, the pharmacological profile of intrathecal N/OFQ is not fully known in primates. The aim of this study was to investigate behavioral effects of intrathecal N/OFQ over a wide dose range and to compare its effects with ligands known to produce hyperalgesia or antinociception in monkeys. Intrathecal N/OFQ from 1 fmol to 1 nmol did not produce any hyperalgesic or scratching responses. In contrast, intrathecal substance P 100 nmol produced hyperalgesia, and intrathecal DAMGO 10 nmol produced antinociception. At the dose range between 10 nmol and 1 μmol, intrathecal N/OFQ dose-dependently produced thermal antinociception against a noxious stimulus in 2 intensities. More importantly, N/OFQ in combined with intrathecal morphine dose-dependently potentiated morphine-induced antinociception without inhibiting morphine-induced itch/scratching. Taken together, this study is the first to provide a unique functional profile of intrathecal N/OFQ over a wide dose range in primates. Intrathecal N/OFQ produces thermal antinociception without anti-morphine actions or scratching responses, indicating that N/OFQ or NOP receptor agonists represent a promising target as spinal analgesics.PerspectiveIntrathecal administration of N/OFQ only produced thermal antinociception, not hyperalgesia, in monkeys. In addition, intrathecal N/OFQ does not have anti-morphine actions or itch/scratching responses. This study strongly supports the therapeutic potential of N/OFQ or NOP receptor agonists as spinal analgesics for clinical trials.  相似文献   

5.
Opioid agonists such as morphine have been found to exert excitatory and inhibitory receptor-mediated effects at low and high doses, respectively. Ultra-low doses of opioid antagonists (naloxone and naltrexone), which selectively inhibit the excitatory effects, have been reported to augment systemic morphine analgesia and inhibit the development of tolerance/physical dependence. This study investigated the site of action of the paradoxical effects of naltrexone and the generality of this effect. The potential of ultra-low doses of naltrexone to influence morphine-induced analgesia was investigated in tests of nociception. Administration of intrathecal (0.05 and 0.1 ng) or systemic (10 ng/kg i.p.) naltrexone augmented the antinociception produced by an acute submaximal dose of intrathecal (5 microg) or systemic (7.5 mg/kg i.p.) morphine in the tail-flick test. Chronic intrathecal (0.005 and 0.05 ng) or systemic (10 ng/kg) naltrexone combined with morphine (15 microg i.t.; 15 mg/kg i.p.) over a 7-day period inhibited the decline in morphine antinociception and prevented the loss of morphine potency. In animals rendered tolerant to intrathecal (15 microg) or systemic (15 mg/kg) morphine, administration of naltrexone (0.05 ng i.t.; 10 and 50 ng/kg i.p.) significantly restored the antinociceptive effect and potency of morphine. Thus, in ultra-low doses, naltrexone paradoxically enhances morphine analgesia and inhibits or reverses tolerance through a spinal action. The potential of naltrexone to influence morphine-induced reward was also investigated using a place preference paradigm. Systemic administration of ultra-low doses of naltrexone (16.7, 20.0, and 25.0 ng/kg) with morphine (1.0 mg/kg) extended the duration of the morphine-induced conditioned place preference. These effects of naltrexone on morphine-induced reward may have implications for chronic treatment with agonist-antagonist combinations.  相似文献   

