首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This experiment attempted to determine the mechanism by which amphetamine reduces locomotor hyperactivity in neonatal rats given brain dopamine (DA)-depleting 6-hydroxydopamine (6-OHDA) injections. Brain DA neurons were destroyed selectively in neonatal rats by intraventricular (i.v.t.) injections of 6-OHDA following desmethylimipramine (DMI) pretreatment. Control rats received DMI and i.v.t. injections of the 6-OHDA vehicle solution. Rats given the 6-OHDA treatment displayed 7-fold increases in locomotor activity compared to controls during days 16–55 of life. Throughout this period, amphetamine (1 mg/kg) reduced locomotor hyperactivity in 6-OHDA-treated rats but increased locomotor activity in control rats. The reduction of hyperactivity caused by amphetamine (0.5–4 mg/kg) was dose-related and was not accompanied by stereotyped behavior. Like amphetamine, methylphenidate (4 mg/kg) reduced locomotor hyperactivity in rats given 6-OHDA. The DA antagonist, spiroperidol (50–200 μg/kg) failed to attenuate the hyperactivity-reducing effect of amphetamine in 6-OHDA-treated rats at doses which abolished the stimulant effect of amphetamine in control rats. However, the serotonin antagonist methysergide (0.5–4 mg/kg) produced dose-dependent antagonism of the effect of amphetamine in 6-OHDA-treated rats. Pretreatment with propranolol (5 mg/kg), phentolamine (5 mg/kg), atropine (0.5 mg/kg) or naloxone (10 mg/kg) failed to alter the reduction in locomotor hyperactivity caused by amphetamine. The serotonin releasing agent, fenfluramine (3 mg/kg), and the serotonin agonist, quipazine (0.5–4 mg/kg), both reduced locomotor hyperactivity in 6-OHDA-treated rats while not altering locomotion in control rats. These results confirm previous observations that amphetamine reduces locomotor hyperactivity caused by neonatal 6-OHDA administration and suggest that this effect is mediated by increased serotonergic neurotransmission.  相似文献   

2.
Sixty days after bilateral dopamine (DA) depletion (>98%) with 6-hydroxydopamine (6-OHDA) in neonatal rats, serotonin (5-HT) content doubled and 5-HT(2A) receptor mRNA expression rose 54% within the rostral striatum. To determine if striatal 5-HT(2A) receptor mRNA upregulation is dependent on increased 5-HT levels following DA depletion, neonatal rats received dual injections of 6-OHDA and 5,7-dihydroxytryptamine (5,7-DHT) which suppressed 5-HT content by approximately 90%. In these 6-OHDA/5,7-DHT-treated rats, striatal 5-HT(2A) receptor mRNA expression was still elevated (87% above vehicle controls). Comparative analysis of 5-HT(2C) receptor mRNA expression yielded no significant changes in any experimental group. These results demonstrate that upregulated 5-HT(2A) receptor biosynthesis in the DA-depleted rat is not dependent on subsequent 5-HT hyperinnervation.  相似文献   

3.
Dysfunction within the striatal direct and indirect projecting systems arises after 6-hydroxydopamine (6-OHDA)-induced dopamine depletion, highlighting the central regulatory function of dopamine in motor systems. However, the striatal 5-hydroxytryptamine (5-HT) innervation remains intact after 6-OHDA lesions, suggesting that the 5-HT system may contribute to the lesion-induced dysfunction, or alternatively, it may adapt and compensate for the dopamine deficit. Neonatal 6-OHDA lesions actually give rise to a 5-HT axonal hyperinnervation within the dorsal striatum, further reinforcing the idea that the 5-HT system plays a central role in striatal function after dopamine depletion. Here we show that neonatal but not adult 6-OHDA lesions result in a novel coupling of 5-HT2 receptors to the ERK1/2/MAP Kinase pathway, a signaling cascade known to regulate neuronal plasticity. Chloroamphetamine-induced 5-HT release or direct stimulation of striatal 5-HT2 receptors via the 5-HT2 agonist DOI, produced robust ERK1/2 phosphorylation throughout the dorsal striatum of neonatal lesioned animals, a response not observed within the intact striatum. Pretreatment with the select 5-HT2 receptor antagonist Ketanserin blocked DOI-induced ERK1/2 phosphorylation. This drug-induced ERK1/2 phosphorylation was subsequently shown to be restricted to direct pathway striatal neurons. Our data show that adaptation of direct pathway neurons after neonatal 6-OHDA lesions involves coupling of 5-HT2 receptors to the ERK1/2/MAP Kinase cascade, a pathway not typically active in these neurons. Because dopamine-mediated signaling is redundant after 6-OHDA lesions, 5-HT-mediated stimulation of the ERK1/2/MAP Kinase pathway may provide an alternative signaling route allowing the regulation of neuronal gene expression and neuronal plasticity in the absence of dopamine.  相似文献   

