首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
In previous studies, we have demonstrated that progenitor cell-enriched marrow cell populations from patients with myeloid leukemia - including both acute (AML) and chronic (CML) - show severe functional alterations when cultured in stroma-free liquid cultures supplemented with stimulatory cytokines. In trying to expand our characterization of the biology of leukemic cells, in the present study we have used a similar approach and analyzed the in vitro growth of equivalent cell populations from patients with acute lymphoblastic leukemia (ALL). ALL marrow cell populations -enriched for hematopoietic progenitors by means of a negative selection procedure- were assessed for their proliferation and expansion potentials, in liquid cultures supplemented with a mixture of early- and late-acting recombinant stimulatory cytokines, throughout a 25-day culture period. ALL cells, although capable of responding to the stimulatory signals provided by hematopoietic stimulators, showed deficient proliferation potentials (reduced capacity to generate more nucleated cells), as compared with their normal counterparts. The capacity to generate myeloid and erythroid progenitors was also significantly reduced in ALL cultures. Interestingly, the functional alterations observed in ALL cultures (i.e., deficient proliferation and expansion potentials) were more pronounced in those from Ph+ patients than in those from Ph- patients. This study indicates that bone marrow cell populations - enriched for hematopoietic progenitor cells - from ALL patients possess deficient proliferation and expansion potentials in vitro, and that such functional alterations are more severe when cells are derived from Ph+ patients, as compared to their Ph- counterparts.  相似文献   

2.
We studied telomerase regulation and telomere length in hematopoietic progenitor cells from peripheral blood and bone marrow from patients with acute and chronic leukemia and myeloproliferative diseases. CD34+ cells from a total of 93 patients with either acute myeloid leukemia (AML; n = 25), chronic myeloid leukemia (CML; n = 21), chronic lymphocytic leukemia (CLL; n = 18), polycythemia vera (PV; n = 16), or myelodysplastic syndromes (MDS; n = 13) were analyzed before and in 19 patients after ex vivo expansion in the presence of multiple cytokines (kit ligand, interleukin-3, interleukin-6, and granulocyte colony-stimulating factor plus erythropoietin). Compared with hematopoietic progenitor cells from normal donors (n = 108), telomerase activity (TA) was increased 2- to 5-fold in chronic phase (CP)-CML, CLL, PV, and MDS. In AML, accelerated phase (AP) and blastic phase (BP)-CML, basal TA was 10- to 50-fold higher than normal. TA of CP-CML CD34+ cells was up-regulated within 72 h of ex vivo culture, peaked after 1 week, and decreased below detection after 2 weeks. In contrast, TA in AP/BP-CML and AML CD34+ cells was down-regulated after 1 week of culture and decreased further thereafter. The expansion potential of CD34+ cells from patients with leukemia was considerably decreased compared with CD34+ cells from normal donors. The average expansion of cells from leukemic individuals was 6.5-, 2.3-, 0.6-, and 0.2-fold in weeks 1, 2, 3, and 4, respectively, whereas expansion of normal cells was 5- to 15-fold higher. In serial expansion culture, a median telomeric loss of 0.7 kbp was observed during 3-4 weeks of expansion. Our results demonstrate that up-regulation of telomerase is similar in CD34+ cells from CP-CML, CLL, PV, and MDS patients and in normal hematopoietic cells during the first week of culture, whereas in AML and AP/BP-CML, telomerase is high at baseline and down-regulated during expansion culture. High levels of telomerase in leukemic progenitors at baseline may be a feature of both the malignant phenotype and rapid cycling. Telomerase down-regulation during culture of leukemic cells may be due to the decreased expansion potential or repression of normal hematopoiesis, or in AML it may be due to the partial differentiation of AML cells, shown previously to be associated with loss of TA. Telomere shortening during ex vivo expansion correlated with low levels of TA, particularly in chronic leukemic and MDS progenitors where telomerase was insufficient to protect against telomere bp loss during intense proliferation.  相似文献   