6.
This study investigated the antinociceptive properties of two alkylating derivatives of morphinone, 14 beta-(thioglycolamido)-7,8- dihydromorphinone (TAMO) and 14 beta-(bromoacetamido)-7,8-dihydromorphinone (H2BAMO) in the mouse tail-flick assay. Intracerebroventricular administration of either TAMO or H2BAMO produced short-term antinociception. Both TAMO and H2BAMO were 11.6-fold more potent than an i.c.v. administration of morphine. These effects were antagonized by the mu-selective antagonist, beta-funaltrexamine, but not by the delta-selective antagonist, N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH. TAMO pretreatment from 8 to 48 hr produced a time-related, dose-dependent antagonism of morphine-induced antinociception without showing any agonistic effect. Pretreatment with TAMO for 24 hr antagonized antinociception produced by both H2BAMO and morphine, as well as TAMO itself, but not that of the delta-selective agonist [D-Pen2,D-Pen5]enkephalin (DPDPE) or U50,488, a kappa-selective agonist. In order to distinguish this antagonistic effect from cross-tolerance between TAMO and morphine, two mu agonists, [D-Ala2,N(Me)Phe4,Gly-ol]enkephalin (DAMGO) and H2BAMO, were chosen for comparison. A single i.c.v. pretreatment of DAMGO or H2BAMO, at a dose that had equivalent analgesic effects as TAMO, attenuated morphine-induced antinociception, reaching a maximal effect at the time of the disappearance of agonistic effects of DAMGO and H2BAMO and lasting up to 24 hr. Additionally, a 16-hr pretreatment with TAMO, but not DAMGO or H2BAMO, reduced the development of physical dependence to morphine at 24 hr after morphine pellet implantation. Therefore, this study demonstrated that both TAMO and H2BAMO act as mu opioid agonists to produce short-term antinociception.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
This study examines whether there is a supraspinal, in addition to spinal, component to the antinociceptive actions against heat and pressure stimuli of kappa-opioid receptor agonists (U-69,593, U50,488H, bremazocine and tifluadom) as compared to mu-opioid receptor agonists (Tyr-D-Ala-Gly-NMe-Gly-ol, fentanyl and morphine) in the rat. The antinociception induced by kappa- and mu-opioids (applied s.c.) was unaffected by systemic quaternary naltrexone (50 mg/kg) revealing that it is mediated in the central nervous system. All kappa- and mu-opioids produced dose-dependent antinociception upon intrathecal application, in each case reversible by naloxone (5 mg/kg s.c.). However, intrathecal application of naloxone could only partially (by ca. 50%) antagonize the antinociception evoked by systemically applied U50,488H and morphine: this suggests sites of action in brain in addition to spinal cord for both mu- and kappa-opioids. Intraventricular application of mu-agonists produced maximal, dose-dependent antinociception. All kappa-agonists were also active in producing dose-dependent antinociception although curves were shallow and maximal antinociception could not be attained. The action of tifluadom was shown to be stereospecific. Naltrexone was 10-fold more potent in blocking morphine as compared to U50,488H whereas nor-binaltorphimine, a preferential kappa-antagonist, was 6-fold more potent against U50,488H than morphine. Indeed, whereas a dose of 0.2 mg/kg of naltrexone reversed mu-agonist actions, this dose was inactive against all kappa-agonists: the actions of these could be antagonized only by 2.0 mg/kg. These data indicate that in addition to kappa-receptors in the spinal cord, kappa-receptors in the brain can mediate antinociception against noxious heat and pressure.  相似文献   

8.
Role of Na(+), K(+)-ATPase in morphine-induced antinociception   总被引:3,自引:0,他引:3  
We evaluated the modulation by Na+,K+-ATPase inhibitors of morphine-induced antinociception in the tail-flick test and [3H]naloxone binding to forebrain membranes. The antinociception induced by morphine (1-32 mg/kg, s.c.) in mice was dose-dependently antagonized by ouabain (1-10 ng/mouse, i.c.v.), which produced a significant shift to the right of the morphine dose-response curve. The i.c.v. administration of three Na+,K+-ATPase inhibitors (ouabain at 0.1-100, digoxin at 1-1000, and digitoxin at 10-10000 ng/mouse) dose-dependently antagonized the antinociceptive effect of morphine (4 mg/kg, s.c.) in mice, with the following order of potency: ouabain > digoxin > digitoxin. This effect cannot be explained by any interaction at opioid receptors, since none of these Na+,K+-ATPase inhibitors displaced [3H]naloxone from its binding sites, whereas naloxone did so in a concentration-dependent manner. The antinociception induced by morphine (5 mg/kg, s.c.) in rats was antagonized by the i.c.v. administration of ouabain at 10 ng/rat, whereas it was not significantly modified by intrathecally administered ouabain (10 and 100 ng/rat). These results suggest that the activation of Na+,K+-ATPase plays a role in the supraspinal, but not spinal, antinociceptive effect of morphine.  相似文献   