4.
The dopamine D4 receptor (D4R) is a candidate gene for attention deficit/hyperactivity disorder (ADHD) based on genetic studies reporting that particular polymorphisms are present at a higher frequency in affected children. However, the direct participation of the D4R in the onset or progression of ADHD has not been tested. Here, we generated a mouse model with high face value to screen candidate genes for the clinical disorder by neonatal disruption of central dopaminergic pathways with 6-hydroxydopamine (6-OHDA). The lesioned mice exhibited hyperactivity that waned after puberty, paradoxical hypolocomotor responses to amphetamine and methylphenidate, poor behavioral inhibition in approach/avoidance conflict tests and deficits in continuously performed motor coordination tasks. To determine whether the D4R plays a role in these behavioral phenotypes, we performed 6-OHDA lesions in neonatal mice lacking D4Rs (Drd4(-/-)). Although striatal dopamine contents and tyrosine hydroxylase-positive midbrain neurons were reduced to the same extent in both genotypes, Drd4(-/-) mice lesioned with 6-OHDA did not develop hyperactivity. Similarly, the D4R antagonist PNU-101387G prevented hyperactivity in wild-type 6-OHDA-lesioned mice. Furthermore, wild-type mice lesioned with 6-OHDA showed an absence of behavioral inhibition when tested in the open field or the elevated plus maze, while their Drd4(-/-) siblings exhibited normal avoidance for the unprotected areas of these mazes. Together, our results from a combination of genetic and pharmacological approaches demonstrate that D4R signaling is essential for the expression of juvenile hyperactivity and impaired behavioral inhibition, relevant features present in this ADHD-like mouse model.  相似文献   

5.
Spontaneous locomotor activity and the locomotor response to amphetamine and apomorphine were studied in rats subjected to either radiofrequency (RF), 6-hydroxydopamine (6-OHDA) or both RF and 6-OHDA lesions of the mesolimbic dopamine (DA) system. Large 6-OHDA lesions of the ventral tegmental area (VTA) or of the nucleus accumbens (N.Acc.) produced hypo-activity in the open field, a complete blockade of the locomotor stimulating effects of D-amphetamine and a profound supersensitive response to apomorphine as measured by a significant increase in locomotor activity as compared to sham-operated animals. In contrast, smaller 6-OHDA lesions of the VTA produced significant increases in spontaneous daytime and nocturnal activity with the biggest effect occurring at the lowest dose. RF lesions to the VTA produced even greater hyperactivity which was blocked by the addition of a 6-OHDA lesion to the N.Acc. The rats with RF lesions to VTA alone that were spontaneously hyperactive remained hyperactive after injection of amphetamine, whereas apomorphine produced a significant decrease in this hyperactivity. In contrast, the rats with the combined RF lesion and N.Acc. 6-OHDA lesion showed a blockade of the locomotor stimulating effects of D-amphetamine and a potentiated response to apomorphine identical to that observed with a N.Acc. lesion alone. All lesion groups revealed massive depletion of DA in the N.Acc. and anterior striatum with significantly greater depletions in those groups showing hypoactivity and hypo-responsiveness to amphetamine. All groups except the N.Acc. 6-OHDA alone group showed significant depletions of DA in the posterior striatum. Thus, limited destruction of the mesolimbic DA system can produce hyperactivity, but more extensive destruction of this system in the region of the N.Acc. and anterior striatum can reverse this hyperactivity and produce a hypo-responsiveness to the locomotor stimulating effects of amphetamine. These results suggest an essential role for dopamine in the expression of spontaneous and stimulant-induced activity. Furthermore, the much larger increase in spontaneous activity in the RF-VTA lesion group as compared to the VTA-6-OHDA groups suggests the presence of an, as yet unidentified, powerful inhibitory influence to the mesolimbic DA system within the midbrain tegmentum.  相似文献   

