首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Young children born very prematurely show elevated thresholds for global motion and global form [Atkinson, J. & Braddick, O. (2007). Visual and visuocognitive development in children born very prematurely. Progress in Brain Research, 164, 123–149; MacKay, T. L., Jakobson, L. S., Ellemberg, D., Lewis, T. L., Maurer, D., & Casiro, O. (2005). Deficits in the processing of local and global motion in very low birthweight children. Neuropsychologia, 43, 1738–1748]. In adolescence, those with white matter pathology show reduced sensitivity to biological motion [Pavlova, M., Sokolov, A., Staudt, M., Marconato, F., Birbaumer, N., & Krageloh-Mann, I. (2005). Recruitment of periventricular parietal regions in processing cluttered point-light biological motion. Cerebral Cortex, 15, 594–601; Pavlova, M., Staudt, M., Sokolov, A., Birbaumer, N., & Krageloh-Mann, I. (2003). Perception and production of biological movement in patients with early periventricular brain lesions. Brain, 126, 692–701]. Here, we measured sensitivity to global form, global motion, and biological motion in a sample of 23, five- to nine-year-old children born at <32 weeks gestation, and in 20 full-term controls matched to the clinical sample in age, socioeconomic status, and estimated Verbal IQ. As a group, premature children showed reduced sensitivity, relative to controls, on all three tasks (F > 4.1, p < 0.05). By computing a deficit score for each task (the ratio between a premature child's threshold and the mean threshold for three age-matched controls) we were able to compare performance across tasks directly. Mean deficit scores were significantly greater than 1 (indicating some level of impairment) for biological motion and global motion (ps < 0.03). In contrast, the mean deficit score for global form was not significantly different from 1 (indicating no impairment, relative to age-matched control children). Rates of impairment (deficit score ≥ 2) were four times higher for global motion than for global form (p < 0.04); rates of impairment on the biological motion task fell at an intermediate level. In agreement with previous studies, we find impairments in the processing of global motion (Atkinson & Braddick; MacKay et al.) and of biological motion (Pavlova et al.), which are larger than the impairments in the processing of global form (Atkinson & Braddick). In addition, we show that the impairments are not correlated with each other. The differential vulnerability that we observed across tasks could not be accounted for by stereoacuity deficits, amblyopia, or attentional problems. We suspect, instead, that it reflects the fact that these forms of visual processing develop at different rates, and may be differentially vulnerable to early brain injury or atypical neurodevelopment [c.f., Atkinson, J. & Braddick, O. (2007). Visual and visuocognitive development in children born very prematurely. Progress in Brain Research, 164, 123–149; Braddick, O., Atkinson, J., & Wattam-Bell, J. (2003). Normal and anomalous development of visual motion processing: Motion coherence and ‘dorsal-stream vulnerability’. Neuropsychologia, 41, 1769–1784].  相似文献   

2.
Baddeley and Hitch's multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7–9 year old children (N = 74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development.  相似文献   

3.
《Brain stimulation》2019,12(4):992-1000
BackgroundTranscranial direct current stimulation (tDCS) can enhance cognitive function in healthy individuals, with promising applications as a therapeutic intervention. Despite this potential, variability in the efficacy of tDCS has been a considerable concern.Objective/Hypothesis: Given that tDCS is always applied at a set intensity, we examined whether individual differences in sensitivity to brain stimulation might be one variable that modulates the efficacy of tDCS in a motor learning task.MethodsIn the first part of the experiment, single-pulse transcranial magnetic stimulation (TMS) over primary motor cortex (M1) was used to determine each participant's resting motor threshold (rMT). This measure was used as a proxy of individual sensitivity to brain stimulation. In an experimental group of 28 participants, 2 mA tDCS was then applied during a motor learning task with the anodal electrode positioned over left M1. Another 14 participants received sham stimulation.ResultsM1-Anodal tDCS facilitated learning relative to participants who received sham stimulation. Of primary interest was a within-group analysis of the experimental group, showing that the rate of learning was positively correlated with rMT: Participants who were more sensitive to brain stimulation as operationalized by our TMS proxy (low rMT), showed faster adaptation.ConclusionsMethodologically, the results indicate that TMS sensitivity can predict tDCS efficacy in a behavioral task, providing insight into one source of variability that may contribute to replication problems with tDCS. Theoretically, the results provide further evidence of a role of sensorimotor cortex in adaptation, with the boost from tDCS observed during acquisition.  相似文献   

