首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y-box binding protein-1 (YB-1) plays an important role in tumor progression and drug resistance. This study examined whether YB-1 is involved in the alteration of response to endocrine therapy in estrogen receptor (ER)-positive breast cancer cells. MCF7 cells that stably expressed YB-1 (MCF7-YB-1) and vector control cells (MCF7-vector) were established. These cells were used to analyze the expression of the factors related to ER and growth factor receptor signaling pathways and responses to antiestrogens (tamoxifen and fulvestrant) and estrogen responsive element (ERE) activity. The effect of knocking down endogenous YB-1 expression was tested in wild-type MCF7 cells. In addition, the expression of YB-1 and the factors related to ER and growth factor receptor signaling pathways were evaluated in clinical breast cancers treated with preoperative chemotherapy. The expression of HER2, AIB1, p-Erk, and c-Myc was increased in MCF7-YB-1 cells. In contrast, knocking down of YB-1 decreased the expression of these factors but increased the expression of ERα in wild-type MCF7 cells. Furthermore, sensitivity to antiestrogens was decreased in the MCF7-YB-1 in comparison to that in MCF7-vector cells. The introduction of YB-1 into MCF7 cells inhibited apoptosis and cell cycle arrest at G1 phase induced by antiestrogens. In MCF7-YB-1 cells, the expression levels of p-Erk and c-Myc were continuously upregulated when cells were treated with either tamoxifen or fulvestrant. The ERE activity was reduced in MCF7-YB-1 cells in comparison to MCF7-vector cells, and the ERE activity in MCF7-YB-1 cells was inhibited by fulvestrant at a lower concentration than that which inhibited the ERE activity in MCF7-vector cells. In ER-positive clinical breast cancers treated with preoperative chemotherapy, significantly more number of specimens that showed increased or positive YB-1 expression after chemotherapy was positive for HER2 expression. These data suggest that alteration of YB-1 may modify the crosstalk between the ER pathway and HER2 pathway in ER-positive breast cancer cells, and consequently, may alter the response to endocrine therapy in ER-positive breast cancer cells.  相似文献   

2.
Purposec-Src is an important adapter protein with oestrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2), which validates it as an attractive target for the treatment of breast cancer. A specific c-Src inhibitor, 4-amino-5-(4-chlorophenyl)-7(t-butyl)pyrazolo[3,4-d]pyrinidine (PP2), was utilised to block c-Src activity to identify targeted vulnerabilities affected by ER and HER2 in a panel of breast cancer cell lines.MethodsER, growth factor receptors and signalling pathways were detected by Western-blot. The DNA content of the cells was determined by using a DNA fluorescence quantitation kit. Cell cycles were analysed by flow cytometry.ResultsThe antiproliferative effect of PP2 closely correlated with the inhibition of c-Src mediated extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and/or phosphoinositide 3-kinase (PI3K)/Akt growth pathways. Inhibition of c-Src tyrosine kinase predominantly blocked ER negative breast cancer cell growth, particularly the triple (i.e. ER, progesteron receptor (PR), and HER2) negative cells. In contrast, ER negative Sk-Br-3 cells with highest HER2 phosphorylation were resistant to PP2, in which hyper-activated HER2 directly regulated growth pathways. However, blocking c-Src recovered ER expression and down-regulated HER2 which made Sk-Br-3 cells regain responsiveness to 4-hydroxytamoxifen. The majority of ER positive cells were not sensitive to PP2 regardless of wild-type or endocrine resistant cell lines.Conclusionsc-Src mediates the essential role of growth pathways in ER negative breast cancer cells. The ER positive and HER2 over-activation are two important predictive biomarkers for the resistance to a c-Src inhibitor. These data provided an important therapeutic rationale for patient selection in clinical trials with c-Src inhibitors in breast cancer.  相似文献   