6.
This experiment examined the relationship between the extent of brain dopamine (DA) neuron destruction in the neonatal rat and locomotor hyperactivity during subsequent development. Brain DA neurons were destroyed selectively in neonatal rats by intraventricular injections of 6-hydroxydopamine (6-OHDA) following desmethylimipramine (DMI) pretreatment of both days 3 and 6 of life. Groups of rats received total doses of 50, 70, 100 or 200 microgram of 6HDA or the vehicle solution. Each group of rats given 6-OHDA displayed 3- to 5-fold increases in locomotor activity relative to vehicle control rats on days 16 and 18 of life. Rats given 50 or 70 microgram of 6-OHDA displayed hyperactivity that diminished during days 18-32 of life, approaching the level of activity seen in vehicle-treated rats. It contrast, rats given 100 or 200 microgram of 6-OHDA displayed consistently high levels of locomotion during days 18-32 of life. When tested as adults (days 55-66 of life) only those rats given 200 micrograms of 6-OHDA as neonates continued to display locomotor hyperactivity. The extent of 6-OHDA-induced depletion of DA was proportional to the magnitude of locomotor hyperactivity seen during neonatal life. Brain DA was depleted to the greatest extent in rats which displayed permanent hyperactivity. Regardless of the extent of depletion of brain DA, adult rats given intraventricular injections of 125, 200 or 275 micrograms of 6-OHDA at 48 days of age (following pargyline and DMI pretreatment) displayed no significant change in locomotor activity. These results indicate that the magnitude and duration of locomotor hyperactivity seen following neonatal 6-OHDA injections are correlated with the extent of loss of central DA neurons and suggest that brain DA projections exert important influences on the ontogeny of normal locomotion.  相似文献   

7.
Dopamine (DA) neurons are implicated in the hyperlocomotion of neonatal 6-hydroxydopamine (6-OHDA)-lesioned rats, an animal model of attention deficit hyperactivity disorder (ADHD). Because serotonin (5-HT) neurons mediate some DA agonist effects, we investigated the possible role of 5-HT neurons on locomotor activity. Rats were treated at 3 days after birth with vehicle or 6-OHDA (134 μg ICV; desipramine pretreatment, 20 mg/kg IP, 1 h), and at 10 weeks with vehicle or 5,7-dihydroxytryptamine (5,7-DHT; 75 μg ICV; pretreatment with desipramine and pargyline, 75 mg/kg IP, 30 min), to destroy DA and/or 5-HT fibers. Intense spontaneous hyperlocomotor activity was produced in rats lesioned with both 6-OHDA and 5,7-DHT. Locomotor time in this group was 550 ± 17 s in a 600 s session, vs. 127 ± 13 s in the 6-OHDA group and <75 s in 5,7-DHT and intact control groups (p < 0.001). Oral activity dose-effect curves established that 5,7-DHT attenuated DA D1 receptor supersensitivity and further sensitized 5-HT2c receptors. Acute treatment with dextroamphetamine (0.25 mg/kg SC) reduced locomotor time in 6-OHDA+5,7-DHT-lesioned rats to 76 ± 37 s (p < 0.001). Striatal DA was reduced by 99% and 5-HT was reduced by 30% (vs. 6-OHDA group). Because combined 6-OHDA (to neonates) and 5,7-DHT (to adults) lesions produce intense hyperlocomotion that is attenuated by amphetamine, we propose this as a new animal model of ADHD. The findings suggest that hyperactivity in ADHD may be due to injury or impairment of both DA and 5-HT neurons.  相似文献   