9.
Administered i.p. to mice, the selective kappa receptor agonists U-50488H and spiradoline (U-62066) were more potent on the tail-flick than on the hot-plate analgesic assay. Both were more potent after i.s. rather than i.c. administration, a result consistent with earlier demonstrations that tail-flick analgesia is generally dependent upon spinal mechanisms. Intraspinal U-50488H was not effective in elevating rat tail-flick latencies. Both drugs increased the thresholds for cat spinal cord nociceptive neurons to respond to a noxious heat stimulus. However, maximal responses of spinal cord neurons to nociceptive stimuli were not altered. It is concluded that although spinal cord sites may be critical to kappa receptor analgesic mechanisms, the effects are quite distinct from spinal cord effects observed previously with classical narcotic analgesics.  相似文献   

10.
We have previously demonstrated that both endomorphin-1 (EM-1) and endomorphin-2 (EM-2) at high doses (1.75-35 nmol) given intrathecally (i.t.) or intracerebroventricularly produce antinociception by stimulation of mu-opioid receptors. Now, we report that EM-2 at small doses (0.05-1.75 nmol), which injected alone did not produce antinociception, produces anti-analgesia against opioid agonist-induced antinociception. The tail-flick (TF) response was used to test the antinociception in male CD-1 mice. Intrathecal pretreatment with EM-2 (0.02-1.75 nmol) 45 min before i.t. morphine (3.0 nmol) injection dose dependently attenuated morphine-induced TF inhibition. On the other hand, a similar dose of EM-1 (1.64 nmol) failed to produce any antianalgesic effect. The EM-2 (1.75 nmol)-produced anti-analgesia against morphine-induced TF inhibition was blocked by i.t. pretreatment with the mu-opioid antagonist naloxone or 3-methoxynaltrexone, but not delta-opioid receptor antagonist naltrindole, kappa-opioid receptor antagonist nor-binaltorphimine, or N-methyl-d-aspartate (NMDA) receptor antagonist MK-801. The EM-2-induced antianalgesic effect against morphine-induced TF inhibition was blocked by i.t. pretreatment with antiserum against dynorphin A(1-17), but not beta-endorphin, [Met]-enkephalin, [Leu]-enkephalin, or cholecystokinin antiserum (200 microg each). The i.t. EM-2 pretreatment also attenuated the TF inhibition induced by other mu-opioid agonists, [d-Ala2,N-Me-Phe4,Gly-ol5]-enkephalin, EM-1 and EM-2, delta-opioid agonist deltorphin II, and kappa-opioid agonist (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide methane-sulfonate hydrate (U50,488H). It is concluded that EM-2 at subanalgesic doses presumably stimulates a subtype of mu-opioid receptor and subsequently induces the release of dynorphin A(1-17) to produce antianalgesic effects against mu-, delta-, or kappa-agonists-induced antinociception. The EM-2-induced antianalgesia is not mediated by the release of [Met]-enkephalin, [Leu]-enkephalin, beta-endorphin, or cholecystokinin, nor does it involve kappa- or delta-opioid or NMDA receptors in the spinal cord.  相似文献   