3.
SPA-1 is a negative regulator of Rap1 signal in hematopoietic cells, and SPA-1-deficient mice develop myeloproliferative disorders (MPD) of long latency. In the present study, we showed that the MPDs in SPA-1(-/-) mice were associated with the increased hematopoietic stem cells expressing LFA-1 in bone marrow and their premature mobilization to spleen with extensive extramedullary hematopoiesis, resembling human chronic myelogenous leukemia (CML). We further showed that human BCR-ABL oncogene caused a partial down-regulation of endogenous SPA-1 gene expression in mouse hematopoietic progenitor cells (HPC) and immature hematopoietic cell lines. Although both BCR-ABL-transduced wild-type (wt) and SPA-1(-/-) HPC rapidly developed CML-like MPD when transferred to severe combined immunodeficient mice, the latter recipients showed significantly increased proportions of BCR-ABL(+) Lin(-) c-Kit(+) cells compared with the former ones. Serial transfer experiments revealed that spleen cells of secondary recipients of BCR-ABL(+) wt HPC failed to transfer MPD to tertiary recipients due to a progressive reduction of BCR-ABL(+) Lin(-) c-Kit(+) cells. In contrast, SPA-1(-/-) BCR-ABL(+) Lin(-) c-Kit(+) cells were sustained at high level in secondary recipients, and their spleen cells could transfer MPD to tertiary recipients, a part of which rapidly developed blast crisis. Present results suggest that endogenous SPA-1 plays a significant role in regulating expansion and/or survival of BCR-ABL(+) leukemic progenitors albeit partial repression by BCR-ABL and that Rap1 signal may represent a new molecular target for controlling leukemic progenitors in CML.  相似文献   

4.
Leukemic blasts from patients with acute phase chronic myeloid leukemic and refractory acute myeloid leukemia are highly resistant to a number of cytotoxic drugs. To overcome multi-drug resistance, we engineered a diphtheria fusion protein by fusing human interleukin-3 (IL3) to a truncated form of diphtheria toxin (DT) with a (G4S)2 linker (L), expressed and purified the recombinant protein, and tested the cytotoxicity of the DTLIL3 molecule on human leukemias and normal progenitors. The DTLIL3 construct was more cytotoxic to interleukin-3 receptor (IL3R) bearing human myeloid leukemia cell lines than receptor-negative cell lines based on assays of cytotoxicity using thymidine incorporation, growth in semi-solid medium and induction of apoptosis. Exposure of mononuclear cells to 680 pM DTLIL3 for 48 h in culture reduced the number of cells capable of forming colonies in semi-solid medium (colony-forming units leukemia) > or =10-fold in 4/11 (36%) patients with myeloid acute phase chronic myeloid leukemia (CML) and 3/9 (33%) patients with acute myeloid leukemia (AML). Normal myeloid progenitors (colony-forming unit granulocyte-macrophage) from five different donors treated and assayed under identical conditions showed intermediate sensitivity with three- to five-fold reductions in colonies. The sensitivity to DTLIL3 of leukemic progenitors from a number of acute phase CML patients suggests that this agent could have therapeutic potential for some patients with this disease.  相似文献   

5.
The possible synergistic interaction between azidothymidine (AZT) and interferon alpha (rIFN-alpha 2a) in the treatment of chronic myelogenous leukemia (CML) was studied in vitro using marrow or peripheral blood hematopoietic progenitors from 10 patients with CML in the mixed (CFU-GEMM) colony culture assay. Used singly, either agent inhibited erythroid (BFU-E) and granulocyte-macrophage (CFU-GM) CML hematopoietic progenitor proliferation in a dose-dependent fashion, with the inhibitory effect being more pronounced on BFU-E than on CFU-GM colony-forming cells. The combination of both drugs in therapeutic concentrations exerted a significant synergistic inhibition on CML stem cells as assessed by the median-effect principle and isobologram equation analysis. A suboptimal dose of AZT (0.5 mumol/l) synergistically augmented the effect of rIFN-alpha 2a whereas an inactive dose of 10 U/ml rIFN-alpha 2a similarly enhanced the CML stem cell growth inhibition exerted by AZT. Our data indicate that AZT may augment the already established therapeutic benefits of IFN-alpha in CML.  相似文献   