8.
The effects of neonatal intracisternal 6-hydroxydopamine (6-OHDA; 50 micrograms) treatment on striatal serotonin (5-HT) nerve terminals in rat have been characterized using histo- and neurochemical methods. The 6-OHDA lesion caused a 60% reduction of striatal dopamine (DA) concentration when analyzed in the adult stage, while 5-HT levels were increased by about 40% and 3H-5-HT uptake in vitro was increased by about 60%. Using computerized image analysis, a marked increase in 5-HT-like immunoreactive terminal density was found in both rostral (+200%) and caudal (+50%) striatum. Pretreatment with the DA uptake blocker amfolenic acid completely counteracted the 6-OHDA-induced alterations in both DA and 5-HT neurons in the striatum, while pretreatment with the noradrenaline uptake blocker desipramine had no significant effects. Regional analysis of 5-HT levels in the CNS after neonatal 6-OHDA treatment or the combined desipramine + 6-OHDA treatment showed no significant effect in any of the brain areas analyzed, apart from the observed 5-HT increase in striatum. It was furthermore observed that the striatal 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio was decreased, while the 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratio was increased following the 6-OHDA lesion, indicating compensatory mechanisms in turnover of transmitters. These alterations were completely reversed after pretreatment with amfolenic acid. The present results support the view that the 5-HT hyperinnervation following neonatal 6-OHDA treatment is a collateral sprouting response induced by lesioning of the striatal DA neurons.  相似文献   

9.
To investigate the relationship between denervation of dopamine (DA) terminal fields in the anterior forebrain and the behavioral responses to amphetamine (1.5 mg/kg) and apomorphine (1 mg/kg), we injected 6-hydroxydopamine (6-OHDA) bilaterally into the anterolateral hypothalamus (ALH) or into specific mesolimbic and anterior striatal terminal fields after pretreatment with desmethylimipramine to protect noradrenergic axons and terminals from 6-OHDA toxicity. After drug testing was completed, the extent of denervation was determined by fluorescent histochemical analysis. When nearly all of the mesolimbicocortical and anteroventral striatal DA terminal fields were denervated by bilateral ALH 6-OHDA, the locomotor response to amphetamine was abolished, and the locomotor and stereotyped sniffing responses to apomorphine were increased. When fewer DA terminal fields were denervated, different results were obtained: the locomotor response to amphetamine decreased or did not change; stereotyped sniffing elicited by apomorphine did not increase or sniffing was replaced by stereotyped licking and biting. The results suggest a mass action relationship between DA terminal fields in the anterior forebrain and the locomotor response to amphetamine. The relationship between the same DA lesions and responses to apomorphine appears to be more complex.  相似文献   

10.
Pitx3 deficiency in mice causes a dramatic loss of dopaminergic neurones located in the substantia nigra pars compacta during development. This early disruption of the nigrostriatal pathway in Pitx3-deficient mice is characterized by increased spontaneous home-cage activity levels during the habitual sleep phase of these animals. These findings are reminiscent of the spontaneous hyperactivity in mice neonatally lesioned with 6-hydroxydopamine, which is caused by an extensive serotonergic hyperinnervation of the striatum. The present study investigated whether an imbalance between dopamine (DA) and serotonin (5-HT) signalling is involved in the behavioural phenotype of Pitx3-deficient mice. Serotonergic hyperinnervation was demonstrated by increased [3H]-citalopram autoradiographic binding specifically in the dorsal striatum of adult Pitx3-deficient mice, indicating alterations in 5-HT transporter levels that correlated to DA dysfunction in Pitx3 deficiency. In addition, stimulus-induced release of DA and 5-HT indicated an altered balance between these neurotransmitters in the dorsal striatum of Pitx3–/– mice. To determine whether the increased 5-HT signalling was involved in the spontaneous hyperactivity during the light phase observed in Pitx3 deficiency, we treated Pitx3-deficient and control mice with the selective irreversible tryptophan hydroxylase inhibitor p -chlorophenylalanine to decrease 5-HT levels. Reduction of 5-HT levels in Pitx3-deficient mice decreased their locomotor activity to normal levels, whereas the same treatment increased the locomotor activity levels of control mice. Taken together, our results indicate alterations in 5-HT signalling in Pitx3-deficient mice that underlie their spontaneous hyperactivity.  相似文献   