3.
4.
5.
Although endocrine therapy has dramatically improved the treatment of breast cancer therapeutic resistance and tumour recurrence occurs, even in estrogen receptor (ER) positive cases. Identifying and understanding the molecular mechanisms which underpin endocrine resistance is therefore important if future therapeutic strategies are to be developed. Members of the fibroblast growth factor (FGF) and fibroblast growth factor receptor (FGFR) families have been implicated in breast cancer development and progression. Our results demonstrate that culture of michigan cancer foundation - 1 (MCF)7 cells with FGF1 results in reduced sensitivity to tamoxifen in vitro. Furthermore, our tissue microarray expression data demonstrates that FGFR3 expression is increased in tamoxifen resistant breast tumours. To confirm that activation of FGFR3 reduced sensitivity to tamoxifen we used an inducible activation system and a constitutively active mutant of FGFR3 expressed in MCF7 cells. Activation of FGFR3 reduced sensitivity to tamoxifen and Fulvestrant but did not lead to phosphorylation of ER demonstrating that FGFR3 does not feedback to modulate ER activity. FGFR3 activation in MCF7 cells stimulated activation of the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signalling pathways, both of which have been implicated in tamoxifen resistance in breast cancer. Furthermore, our data indicates that activation of phospholipase C gamma is a key-signalling event regulating MAPK and PI3K activation and that its activation reduces sensitivity to tamoxifen. Therefore, we hypothesise that FGFRs could play an integral part, not only in breast cancer development but also in resistance to endocrine-therapy.  相似文献   

6.
Endocrine therapy is a crucial treatment for estrogen receptor-positive (ER+) breast cancer, with proven clinical benefits. However, adaptive mechanisms emerge in the tumor, causing resistance to endocrine therapy. A better understanding of resistance mechanisms is needed to overcome this problem and to develop new, precise treatment strategies. Accumulating genetic and cancer biological studies demonstrate the importance of understanding the PI3K/Akt/mTOR and CDK4/6/RB pathways in ER+ HER2? breast cancer. PIK3CA (which encodes phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit α) is frequently mutated in breast cancer, and 30% of advanced ER+ HER2? breast cancers have an activating PIK3CA mutation. AKT1 mutations (E17K) have been found in 1.4–8% of breast cancer patients. ER+ breast cancer patients preferentially demonstrate gain of CCND1 (cyclin D1; 58% in luminal B vs. 29% in luminal A) and CDK4 (25% in luminal B vs. 14% in luminal A) and loss of CDKN2A (p16) and CDKN2C (p18), which are negatively regulated with the cell cycle and are correlated with the CDK4/6/RB pathway. Abnormalities in PI3K/Akt/mTOR and CDK4/6/RB pathways due to genetic alterations result in deregulated kinase activity and malignant transformation. This review focuses on the recent reports of the essential role of PI3K/Akt/mTOR and CDK4/6/RB pathways in ER+ HER2? breast cancer.  相似文献   

7.
8.
In our present study, we examined whether nuclear localization of Y-box binding protein-1 (YB-1) is associated with the expression of epidermal growth factor receptors (EGFR), hormone receptors, and other molecules affecting breast cancer prognosis. The expression of nuclear YB-1, clinicopathologic findings, and molecular markers [EGFR, HER2, estrogen receptor (ER)alpha, ER beta, progesterone receptor, chemokine (C-X-C motif) receptor 4 (CXCR4), phosphorylated Akt, and major vault protein/lung resistance protein] were immunohistochemically analyzed. The association of the expression of nuclear YB-1 and the molecular markers was examined in breast cancer cell lines using microarrays, quantitative real-time PCR, and Western blot analyses. Knockdown of YB-1 with siRNA significantly reduced EGFR, HER2, and ER alpha expression in ER alpha-positive, but not ER alpha-negative, breast cancer cell lines. Nuclear YB-1 expression was positively correlated with HER2 (P = 0.0153) and negatively correlated with ER alpha (P = 0.0122) and CXCR4 (P = 0.0166) in human breast cancer clinical specimens but was not correlated with EGFR expression. Nuclear YB-1 expression was an independent prognostic factor for overall (P = 0.0139) and progression-free (P = 0.0280) survival. In conclusion, nuclear YB-1 expression might be essential for the acquisition of malignant characteristics via HER2-Akt-dependent pathways in breast cancer patients. The nuclear localization of YB-1 could be an important therapeutic target against not only multidrug resistance but also tumor growth dependent on HER2 and ER alpha.  相似文献   