6.
PURPOSE: Autologous hematopoietic cell transplantation (HCT) is being increasingly used as an effective treatment strategy for patients with relapsed or refractory Hodgkin's lymphoma (HL) or non-Hodgkin's lymphoma (NHL) but is associated with therapy-related myelodysplasia and acute myeloid leukemia (t-MDS/AML) as a major cause of nonrelapse mortality. The phenomenon of hematopoietic reconstitution after autologous HCT and the role of proliferative stress in the pathogenesis of t-MDS/AML are poorly understood. PATIENTS AND METHODS: Using a prospective longitudinal study design, we evaluated the nature and timing of alterations in hematopoietic progenitors and telomere length after HCT in patients undergoing autologous HCT at City of Hope Cancer Center (Duarte, CA). RESULTS: A significant reduction in primitive and committed progenitors was observed before HCT compared with healthy controls. Further profound and persistent reduction in primitive progenitors but only transient reduction in committed progenitors were seen after HCT. Primitive progenitor frequency in pre-HCT marrow and peripheral-blood stem cells predicted for primitive progenitor recovery after HCT. Shortening of telomere length was observed in marrow cells early after HCT, with subsequent restoration to pre-HCT levels. Patients within this cohort who developed t-MDS/AML had reduced recovery of committed progenitors and poorer telomere recovery, possibly indicating a functional defect in primitive hematopoietic cells. CONCLUSION: Our studies suggest that hematopoietic regeneration after HCT is associated with increased proliferation and differentiation of primitive progenitors. Increased proliferative stress on stem cells bearing genotoxic damage could contribute to the pathogenesis of t-MDS/AML. Extended follow-up of a larger number of patients is required to confirm whether alterations in progenitor and telomere recovery predict for increased risk of t-MDS/AML.  相似文献   

7.
8.
Chronic myeloid leukemia (CML) arises from the malignant transformation of a hematopoietic stem cell (HSC) that gives rise to functionally defective progeny, including primitive and relatively mature progenitor cells (HPC). Both HSC and HPC are comprised within the population of CD34(+) cells, normally present in bone marrow (BM). In the present study, we have separated two different subpopulations of CD34(+) cells from CML marrow: Population I, enriched for CD34(+) Lin(-) cells; and Population II, enriched for CD34(+) CD36(-) CD38(-) CD45RA(-) Lin(-) cells, and assessed their progenitor cell content as well as their capacity to proliferate and expand in response to a combination of hematopoietic cytokines in serum- and stroma-free long-term liquid cultures. The absolute cell numbers recovered in Population I from normal and CML samples were similar; in contrast, we found that Population II from CML was amplified four-fold, as compared to normal. In spite of this latter observation, no significant differences were observed in terms of the absolute number of CFC when comparing Populations I and II from CML patients and normal subjects. Interestingly, the proliferation and expansion potentials of CML cells were clearly deficient as compared to their normal counterparts. Indeed, in cultures of Population I cells the maximum fold increase in total and progenitor cell numbers corresponded to 30 and 8%, respectively, of those observed in cultures of normal marrow-derived Population I cells. Such functional deficiencies were even more evident in Population II cells in which the maximum fold increase in total and progenitor cell numbers corresponded to 3 and 0.5%, respectively, of the levels found in cultures of Population II cells from normal marrow. The present study demonstrates that bone marrow-derived CD34(+) cells from CML patients possess functional abnormalities, clearly evident in the in vitro system used by us. Among the two CML subpopulations studied here, the more immature one (Population II; enriched for CD34(+) CD36(-) CD38(-) CD45RA(-) Lin(-) cells) was the one that showed the most severe abnormalities, as compared to its relatively more mature counterpart (Population I; enriched for CD34(+) Lin(-) cells).  相似文献   

9.
Hematopoietic progenitors can be expanded ex vivo in the presence of various cytokine combinations. Since normal early progenitor or stem cells persist in the blood and bone marrow of patients with Philadelphia chromosome [Ph]-positive chronic myeloid leukaemia (CML), the selection of normal (Ph-negative) progenitor cells from CML patients would be of considerable clinical value for ex vivo purging and autologous transplantation. To obtain these cells, CD34-positive (progenitor) cells from the peripheral blood (PB) of CML patients were either pretreated or not with 5-fluorouracil (5FU) and then grown in suspension culture for 7 days with a combination of cytokines. We compared different combinations of cytokines containing interleukin-1 alpha (IL1), interleukin-3 (IL3), stem cell factor (SCF), leukemia inhibitor factor (LIF), Flt3-ligand (FLT3L), and thrombopoietin (TPO). 5FU decreased cell proliferation in the liquid culture but concurrently increased the expansion of CFU-GM. While the addition of cytokines such as FLT3L and TPO improved CFU-GM expansion. FISH and RT-PCR analysis showed that this method significantly favored a higher frequency of Ph-negative cells after expansion in liquid culture. Therefore ex vivo expansion of putatively normal hematopoietic progenitor cells from cytapheresis is feasible in CML.  相似文献   