11.
Hyperactivity is thought to be associated with an alteration of dopamine (DA) neurochemistry in brain. This conventional view became solidified on the basis of observed hyperactivity in DA-lesioned animals and effectiveness of the dopaminomimetics such amphetamine (AMP) in abating hyperactivity in humans and in animal models of hyperactivity. However, because AMP releases serotonin (5-HT) as well as DA, we investigated the potential role of 5-HT in an animal model of hyperactivity. We found that a greater intensity of hyperactivity was produced in rats when both DA and 5-HT neurons were damaged at appropriate times in ontogeny. Therefore, previously we proposed this as an animal model of attention deficit hyperactivity disorder (ADHD) - induced by destruction of dopaminergic neurons with 6-hydroxydopamine (6-OHDA) (neonatally) and serotoninergic neurons with 5,7-dihydroxytryptamine (5,7-DHT) (in adulthood). In this model effects similar to that of AMP (attenuation of hyperlocomotion) were produced by m-chlorophenylpiperazine (m-CPP) but not by 1-phenylbiguanide (1-PG), respective 5-HT2 and 5-HT3 agonists. The effect of m-CPP was shown to be replicated by desipramine, and was largely attenuated by the 5-HT2 antagonist mianserin. These findings implicate 5-HT neurochemistry as potentially important therapeutic targets for treating human hyperactivity and possibly childhood ADHD.  相似文献   

12.
Striatal dopamine (DA) and serotonin (5-HT) functions are altered following DA denervation. Previous research indicates that intrastriatal coadministration of D1 and 5-HT2 receptor agonists synergistically increase locomotor behavior in DA-depleted rats. In the present study, we examined whether striatal 5-HT2 mechanisms also account for supersensitive D1-mediated locomotor behavior following DA denervation. Adult male Sprague-Dawley rats were subjected to bilateral striatal cannulation and then received either intracerebroventricular (i.c.v.) or intrastriatal 6-hydroxydopamine (6-OHDA; 200 microg or 20 microg/side, respectively). After at least 3 weeks, i.c.v.-lesioned rats received intrastriatal infusions of the 5-HT2 receptor antagonist ritanserin (2.0 microg/side) or its vehicle (DMSO) followed by systemic SKF 82958, a D1 agonist (1.0 mg/kg, i.p.) and locomotor activity was monitored. In another experiment, intrastriatal sham and 6-OHDA-lesioned rats received bilateral intrastriatal infusions of ritanserin (2.0 microg/side) or its vehicle (DMSO) followed by intrastriatal infusions of SKF 82958 (5.0 microg/side) or vehicle (0.9% saline). Rats with DA loss demonstrated supersensitive locomotor responses to both systemic and intrastriatal SKF 82958. Ritanserin pretreatment blunted systemic SKF 82958-induced hyperlocomotion and returned intrastriatal D1-mediated hyperactivity to sham lesion levels. The results of this study suggest that striatal 5-HT2 receptors contribute to D1-mediated hyperkinesias resulting from DA loss and suggest a pharmacological target for the alleviation of dyskinesia that can develop with continued DA replacement therapy.  相似文献   