9.
Estrogen independence and progression to a metastatic phenotype are hallmarks of therapeutic resistance and mortality in breast cancer patients. Metastasis has been associated with chemokine signaling through the SDF-1-CXCR4 axis. Thus, the development of estrogen independence and endocrine therapy resistance in breast cancer patients may be driven by SDF-1-CXCR4 signaling. Here we report that CXCR4 overexpression is indeed correlated with worse prognosis and decreased patient survival irrespective of the status of the estrogen receptor (ER). Constitutive activation of CXCR4 in poorly metastatic MCF-7 cells led to enhanced tumor growth and metastases that could be reversed by CXCR4 inhibition. CXCR4 overexpression in MCF-7 cells promoted estrogen independence in vivo, whereas exogenous SDF-1 treatment negated the inhibitory effects of treatment with the anti-estrogen ICI 182,780 on CXCR4-mediated tumor growth. The effects of CXCR4 overexpression were correlated with SDF-1-mediated activation of downstream signaling via ERK1/2 and p38 MAPK (mitogen activated protein kinase) and with an enhancement of ER-mediated gene expression. Together, these results show that enhanced CXCR4 signaling is sufficient to drive ER-positive breast cancers to a metastatic and endocrine therapy-resistant phenotype via increased MAPK signaling. Our findings highlight CXCR4 signaling as a rational therapeutic target for the treatment of ER-positive, estrogen-independent breast carcinomas needing improved clinical management.  相似文献   

10.
The estrogen receptor (ER) is implicated in the progression of breast cancer. Despite positive effects of hormonal therapy, initial or acquired resistance to endocrine therapies frequently occurs. Recent studies suggested ERα-coregulator PELP1 and growth factor receptor ErbB2/HER2 play an essential role in hormonal therapy responsiveness. Src axis couples ERα with HER2 and PELP1, thus representing a new pathway for targeted therapy resistance. To establish the significance of ER–Src axis in PELP1 and HER2 mediated therapy resistance, we have generated model cells that stably express Src-shRNA under conditions of PELP1, HER2 deregulation. Depletion of Src using shRNA substantially reduced E2 mediated activation of Src and MAPK activation in resistant model cells. Pharmacological inhibition of Src using dasatinib, an orally available inhibitor substantially inhibited the growth of therapy resistant MCF7–PELP1, MCF7–HER2, and MCF7–Tam model cells in proliferation assays. In post-menopausal xenograft based studies, treatment with dasatinib significantly inhibited the growth of therapy resistant cells. IHC analysis revealed that the tumors were ERα positive, and dasatinib treated tumors exhibited alterations in Src and MAPK signaling pathways. Combinatorial therapy of tamoxifen with dasatinib showed better therapeutic effect compared to single agent therapy on the growth of therapy resistant PELP1 driven tumors. The results from our study showed that ER–Src axis play an important role in promoting hormonal resistance by proto-oncogenes such as HER2, PELP1, and blocking this axis prevents the development of hormonal independence in vivo. Since PELP1, HER2, and Src kinase are commonly deregulated in breast cancers, combination therapies using both endocrine agents and dasatinib may have better therapeutic effect by delaying the development of hormonal resistance.  相似文献   

11.
PURPOSE: Approximately two-thirds of breast cancer patients respond to endocrine therapy, and this population of patients is estrogen receptor (ER) positive. However, a significant proportion of patients do not respond to hormone therapy. ER hormone responsiveness is widely believed to be influenced by enhanced cross-talk of ER with overexpressed human epidermal growth factor receptor 2 (HER2), and a subgroup of ER-positive tumors coexpress high HER2. EXPERIMENTAL DESIGN: Breast cancer cells with or without HER2 overexpression were analyzed for ER status, subcellular localization, and interactions with HER2 signaling components by biochemical and immunological methods. Experiments explored the regulatory interactions between the HER2 and ER pathways and the sensitivity of breast cancer cells to tamoxifen. RESULTS: Stable or transient or natural HER2 overexpression in ER-positive breast cancer cells promoted the nucleus-to-cytoplasm relocalization of ER, enhanced interactions of ER with HER2, inhibited ER transactivation function, and induced resistance to tamoxifen-mediated growth inhibition of breast cancer cells. In addition, HER2 up-regulation resulted in ER interaction with Sos, a component of Ras signaling, and hyperstimulation of the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 (ERK1/2). Conversely, down-regulation of HER2 by the anti-HER2 monoclonal antibody Herceptin led to suppression of ERK1/2 stimulation, restoration of ER to the nucleus, and potentiation of the growth-inhibitory action of tamoxifen. CONCLUSION: The results presented here show for the first time that ER redistribution to the cytoplasm and its interaction with HER2 are important downstream effects of HER2 overexpression, that ERK1/2 is important for ER cytoplasmic localization, and that subcellular localization of ER may play a mechanistic role in determining the responsiveness of breast cancer cells to tamoxifen.  相似文献   