10.
We have previously demonstrated that when cultured in Dexter-type Long-Term Marrow Cultures (LTMC), hematopoietic progenitor cells (HPC) from patients with Diffuse Large B-Cell Lymphoma (DLBCL) show a defective proliferation, as compared to HPC from normal marrow. In that study it was also demonstrated that functional alterations were present in the hematopoietic microenvironment developed in culture; thus, it was not clear whether such a defective proliferation in vitro was due to an intrinsic defect in the HPC compartment of DLBCL patients, or to an altered microenvironment, or both. In order to address this question, in the present study we have assessed the proliferation and expansion potentials of HPC present in bone marrow from patients with DLBCL, in cytokine-supplemented liquid cultures initiated with a cell population enriched for CD34+ Lin- cells, in the absence of stromal cells and in the presence of reduced numbers of accessory cells. Our results demonstrated that bone marrow-derived HPC from patients with DLBCL, both before and right after chemotherapy, possessed reduced proliferation and expansion potentials in vitro, as compared to their normal counterparts. Interestingly, in patients analyzed 18 months after treatment the proliferation and expansion levels were similar to those of normal HPC, indicating a complete restoration of the hematopoietic function. Although the reason for these observations is not clear, our results suggest the possibility that primitive CD34+ progenitor cells present in bone marrow, which show deficient proliferation and expansion potentials in vitro, are involved in the origin/progression of DLBCL.  相似文献   

11.
Treatment of chronic myelogenous leukemia (CML) has been greatly enhanced by the development of Imatinib mesylate, a specific inhibitor of the BCR/ABL tyrosine kinase. While it is clear that imatinib effectively targets BCR/ABL positive hematopoietic cells, studies examining its effect on primitive hematopoietic progenitors are much more limited. As CML arises in a primitive hematopoietic progenitor cell, it is especially important to understand the effect of imatinib on these cells. Here we review studies investigating the effect of imatinib on the proliferation and viability of primitive and committed hematopoietic progenitors in CML. We describe evidence that BCR/ABL positive progenitors may persist in patients responding to imatinib and discuss problems of resistance to imatinib. Finally we discuss studies evaluating new approaches to overcome resistance of CML progenitor cells to imatinib.  相似文献   

12.
The present work analyzes the hematopoietic progenitor cells (HPC) in myelodysplastic syndrome (MDS) patients using both an immunophenotypical and a functional approaches in order to know whether they are similar in patients with or without cytogenetic abnormalities. Among CD34+ HPC, the proportion of myeloid committed progenitors was higher in patients with an abnormal karyotype. Ninety MDS patients were studied. Patients with abnormal karyotype showed a similar platting efficiency than patients with normal cytogenetics. Trisomy 8 and 5q- showed a significant higher P.E. than patients with normal karyotype or monosomy 7. We observed that when the most immature HPC were studied, the total number of granulo-monocytic colonies produced by LTBMC was higher in the normal karyotype group. In summary, the present study shows that in MDS the HPC are impaired; this impairment is deeper in patients with abnormal karyotype.  相似文献   

13.
Aplastic anemia (AA) and myelodysplasia (MDS) show great similarities in their biology. To date, however, it is still unclear to what extent hematopoietic progenitor cells (HPCs) from AA and MDS share biological properties and what the functional differences are between them. In trying to address this issue, in the present study we have analyzed, in a comparative manner, the proliferation and expansion capacities of bone marrow (BM) progenitor cells from AA and MDS in response to recombinant cytokines. BM samples from normal subjects (NBM) and patients with AA and MDS were enriched for HPC by immunomagnetic-based negative selection. Selected cells were cultured in the absence (control) or in the presence of early-acting cytokines (Mix I), or early-, intermediate- and late-acting cytokines (Mix II). Proliferation and expansion were assessed periodically. In NBM and MDS cultures apoptosis was also determined. In NBM cultures, Mix I induced a nine-fold increase in total cell numbers and a 3.6-fold increase in colony-forming cell (CFC) numbers. In Mix II-supplemented cultures, total cells were increased 643-fold, and CFC 12.4-fold. In AA cultures, no proliferation or expansion were observed in Mix I-supplemented cultures, whereas only a four-fold increase in total cell numbers was observed in the presence of Mix II. In MDS cultures, a 12-fold increase in total cells and a 2.9-fold increase in CFC were observed in the presence of Mix I; on the other hand, Mix II induced a 224-fold increase in total cells and a 5.9-fold increase in CFC. Apoptosis was reduced in cytokine-supplemented cultures from NBM. In contrast, Mix II induced a significant increase in the rate of apoptosis in MDS cultures. Our results demonstrate that, as compared to their normal counterparts, AA and MDS progenitors are deficient in their proliferation and expansion potentials. Such a deficiency is clearly more pronounced in AA cells, which seem to be unable to respond to several cytokines. MDS progenitors, on the other hand, are capable to proliferate and expand in response to cytokines; however, their rate of apoptosis is increased by intermediate- and late-acting cytokines, so that the overall proliferation and expansion are significantly lower than those of normal progenitor cells.  相似文献   