13.
Dopamine (DA) depletion in neonatal rodents results in depressed tachykinin and elevated enkephalin gene expression in the adult striatum (STR). Concurrently, serotonin (5-HT) fibers sprout to hyperinnervate the DA-depleted anterior striatum (A-STR). The present study was designed to determine if increased 5-HT release from sprouted terminals influences dysregulated preprotachykinin (PPT) and preproenkephalin (PPE) mRNA expression in the DA-depleted STR. Three-day-old Sprague-Dawley rat pups received bilateral intracerebroventricular injections of vehicle or the DA neurotoxin 6-hydroxydopamine (6-OHDA, 100 microg). Two months later, rats received a single intraperitoneal injection of vehicle or the acute 5-HT releasing agent p-chloroamphetamine (PCA; 10 mg/kg). Rats were killed 4 h later and striata processed for monoamine content by HPLC-ED and mRNA expression by in situ hybridization within specific subregions of the A-STR and posterior striatum (P-STR). 6-OHDA treatment severely (>98%) reduced striatal DA levels, while 5-HT content in the A-STR was significantly elevated (doubled), indicative of 5-HT hyperinnervation. Following 6-OHDA, PPT mRNA levels were depressed 60-66% across three subregions of the A-STR and 52-59% across two subregions of the P-STR, while PPE mRNA expression was elevated in both the A-STR (50-62%) and P-STR (55-82%). PCA normalized PPT mRNA levels in all regions of the DA-depleted A-STR and P-STR, yet did not alter PPE levels in either dorsal central or medial regions from 6-OHDA alone, but reduced PPE to control levels in the dorsal lateral A-STR. These data indicate that increased 5-HT neurotransmission, following neonatal 6-OHDA treatment, primarily influences PPT-containing neurons of the direct striatal output pathway.  相似文献   

14.
Previous studies have shown that neonatally dopamine-depleted rats are subsensitive to dopamine antagonists and do not respond to homeostatic imbalances as adults. This suggests that these animals maintain themselves independent of the dopamine system. If this is so, they should be insensitive to treatment with adult 6-hydroxydopamine (6-OHDA) lesions. Other experiments have shown that dopamine-rich grafts in the neonatal brain will provide some protection from the severe ingestive deficits induced by bilateral 6-OHDA lesions in adulthood. Three groups of animals received either nigra grafts into the intact neonatal brain, neonatal 6-OHDA lesions, or both neonatal 6-OHDA lesions and nigra grafts. A fourth group served as sham-operated controls. Methylamphetamine and haloperidol challenges showed that the neonatally lesioned animals regulated locomotor activity, eating and drinking independent of the dopamine system. Remarkably, however, 80% of these nevertheless showed the full syndrome of aphagia, adipsia and akinesia in response to adult lesions. The grafts into intact group showed enhanced survival in that 36% of the rats were able to maintain themselves following the adult lesion. The graft into neonatally lesioned rats restored their activational response to pharmacological challenges but did not provide any additional protection from the adult lesion. This suggests that different mechanisms underlie the protection against adult nigrostriatal lesions provided by neonatal grafts and neonatal lesions.  相似文献   

15.
Severe 6-hydroxydopamine (6-OHDA)-induced neostriatal dopamine (DA) depletion is generally held to be irreversible. Adult rats administered 6-OHDA soon after weaning, or neonatally, respectively model Parkinson's disease (PD) and Lesch–Nyhan syndrome (LNS). Prior studies in our laboratory indicate that prolonged training on incrementally more difficult fixed-ratio (FR) discriminations can reverse ‘irreversible' 6-OHDA-induced neostriatal DA depletion in adult LNS rats. The present study evaluated the effects of such training on neostriatal DA depletion and its functional consequences in adult PD and control (vehicle-injected) rats. After recovery from 6-OHDA-induced hypophagia, rats were sacrificed to assess neostriatal DA depletion magnitude, or were food-deprived and either subjected to food-maintained operant FR discrimination training or allowed to remain in their home cages. 6-OHDA treatment antagonized amphetamine (AMP)-induced increases in brief rearing behavior and locomotor activity in 3-month-old PD rats prior to training, and reduced operant response rates throughout training without affecting learning rates. One week after training, AMP-increased locomotor and brief-rearing frequencies were augmented in all groups except trained controls, and the prior inhibitory effect of 6-OHDA treatment on AMP-increased behavioral frequencies was essentially eliminated. Cumulative apomorphine (APO) dose–effect curve (0.1–3.2 mg/kg) construction 3 weeks post-training revealed that 6-OHDA treatment abolished APO-induced intense licking behavior. However, training eliminated the hyperresponsiveness of 6-OHDA-treated rats to the locomotor- and brief-rearing stimulant effects of APO but did not affect the depletion of neostriatal DA. Nevertheless, 6-OHDA-induced increases in neostriatal DOPAC/DA and HVA/DA ratios were normalized by age/food-deprivation while that of 3MT/DA was not. These findings suggest that training reduces the functional responsiveness of at least some central DA receptors, FR discrimination training could be a useful adjunct to PD replacement therapy and that the neostriatal DA-repleting action of training in 6-OHDA-treated rats depend on the age at which 6-OHDA is administered.  相似文献   