11.
Simultaneous action of morphine on supraspinal and spinal sites produces a multiplicative interaction for antinociception which may be important for the analgesia produced by systemically administered morphine. The purpose of this study was to see whether other agonists with more receptor selective opioid actions than morphine would also produce this multiplicative interaction. DAMPGO (Tyr-D-Ala2-Gly-NMePhe4-Gly-ol5), DPDPE (D-Pen2, D-Pen5, enkephalin) and U50-488H, opioid agonists highly selective for mu, delta and kappa receptors, respectively, were administered alone i.c.v. or intrathecally (i.t.) or in combination (i.c.v. plus i.t.) to determine ED50 values for the tail-flick response in mice. These ED50 values were examined isobolographically in relation to the theoretical additive ED50 values by the potency ratio method. First, DAMPGO given i.cv and i.t. was similar to morphine, indicating that simultaneous supraspinal and spinal mu agonist administration produce the multiplicative interaction. Second, concurrent administration of DPDPE or U50,488H, i.c.v. and i.t., as well as cross-over combinations of DPDPE at one and U50,488H at the other site, produced additive interactions only. The multiplicative interaction was a property characteristic of mu but not delta and kappa agonists. Based on the similarity between morphine and DAMPGO, it was postulated that both mu agonists act on redundant descending pain inhibitory pathways to produce multiplication. A second mechanism for multiplicative interaction was based on the difference between DAMPGO and morphine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Moncada A  Cendán CM  Baeyens JM  Del Pozo E 《Pain》2005,114(1-2):212-220
We previously reported that serine/threonine protein phosphatases (PPs) play a role in the antinociception induced by the mu-opioid receptor agonist morphine. In this study we evaluated the possible involvement of PPs on the antinociception induced by agonists of others G protein-coupled receptors in the tail flick test in mice. The subcutaneous administration of clonidine (0.25-4 mg/kg), baclofen (2-32 mg/kg) or U50,488H (2-16 mg/kg) (agonists of alpha(2) adrenoceptors, GABA(B) and kappa-opioid receptors, respectively) produced dose-dependent antinociception. The antinociceptive effects of clonidine and baclofen were antagonized in a dose-dependent way by the protein phosphatase inhibitors okadaic acid (0.001-10 pg/mouse, i.c.v.) and cantharidin (0.001-10 ng/mouse, i.c.v.), and okadaic acid was 1000 times more potent than cantharidin in producing this effect. The effects of these drugs appear to be specifically due to the blockade of PPs, since L-norokadaone (an analogue of okadaic acid that has no effect on PPs) did not modify clonidine- or baclofen-induced antinociception over the wide range of doses used (0.001-1000 pg/mouse, i.c.v.). On the other hand, the antinociception induced by activation of kappa-opioid receptors with U50,488H was not modified by okadaic acid or cantharidin. In conclusion, our data support the idea that serine/threonine PPs are differentially involved in the antinociceptive effects of several agonists of G protein-coupled receptors in mice.  相似文献   

13.
The spinal antinociceptive actions of the selective kappa opioid receptor agonists U50488H and U69593 were investigated in anesthetized adult rats and 21-day-old rat pups. Single unit extracellular recordings were made of dorsal horn neurons responding to both innocuous and noxious peripheral stimuli. Mixed effects on neuronal responses were seen after intrathecal administration of lower doses of the kappa agonists but with higher doses selective inhibitions of C fiber-evoked responses were produced by either U50488H or U69593 in both the adult (ED50 420 and 250 micrograms, respectively) and pup (ED50 63 and 13 micrograms, respectively). In the adult intrathecal U50488H similarly inhibited the more prolonged nociceptive response evoked by s.c. formalin. Intravenous U50488H (4 mg/kg) also produced a rapid and selective inhibition of nociceptive responses in the adult rat. Intrathecal administration of the nonselective opiate antagonist naloxone reduced the inhibitions mediated by U50488H and U69593 in the pup and the adult. However, intrathecal norbinaltorphimine, a selective kappa antagonist, only prevented the action of the kappa agonists in the pup and not in the adult. Kappa receptors are reported to be sparse in the adult rat spinal cord so developmental changes in this receptor may be responsible for the differential action of norbinaltorphimine in the rat pup and adult.  相似文献   