14.
Chu S  Li L  Singh H  Bhatia R 《Cancer research》2007,67(14):7045-7053
Chronic myelogenous leukemia (CML) results from the transformation of a primitive hematopoietic cell by the BCR/ABL gene. BCR/ABL signaling has been studied in cell lines and murine models, but the transforming effects of BCR/ABL are highly dependent on cellular context, and mechanisms responsible for the transformation of primitive human hematopoietic cells remain poorly understood. Current targeted therapies fail to eliminate malignant CML progenitors, and improved understanding of crucial molecular mechanisms of progenitor transformation may facilitate the development of improved therapeutic approaches. We investigated the role of BCR/ABL tyrosine 177 (BCR/ABL-Y177) in CML progenitor transformation by comparing the effects of expression of Y177-mutated BCR/ABL, wild-type BCR/ABL, or green fluorescent protein alone on normal CD34(+) cells. We show that BCR/ABL-Y177 plays a critical role in CML progenitor expansion, proliferation, and survival. BCR/ABL expression results in enhanced Ras and Akt activity but reduced mitogen-activated protein kinase activity in human hematopoietic cells, which is reversed by BCR/ABL-Y177 mutation. Blocking BCR/ABL-Y177-mediated signaling enhances targeting of CML progenitors by imatinib mesylate. Our studies indicate that BCR/ABL-Y177 plays an essential role in Ras and Akt activation and in human hematopoietic progenitor transformation in CML.  相似文献   

15.
SPA-1 (signal-induced proliferation-associated gene-1) is a principal Rap1 GTPase-activating protein in hematopoietic progenitors. SPA-1-deficient mice developed a spectrum of myeloid disorders that resembled human chronic myelogenous leukemia (CML) in chronic phase, CML in blast crisis, and myelodysplastic syndrome as well as anemia. Preleukemic SPA-1-deficient mice revealed selective expansion of marrow pluripotential hematopoietic progenitors, which showed abnormal Rap1GTP accumulation. Overexpression of an active form of Rap1 promoted the proliferation of normal hematopoietic progenitors, while SPA-1 overexpression markedly suppressed it. Furthermore, restoring SPA-1 gene in a SPA-1-deficient leukemic blast cell line resulted in the dissolution of Rap1GTP accumulation and concomitant loss of the leukemogenicity in vivo. These results unveiled a role of Rap1 in myeloproliferative stem cell disorders and a tumor suppressor function of SPA-1.  相似文献   

16.
It is known that the levels of hematopoietic progenitor cells (HPC) are greatly reduced in the majority of patients with myelodysplastic syndromes (MDS). To date, however, only limited information exists on the growth kinetics of these cells in long-term marrow cultures (LTMC), particularly in terms of erythroid and multipotent progenitors. In the present study, we have determined the HPC content in the bone marrow of 12 MDS patients and followed the proliferation kinetics of myeloid (including granulocyte, macrophage and granulocyte macrophage), erythroid (including early and late) and multipotent progenitor cells in LTMC throughout a 7-week culture period. Both the non-adherent and adherent fractions of the cultures were analyzed, so we were able to look at progenitor cells in suspension and those that physically associated to the stromal cell layer developed in culture. All 12 patients were grouped based on their FAB subtype and the in vitro growth of the HPC was analyzed accordingly. The results presented here indicate that in the majority of MDS patients, pronounced deficiencies exist both in the content and the long-term proliferation of marrow HPC. Such deficiencies were particularly evident for multipotent progenitors and those committed to the erythroid lineage, in which alterations in the maturation process also seem to be present. Our results suggest that, at least in some patients, HPC--besides showing an impaired proliferative capacity--lose their ability to adhere to the stromal cell layers developed in culture. RA patients showed the less affected in vitro HPC growth, whereas HPC from RAEB and RAEB-t showed a markedly deficient growth in culture. Interestingly, myelopoiesis was significantly increased in cultures of CMML patients. These results give some new insights into the biology of MDS-derived HPC.  相似文献   