4.
Visual short-term memory (VSTM) capacity is often assessed using change detection tasks, and individual differences in performance have been shown to predict cognitive aptitudes across a range of domains in children and adults. We recently showed that intelligence correlates with an attentional component necessary for change detection rather than with memory capacity per se (Cusack, Lehmann, Veldsman, & Mitchell, 2009). It remained unclear, however, whether different attentional strategies during change detection have most impact during the encoding or maintenance of information. Here we present recent findings from our laboratory supporting the hypothesis that attentional selection during encoding dominates individual differences in change detection measures of visual short-term memory.In a first study, we unpredictably varied whether short-term memory was probed using change detection or whole report, encouraging participants to adopt the same encoding strategy throughout the tasks. Change detection performance of lower-IQ individuals improved. In a second study, we found that deficits in top-down attentional selectivity can be alleviated in participants with low change detection performance by providing helpful grouping information during encoding. Finally, a meta-analysis of neuroimaging data from 112 participants performing a variety of VSTM tasks showed that performance correlates with activity in several parietal and frontal regions during the encoding but not the maintenance phase. Taken together, these results support the notion that encoding strategy and not short-term memory capacity itself largely determines individual differences in visual change detection performance.  相似文献   

5.
To better characterize the neural correlates of the full spectrum of reading ability, this fMRI study examined how variations in reading ability correlate with task-based brain activity during reading among a large community sample of adolescents (N = 234). In addition, complimentary approaches taking advantage of empirical as well as independent meta-analytic information were employed to isolate neural substrates of domain-general executive processes that are predictive of reading ability. Age-related differences in brain activity were also examined. Better reading was associated with increased activation in left anterior and inferior temporal regions and parts of orbitofrontal cortex, along with reduced activation in the thalamus and left frontal eye field (FEF). Converging evidence suggests that FEF activity corresponds to executive processes during reading. In contrast, activity in temporal regions is likely to reflect cognitive processes specific to reading. Older adolescents also demonstrated increased activation in an orbitofrontal region that overlaps with the aforementioned age-independent, reading-related regions, along with reduced activity in parietal and occipital regions. These results suggest that comparedto poor readers, proficient readers benefit from efficient reading-specific processes and require less executive effort, implemented via the FEF, during a reading comprehension task.  相似文献   

6.
Most healthy individuals display a subtle spatial attentional bias, exhibiting relative inattention for stimuli on one side of the visual field, a phenomenon known as pseudoneglect. Prior work in animals and patients has implicated dopamine in spatial attention asymmetries. The current study therefore examined - in healthy individuals - the relationship between the attentional bias and spontaneous eye-blink rate (EBR), a putative measure of central dopaminergic function. We found that those individuals, who blinked more often under resting conditions, displayed greater preference for the right side of the visual display in a subsequent attention task. This finding may support the idea that the observed attentional bias in healthy individuals reflects asymmetries in dopaminergic circuits, and corroborates previous findings implicating dopamine in spatial attention.  相似文献   