16.
The aim of this study was to investigate the role of forebrain serotonin projections in behavioural models with relevance to schizophrenia. Mice received stereotaxic micro-injections of the serotonin neurotoxin 5,7-dihydroxytryptamine into the median raphe nucleus (MRN). Two weeks later, MRN-lesioned mice were hyperactive at baseline and showed enhanced locomotor hyperactivity induced by phencyclidine. In contrast, no lesion effect was observed on the locomotor hyperactivity induced by amphetamine treatment or on prepulse inhibition. Lesioned mice showed a 68% depletion of serotonin in the hippocampus and 31% depletion in the striatum. These data confirm previous studies in rats that selective serotonin depletion in the brain enhances the effect of phencyclidine, but not amphetamine, on locomotor activity. This enhanced action of phencyclidine is likely to be mediated by the absence of serotonin-mediated behavioural inhibition in the hippocampus, leaving the psychostimulant effects of phencyclidine unopposed. Taken together with previous studies in rats, these studies in mice suggest that serotonin release in the dorsal hippocampus constitutes a behavioural inhibitory pathway normally involved in dampening excessive behavioural stimulation. Dysfunction of this pathway could be involved in psychosis and its stimulation could be a potential mechanism of action of antipsychotic drugs.  相似文献   

17.
Fenfluramine releases serotonin (5-HT) via the 5-HT transporter (SERT). Previous work has shown that amphetamine increases particulate protein kinase C (PKC) activity in striatal synaptoneurosomes. The increased PKC activity is linked to the outward transport of dopamine, and when release is diminished, the inward transport of amphetamine inhibits PKC instead. Since there is homology among monoamine transporters, this study was undertaken to determine if D-fenfluramine has similar effects on PKC. The role of 5-HT receptors and endogenous 5-HT were also examined. Naive rats and rats pretreated with p-chlorophenylalanine (PCPA), a 5-HT synthesis inhibitor, were sacrificed. Cortical synaptoneurosomes were prepared and incubated with fenfluramine. PKC activity was determined by thiophosphorylation of endogenous substrates. It was found that 5-HT, D/L-fenfluramine, and D-fenfluramine increased PKC activity in a time- and dose-dependent manner. The 5-HT-mediated increase in PKC activity was attenuated by pretreatment with the 5-HT(2) antagonist ketanserin, but not with the SERT inhibitor fluoxetine. The D-fenfluramine-induced increase in PKC activity was completely prevented, however, by pretreatment with SERT inhibitors and partially with ketanserin. It was also attenuated by pretreatment with PCPA, resulting in a dose-dependent inhibition of PKC instead. Thus, when 5-HT release was diminished the uptake of D-fenfluramine inhibited PKC. Similar effects have been observed with amphetamine. Unlike D-fenfluramine, the D/L-fenfluramine-induced increase in PKC activity was partially resistant to PCPA pretreatment but was attenuated with bupropion, a dopamine transporter (DAT) inhibitor. SERT inhibitors (sertraline, paroxetine, citalopram, and fluoxetine) also increased PKC activity. Nefazodone and bupropion increased PKC activity, but mirtazapine was relatively inactive. The SERT inhibitor-induced increase in PKC was unaffected by pretreatment with PCPA but was inhibited by calcium. Similar effects on PKC activity have been observed with DAT inhibitors. These results, showing that D-fenfluramine altered PKC activity similar to D-amphetamine, suggest that the topographic homology between DAT and SERT may extend to their effects on PKC activity.  相似文献   