14.
The effect of pretreatment with naloxonazine on opioid-mediated antinociception against a thermal stimulus (55 degrees C warm-water tail-flick test) and inhibition of gastrointestinal transit at supraspinal and spinal levels was studied in unanesthetized mice. The mu-selective agonist [D-Ala2, N-methyl-Phe4, Gly5-ol]enkephalin (DAGO), the delta-selective agonist [D-Pen2, D-Pen5]enkephalin (DPDPE) and the reference mu-acting agonist morphine, all produced antinociception after either i.c.v. or intrathecal(ly) (i.t.) administration. Morphine and DAGO, but not DPDPE, inhibited gastrointestinal transit after i.c.v. administration, whereas all three agonists slowed gut propulsion when given i.t. A single s.c. naloxonazine pretreatment, 35 mg/kg given 24 hr earlier, failed to displace the dose-response line for i.c.v. DPDPE antinociception but produced a marked rightward displacement of the i.c.v. morphine and DAGO dose-response lines for antinociception. In contrast, naloxonazine (35 mg/kg) pretreatment did not alter the antinociceptive effects of i.t. morphine, DAGO or DPDPE. The effects of naloxonazine pretreatment on inhibition of gut propulsion were the converse of those observed for antinociception at supraspinal and spinal sites; naloxonazine had no effect on the antitransit properties of i.c.v. morphine and DAGO but inhibited the antitransit properties of all three agonists when they were given i.t. These results support the view that opioids may produce their supraspinal antitransit effects at a receptor different from that mediating antinociception; morphine and DAGO mediate their antitransit effects at a naloxonazine-insensitive site, whereas their antinociceptive effects are produced at the naloxonazine-sensitive receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Two 14beta-p-nitrocinnamoyl derivatives of dihydrocodeinone, 14beta-(p-nitrocinnamoylamino)-7,8-dihydrocodeinone (CACO) and N-cyclopropylmethylnor-14beta-(p-nitrocinnamoylamino)- 7, 8-dihydrocodeinone (N-CPM-CACO), and the corresponding chlorocinnamoylamino analogs, 14beta-(p-chlorocinnamoylamino)-7, 8-dihydrocodeinone (CAM) and N-cyclopropylmethylnor-14beta-(p-chlorocinnamoylamino) -7, 8-dihydrocodeinone (MC-CAM), were tested in opioid receptor binding assays and the mouse tail-flick test to characterize the opioid affinity, selectivity, and antinociceptive properties of these compounds. In competition binding assays, all four compounds bound to the mu opioid receptor with high affinity. When bovine striatal membranes were incubated with any of the four dihydrocodeinones, binding to the mu receptor was inhibited in a concentration-dependent, wash-resistant manner. Saturation binding experiments demonstrated that the wash-resistant inhibition of mu binding was due to a decrease in the Bmax value for the binding of the mu-selective peptide [3H][D-Ala2, MePhe4,Gly(ol)5] enkephalin and not a change in the Kd value, suggesting an irreversible interaction of the compounds with the mu receptor. In the mouse 55 degrees C warm water tail-flick test, both CACO and N-CPM-CACO acted as short-term mu-selective agonists when administered by i. c.v. injection, whereas CAM and MC-CAM produced no measurable antinociception at doses up to 30 nmol. Pretreatment of mice for 24 h with any of the four dihydrocodeinone derivatives produced a dose-dependent antagonism of antinociception mediated by the mu but not the delta or kappa receptors. Long-term antagonism of morphine-induced antinociception lasted for at least 48 h after i.c. v. administration. Finally, shifts in the morphine dose-response lines after 24-h pretreatment with the four dihydrocodeinone compounds suggest that the nitrocinnamoylamino derivatives may produce a greater magnitude long-term antagonism of morphine-induced antinociception than the chlorocinnamoylamino analogs.  相似文献   