12.
The activation of human epidermal growth factor receptor-2 (HER2) results in the activation of the mitogen-activated protein kinase (MAPK) cascade that may lead to the resistance to anti-estrogen therapy in estrogen receptor (ERα) expressing breast cancer by means of phosphorylation of ERα in the N-terminal region by phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) and by means of decreasing ERα expression. Immunohistochemistry is the most widely used technique for the detection of ERα and HER2 in breast cancer specimens, however, is inadequate in its ability to assess the relationship between ERα, HER2, and MAPK cascade at the single cell level. To clear this major hurdle, we devised a novel flow cytometric method to quantify the expression of ERα, HER2, and the activation of MAPK cascade simultaneously in single cells. The method was validated by concurrent Western blotting in established cell lines: MDA-231 (ERα and HER2-negative), MCF-7 (ERα-positive, HER2-negative), MCF-7 cells overexpressing ERα after long-term incubation in estrogen-free medium, and HER2 transfected MCF7 cells. Using the flow cytometry method, we confirmed the previous finding that ERα expression is down-regulated upon epidermal growth factor mediated ERK1/2 phosphorylation in EGFR/MCF-7 cells. To our knowledge, this is the first such assay to incorporate simultaneous single cell measurement for all of these pathways, which may prove useful to determine the intratumoral heterogeneity in breast tumors or the receptor status in circulating tumor cells.  相似文献   

13.
PURPOSE: Ser(167) was first identified as a major phosphorylation site of the estrogen receptor -alpha (ER) positive in the MCF7 breast cancer cell line. Subsequent studies have shown that Ser(167) phosphorylation is important in the regulation of ER activity and have identified p90RSK and AKT as protein kinases that phosphorylate Ser(167). The purpose of this study was to determine the importance of Ser(167) phosphorylation in breast cancer progression. EXPERIMENTAL DESIGN: Immunohistochemical staining of primary breast cancer biopsies (n = 290) was carried out using antibodies specific for ER phosphorylated at Ser(167) and for phosphorylated p44/p42 mitogen-activated protein kinase (MAPK), phosphorylated p90RSK, and phosphorylated AKT. RESULTS: In ER-positive breast cancer patients, Ser(167) phosphorylation was associated with low tumor grade (P = 0.011), lymph node negativity (P = 0.034), and relapse-free (P = 0.006) and overall (P = 0.023) survival. Further, Ser(167) phosphorylation was strongly associated with phosphorylated p90RSK (P < 0.001), previously shown to phosphorylate Ser(167) in vitro, as well as being associated with phosphorylated MAPK (P < 0.0005). The activities of both kinases also seemed to be indicative of better prognosis. There was, however, no association between HER2 positivity and Ser(167) phosphorylation nor were the activities of MAPK or p90RSK associated with HER2 status, suggesting that other cell surface receptors may be important in regulating these activities in breast cancer. CONCLUSIONS: These findings show that phosphorylation at Ser(167) of ER predicts for likelihood of response of ER-positive breast cancer patients to endocrine therapies.  相似文献   

14.
15.
16.
17.
Endocrine therapy resistance is one of the main challenges in the treatment of estrogen receptor positive (ER+) breast cancer patients. This study showed that two ER+ human breast carcinoma cell lines derived from MCF‐7 (MVLN cells) that have acquired under OH‐Tamoxifen selection two distinct phenotypes of endocrine resistance both displayed constitutive activation of the PI3K/Akt and MAPK pathways. Aberrant expression and activation of the ErbB system (phospho‐EGFR, phospho‐ErbB2, phospho‐ErbB3, over‐expression of ErbB4 and over‐expression of several ErbB ligands) were also observed in the two resistant cell lines, suggesting the existence of an autocrine loop leading to constitutive activation of MAPK and PI3K/Akt survival pathways. The recent clinical use of specific signal transduction inhibitors is one of the most promising therapeutic approaches in breast cancers. The MEK inhibitor PD98059 and the PI3K inhibitor LY294002 were both able to enhance the cytostatic effect of OH‐Tamoxifen or fulvestrant on MVLN sensitive cells. In the two resistant cell lines, inhibition of the MAPK or the PI3K/Akt pathways associated with endocrine therapy was sufficient to reverse OH‐Tamoxifen or fulvestrant resistance. Investigating the effect of a combination of both inhibitors on the reversion of OH‐Tamoxifen and fulvestrant resistance in the two resistant cell lines suggested that, in clinical practice, a strategy combining the two inhibitors would be the best approach to target the different endocrine resistance phenotypes possibly present in a tumor. In conclusion, the combination of MAPK and PI3K inhibitors represents a promising strategy to overcome endocrine therapy resistance in ER+ breast cancer patients.  相似文献   