18.
Hyperactivity of striatal glutamatergic synaptic transmission in response to dopamine depletion plays a major role in the pathogenesis of parkinsonian motor symptoms. In the present study we investigated the impact, on this hyperactivity, of chronic dyskinesiogenic L-DOPA treatment, combined or not with high-frequency stimulation (HFS) of the subthalamic nucleus (STN). In vitro patch-clamp recordings were performed from striatal spiny neurons of hemiparkinsonian rats (intranigral 6-OHDA injection). Here we show that dyskinesiogenic L-DOPA treatment exacerbated striatal glutamatergic hyperactivity induced by 6-OHDA lesion. Chronic 5-day STN HFS had the opposite effect, reducing striatal glutamatergic transmission in both parkinsonian and dyskinetic animals. Consistently, chronic HFS stimulation could progressively ameliorate motor parkinsonian signs (akinesia) but, conversely, did not improve L-DOPA-induced dyskinesia (LID). Thus, the effects of L-DOPA and HFS on corticostriatal transmission seem to be dissociated. These data show for the first time that dyskinesiogenic L-DOPA treatment and chronic STN HFS with antiakinetic effects induce opposite plastic rearrangements in the striatum. The interaction between these two treatments provides further evidence that striatal glutamatergic hyperactivity is a pathophysiological correlate of akinesia rather than LID.  相似文献   

19.
We examined in the rat, the effects of neonatal (postnatal Day 7) and adult excitotoxic lesions of the mediodorsal thalamus (MDT), a brain area innervating the prefrontal cortex and implicated as a site of neuropathology in schizophrenia. Previous studies showed that rats with neonatal excitotoxic damage of the ventral hippocampus (VH), used as an animal model of this disorder, display in young adulthood a variety of abnormalities reminiscent of schizophrenia, including hyperactivity to stressful stimuli and amphetamine. It has been speculated that behavioral abnormalities of the neonatally VH lesioned animals are mediated through MDT projections to the prefrontal cortex. We tested if rats with ibotenic acid (1.5 microg per hemisphere in neonates, 2 microg in adults) lesions of MDT exhibited motor hyperactivity in the same experimental conditions (i.e. in response to novelty, saline injections and amphetamine administration) as rats with the VH lesions. We found that, in contrast to rats with VH lesions, neonatally lesioned MDT rats showed reduced vertical activity in response to amphetamine and no changes in locomotor activity to novelty, saline or amphetamine injections 7 weeks postlesion. Adult lesioned MDT rats exhibited no changes in motor activity as compared to controls at 7 weeks postlesion. These results indicate that neonatal or adult excitotoxic lesions of MDT do not produce behavioral changes analogous to those seen after neonatal VH lesions and do not appear to reproduce animal model-like features of schizophrenia.  相似文献   

20.
The intraventricular administration of 6-hydroxydopamine (6-OHDA) depletes the striatum of dopamine (DA). When given to rat pups at an early age, the toxin also increases striatal serotonin (5-HT) content. In the accompanying report we observed that endogenous 5-HT, like DA, exerts an inhibitory influence on the release of acetylcholine (ACh) from striatal slices prepared from control animals and that the extent of this inhibition is related to the degree of serotonergic innervation of the region being examined. To determine whether this hyperinnervation was accompanied by an increase in serotonergic influence on ACh release, striatal slices were prepared from adult rats, preincubated with [3H]choline, superfused, and exposed to electrical field stimulation. The efflux of tritium into the superfusate was used as a measure of ACh release. In confirmation of previous reports, we observed that direct and indirect agonists of DA and 5-HT both reduced ACh overflow from control slices, whereas overflow was increased by antagonists of these amines. Slices prepared from rats given 6-OHDA-induced lesions as adults were responsive to each of these pharmacological manipulations, as well. In contrast, ACh overflow from slices prepared from animals lesioned with 6-OHDA as neonates was not modified by either dopaminergic or serotonergic drugs. These results suggest that the serotonergic hyperinnervation of striatum produced by neonatal 6-OHDA is accompanied by a loss of the inhibitory influence of endogenous 5-HT and DA on striatal ACh release and, thus, provide no evidence for a role for either transmitter in the behavioral sparing associated with such lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号