16.
Karim F  Roerig SC 《Pain》2000,87(2):181-191
The present studies assessed the role of G(zalpha) and G(oalpha) in spinal alpha(2) adrenergic receptor agonist-induced antinociception, as well as in antinociceptive synergism between spinal morphine and clonidine. Mice were pretreated with a single intrathecal (i.t.) injection of artificial cerebrospinal fluid (ACSF), antisense oligodeoxynucleotide(s) (ODN) directed against G(zalpha) or G(oalpha), or nonsense ODN. After 48 h, the antinociceptive effects expressed as per cent maximal possible effect (% MPE) of either i.t. morphine alone, clonidine alone or coadministered morphine plus clonidine, were evaluated in the tail flick test. Antisense ODN to G(zalpha) attenuated clonidine- but not morphine-induced antinociception. The ED(50) (95% confidence interval) value for clonidine in ACSF pretreated mice was 6.3 (4.9-8.1) nmol, and in nonsense ODN pretreated mice, it was 4.2 (2.8-6.3) nmol. However, in the G(zalpha) antisense ODN pretreated mice, the highest dose clonidine tested (50 nmol) produced only 41+/-8.5% MPE. Antisense ODN to G(zalpha) also blocked antinociception produced by i.t. UK14, 304 (alpha(2) adrenergic receptor agonist) and [D-Pen(2), D-Pen(5)] enkephalin (DPDPE) (delta opioid receptor agonist), whereas it failed to attenuate i.t. Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO)- (mu opioid receptor agonist) and U50-488 (kappa opioid receptor agonist) -induced antinociception. Pretreatment with antisense ODN to G(oalpha) attenuated both morphine and clonidine induced antinociception and did not affect synergism between the agonists. These results suggest that spinal G(o)alpha mediates antinociception produced by both clonidine and morphine while G(zalpha) mediates alpha(2) adrenergic and delta opioid receptor mediated antinociception, but not antinociception produced by mu or kappa opioid agonists.  相似文献   

17.
Data from rodent antinociception models indicate that N-methyl-D-aspartate (NMDA) receptor antagonists do not produce antinociception alone or potentiate morphine antinociception, but do attenuate the development of morphine tolerance. This study examined the antinociceptive effects of the noncompetitive NMDA receptor antagonist dizocilpine, the competitive NMDA receptor antagonist (-)-6-phosphonomethyl-decahydroisoquinoline-3-carboxylic acid (LY235959), and the glycine-site antagonist (+)-(1-hydroxy-3-aminopyrrolidine-2-one) [(+)-HA-966], alone and in combination with morphine in a squirrel monkey titration procedure. In this procedure, shock (delivered to the tail) increased in intensity every 15 s from 0.01 to 2.0 mA in 30 increments. Five lever presses during any given 15-s shock period produced a 15-s shock-free period after which shock resumed at the next lower intensity. Morphine (0.3-3.0 mg/kg i.m.) dose-dependently increased the intensity below which monkeys maintained shock 50% of the time (median shock level; MSL). In contrast, dizocilpine (0.003-0.1 mg/kg i.m.) produced only modest increases in MSL in some monkeys (three of five) at the highest dose tested. Neither LY235959 (0.1-1.0 mg/kg i.m.) or (+)-HA-966 (10-56 mg/kg i.m.) increased MSL in any monkey tested. Dizocilpine, LY235959, and (+)-HA-966, when administered in combination with doses of morphine (1.0 mg/kg, 1.7 mg/kg) that either produced no antinociception or produced very little antinociception, were all found to dose-dependently potentiate the antinociceptive effect of morphine. Importantly, although these NMDA antagonists in combination with morphine produced marked increases in MSL, these combinations did not alter response rate, demonstrating that the potentiation was not due to nonspecific motor effects.  相似文献   