17.
Expansion of primitive hematopoietic progenitor cells (HPC) is a major challenge in stem cell biology. Stimulation by growth factors (GF) is essential for proliferation of HPC, while the role of stromal cell coculture for maintenance of progenitor/stem cell potential is unclear. We evaluated the potential of a murine stromal cell layer providing hematopoietic GF to support expansion of human CD34(+) cells. Murine MS-5 cells were transfected with the cDNA encoding huFlt3 ligand and the interleukin6/sinterleukin-6R fusion protein hyper-IL-6. Expansion of CFC and week6 CAFC was at least as efficient in transfected clones compared to control cocultures supported with exogenous GF. Cell numbers reached 17.5- to 62.3- (day 14) and 17.4- to 92.4-fold (day 21) of input cells. Expansion of CFU-GM/Mix was 4.0- to 12.8-fold (day 14) and 4.9- to 11.7-fold (day 21). Primitive week6 CAFC were expanded up to 6.5-fold (day 14) and 6.2-fold (day 21) without exogenous GF. When direct contact of HPC and stromal cells was inhibited, a loss of CFC and much more of CAFC potential was observed with unaffected overall cell proliferation. Here, we show the generation of GF producing murine stromal cells which efficiently support early hematopoiesis without exogenous GF. Direct stromal cell-HPC contact is advantageous for maintenance of differentiation potential.  相似文献   

18.
19.
The BCR-ABL1 induces chronic myelogenous leukemia (CML) and Ph+ acute lymphoblastic leukemia (ALL). Recent studies revealed high ratios of loss of the IKZF1 gene which encodes IKAROS in BCR-ABL1+ ALL and lymphoblastic crisis (LBC) of CML. However, little is known about the cooperativity between the aberrant IKAROS and BCR-ABL1 in primary human hematopoietic cells. We investigated the effects of expression of BCR-ABL1 and/or IK6, a natural dominant negative isoform of IKAROS, on proliferation and differentiation of human CD34+ cord blood cells with or without human bone marrow-derived stromal cells which support early B cell differentiation. Cell proliferation was remarkably enhanced by co-expression of BCR-ABL1 and IK6, with reduced expression of glycophorin A and increased expression of CD41, especially on stromal cells, compared with expression of BCR-ABL1 alone that resulted in expansion of erythroid progenitors. Interestingly, p190BCR-ABL1 showed higher dependency on stromal cells to stimulate cell growth with IK6, than p210BCR-ABL1. Furthermore, the cooperation was found to depend on direct cell adhesive interaction of hematopoietic progenitors with stromal cells. These findings suggest that IK6 and BCR-ABL1 synergistically contribute to leukemogenesis in human bone marrow stromal microenvironment, and may provide a clue to elucidate the mechanisms of leukemogenesis of Ph+ ALL and CML-LBC.  相似文献   

20.
Background: We compared hematopoietic progenitor cell (HPC) collection and neoplastic cell contamination in breast cancer patients given cyclophosphamide (CTX) plus granulocyte-colony stimulating factor (G-CSF) or G-CSF alone for mobilization.Patients and methods: In 57 stage II–III breast cancer patients, CD34+ cells, colony-forming units-granulocyte macrophage (CFU-GM), early HPC and breast cancer cells were counted in HPC collections obtained after CTX plus G-CSF (n = 27) or G-CSF-alone mobilization (n = 30).Results: The CD34+ cell collection was about two-fold greater after CTX plus G-CSF mobilization (11.0 ± 7.9 vs. 5.8 ± 3.5 × 106/kg, P < 0.001). Similarly, the total number of CFU-GM, CD34+CD38– cells and of week-5 cobblestone area forming cells (CAFC) collected was significantly higher in patients mobilized with CTX plus G-CSF. Breast cancer cells were found in the apheresis products of 22% of patients mobilized with CTX plus G-CSF and in 10% of patients mobilized with G-CSF alone (P = 0.36). Of seven patients who failed G-CSF-alone mobilization and eventually underwent chemotherapy plus G-CSF mobilization, none had cytokeratin-positive cells after G-CSF mobilization, whereas four out of seven had cytokeratin-positive cells after chemotherapy plus G-CSF (P = 0.07 by 2 test).Conclusion: The CTX plus G-CSF mobilization protocol was associated with a significantly higher HPC collection. However, this benefit was not accompanied by a reduction in the incidence of tumor-contaminated HPC graft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号