18.
The estrogen receptor (ER) expression and HER2 amplification are important factors in determining the prognosis and therapy of breast cancer. Interactions between the two signaling pathways for example resulted in ERalpha-dependent regulation of HER2 expression in breast cancer cells. In this study, we investigated to what extent ERbeta is able to affect the HER2 expression. For this purpose, we analyzed HER2 levels in ERbeta1-overexpressing clones of the breast cancer cell lines MCF-7 and SK-BR-3 and of the ovarian cancer cell lines SK-OV-3 and OVCAR-3 by both RT-PCR and Western blot analysis. Treatment with ligand 17-beta estradiol diminished the HER2 expression in MCF-7 wild-type cells, an effect partially inhibited by treatment with 4-OH tamoxifen. MCF-7 breast cancer cells stably overexpressing ERbeta1 exhibited elevated >5-fold HER2 mRNA levels and elevated >3-fold HER2 protein levels even in the absence of estradiol. In contrast, ERbeta1 overexpression did not affect HER2 protein levels in the ERalpha-positive OVCAR-3 ovarian cancer cells and in the HER2 overexpressing, hormone-independent SK-BR-3 and SK-OV-3 cells. By demonstrating the elevated HER2 expression in a hormone-dependent breast cancer cell line overexpressing ERbeta1, our data suggest the presence of cross-talk between the two receptors. This is one of the molecular mechanisms underlying the significant ERbeta/HER2 co-expression observed in recent clinical studies.  相似文献   

19.
Estrogen induced erbB-2 tyrosine kinase activity in human breast epithelial cells irrespective of estrogen receptor expression. MCF10A is an immortal normal human breast epithelial cell line which does not express estrogen receptor. After treatment of MCF10A cells with estradiol-17beta (E2), a phosphorylated 90 kDa protein which co-immunoprecipitates with p185erbB-2 is detected. The response is transient, detected after 1-5 min exposure to E2, and dose dependent, occurring at 10-10 M E2. A similar response was observed for MCF10A cells transfected with an estrogen receptor, estrogen receptor expressing MCF-7 cells, and estrogen receptor-negative MDA-MB-435 cells but at 10-11 M E2. Overexpression of c-erbB-2 in MCF10A cells prolonged the phosphorylated p90 response to E2.  相似文献   

20.
Microenvironmental regulation of estrogen signals in breast cancer   总被引:1,自引:0,他引:1  
In breast cancers, estrogen activates estrogen receptor (ER) through genomic and nongenomic pathways, which leads to nuclear and extranuclear processes that promote the proliferation of breast cancer cells. Growth factor receptor signaling pathways also activate ER via phosphorylation through the signal crosstalks between estrogen and growth factors. The intratumoral levels of estrogen and growth factors, therefore, profoundly influence ER activity, which are regulated by the tumor-stromal interactions in the microenvironment. In postmenopausal breast cancers, tumor cells activate stromal fibroblasts to express aromatase, a key enzyme in estrogen biosynthesis, resulting in intratumoral estrogen production. At present, aromatase inhibitors are used as a first-line endocrine therapy for breast cancers. We developed a comprehensive system to evaluate the ER-activating ability of stromal fibroblasts for individual patients, and found that it varied among individual cases. This system might be useful for predicting the individual response to endocrine therapy and analyzing the tumor microenvironment. In addition to estrogen production, tumor-associated fibroblasts lead to the progression of breast cancer via different pathways. A study to differentiate the microenvironmental regulation of estrogen-dependent and -independent breast cancer growth would also be useful to improve hormone therapy for breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号