18.
Chemical modifications of nociceptin/orphanin FQ (N/OFQ) peptide that result in increased potency and resistance to degradation have recently lead to the discovery of [(pF)Phe4Aib7Arg14Lys15]N/OFQ-NH2 (UFP-112), a novel N/OFQ peptide (NOP) receptor agonist. The aim of this study was to investigate the pharmacological profile of intrathecally administered UFP-112 in monkeys under different behavioral assays. Intrathecal UFP-112 (1–10 nmol) dose-dependently produced antinociception against an acute noxious stimulus (50 °C water) and capsaicin-induced thermal hyperalgesia. Intrathecal UFP-112-induced antinociception could be reversed by a NOP receptor antagonist, J-113397 (0.1 mg/kg), but not by a classic opioid receptor antagonist, naltrexone (0.03 mg/kg). Like intrathecal morphine, UFP-112 produced antinociception in two primate pain models with a similar magnitude of effectiveness and a similar duration of action that last for 4–5 h. Unlike intrathecal morphine, UFP-112 did not produce itch/scratching responses. In addition, intrathecal inactive doses of UFP-112 and morphine produced significant antinociceptive effects when given in combination without increasing scratching responses. These results demonstrated that intrathecal UFP-112 produced long-lasting morphine-comparable antinociceptive effects without potential itch side effect. This study is the first to provide functional evidence that selective NOP receptor agonists such as UFP-112 alone or in conjunction with morphine may improve the quality of spinal analgesia.  相似文献   

19.
The opioid receptor subtypes of autonomic nerves of guinea-pig atria were elucidated by monitoring the effects of selective opioid receptor agonists on the negative and positive inotropic responses associated with the stimulation of the parasympathetic and sympathetic nerves, respectively. The positive inotropic effect, evoked by electrical field stimulation (2 Hz) was strongly reduced by the selective OP2-opioid receptor agonists U-50488 and U-69593, but partly by the OP3-opioid receptor agonist morphine. This effect of U-50488 and U-69593 were reversed by the selective OP2-opioid receptor antagonist nor-BNI. The effect of morphine was partly reversed by naloxone, whereas OP1-opioid receptor agonists, BW373 U86 and DPDPE, were ineffective. On the other hand, the negative inotropic response to electrical field stimulation was not affected by opioid receptor agonists. These results suggest that the noradrenaline release from cardiac sympathetic nerves of guinea-pig could be modulated, mainly by the OP2-opioid receptor, however, the acetylcholine release from cardiac parasympathetic nerves is not modulated by opioid receptors.  相似文献   

20.
The opioid receptors involved in the mediation of gastric acid secretory effects were studied in the pylorus-ligated rat. The effects of i.c.v. and i.v. administration of morphine and mu ([D-Ala2, NMePhe4, Gly5-ol]enkephalin and Tyr-Pro-NMePheD-Pro-NH2)-, delta ([D-Pen2,D-Pen5]enkephalin)- and kappa-selective [trans-3,4-dichloro-N-methyl-N-[2-91-pyrrolidinyl)-cyclohexyl]- benzeneacetamide methanesulfonate (U-50,488H), dynorphin-(1-9), dynorphin-(1-17), nalorphine, alpha-neoendorphin and ethyl-ketocyclazocine) opioid receptor agonists on gastric volume and acid output were examined. Morphine, [D-Ala2, NMePhe4, Gly5-ol]enkephalin and Tyr-Pro-NMePhe-D-Pro-NH2 decreased gastric acid secretion more potently after i.c.v. than after i.v. administration. The inhibitory effect of i.v. administered morphine on gastric acid secretion was not blocked by the quaternary opioid antagonist naltrexone methylbromide when given s.c. However, when naltrexone methylbromide was administered i.c.v., it blocked completely the effects of i.c.v. morphine and partially antagonized the effects of i.v. morphine, indicating a central site of action for morphine. The delta-selective agonist [D-Pen2,D-Pen5]enkephalin did not alter gastric acid secretion after i.c.v. or i.v. administration. The kappa-selective opioid agonist U-50,488H produced a dose-dependent increase in gastric acid secretion after i.v. but not i.c.v. administration. The other kappa-selective agonists tested did not produce a significant increase in gastric acid secretion after i.c.v. or i.v. administration. The increase in gastric acid secretion produced by U-40,488H was blocked by pretreatment with the opioid receptor antagonist naloxone, the nonselective muscarinic receptor antagonist atropine and the M1 selective muscarinic receptor antagonist pirenzepine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号