7.
BACKGROUND: Deficits in backward masking have been variably reported in schizophrenia patients, but individual differences in the expression of these deficits have not been explicitly investigated. In addition, increased knowledge of the visual system has opened the door for new techniques such as transcranial magnetic stimulation (TMS) to explore these deficits physiologically. METHODS: Patients with schizophrenia and healthy controls were tested using a backward masking paradigm. In order to examine the functionality of visual pathways involved in backward masking, subjects were retested on a backward masking paradigm using single pulse TMS applied to occipital cortex in lieu of the masking stimuli. RESULTS: Compared with controls, patients had significantly delayed recovery from visual backward masking. However, 23.5% of patients (compared to 5% of controls) never recovered to levels approaching unmasked performance. When these subjects were segregated from the analysis, group differences vanished. In addition, stimulus masking with occipital TMS followed the same pattern in both patients and controls. CONCLUSIONS: Observations of individual differences in visual masking performance may identify a subgroup of schizophrenia patients. The TMS data suggest that this deficit may not localize to the occipital cortex. However, TMS can be a useful tool for localizing processing deficits in schizophrenia.  相似文献   

8.
It is well documented that good reading skills may be dependent upon adequate dorsal stream processing. However, the degree to which dorsal stream deficits play a causal role in reading failure has not been established. This study used coherent motion and visual frequency doubling to examine whether dorsal stream sensitivity measured before the commencement of formal reading instruction can predict emerging literacy skills in Grade 1. We demonstrate that over age, IQ and Kindergarten Letter knowledge, pre-reading measures of dorsal stream functioning, as assessed by frequency doubling sensitivity, could predict early literacy skills. These findings suggest that the relationship between dorsal stream functioning and poor reading skills exists before children learn to read, strengthening the claim that dorsal stream deficits may play a contributing role in reading failure.  相似文献   

9.
Though once of central importance to psychologists and neurophysiologists alike, the elucidation of neural substrates for individual differences in learning no longer attracts a broad research effort and occupies a place of largely historical interest to the contemporary disciplines. The decline in interest in this subject ensued in part from the perception, arrived at decades ago, that individual differences in learning were not quantified as easily as had once been presumed. Furthermore, the dominant hypotheses in the field defied testing within the constraints imposed by the complex and largely inaccessible vertebrate nervous system. Using a ‘model systems’ approach where the individual cells and synaptic interactions that comprise a neural network can be identified, we have returned to this question and have established a framework by which we can begin to discern the basis for much of the variability between individuals in their capacity to learn. In the marine mollusc Hermissenda, we have found that a common influence on transmitter exocytosis is expressed homogeneously throughout the nervous system regardless of transmitter system or receptor class. Though uniformly expressed within an individual, this influence on synaptic efficacy is differentially expressed between animals. Importantly, the basal efficiency of exocytosis expressed in an individual nervous system is strongly correlated with the degree to which activity-dependent forms of neuronal/synaptic facilitation can be induced in that nervous system, and predicts the capacity for the intact animal to learn a Pavlovian association. Furthermore, we have established that a decline in basal synaptic efficacy in aged animals, arising from chronic presynaptic Ca2+ ‘leak’, may contribute to age-related learning impairments. Because certain fundamental components of the exocytotic cascade are conserved widely across cell types, transmitter systems and species, the principles that we describe may have broad implications for understanding normal variability in learning, but also, in the development of specific strategies to compensate for mild learning deficits and age-related cognitive decline.  相似文献   

10.
Degree of handedness is a correlate of structural brain asymmetries and predicts individual differences in episodic memory, belief updating and various biases in decision-making. We examined whether handedness moderated the status quo bias given previous research suggests that both constructs are related to loss aversion. Participants answered hypothetical scenarios in which they decided either to stay with the status quo or to switch. Results indicated that consistent and inconsistent right-handers both exhibited status quo bias (Experiment 1; N = 180), but inconsistent right-handers were more (or less) likely to stick with the status quo when informed of a positive (or negative) past experience. When provided with more equivocal information about the quality of the status quo and alternative, consistent-handers (CH) were more likely to show a status quo bias (Experiment 2; N = 222). Compared to CH, we argue that inconsistent-handers (IH) more readily update their beliefs in a manner consistent with how the status quo and alternative options are presented—switching when finding a reason to favour the alternative and staying when the status quo is described more favourably. These handedness differences fit a motivational account explaining status quo bias rather than a loss aversion account.  相似文献   

11.
Individuals vary widely in their ability to orient and navigate within the environment. Previous neuroimaging research has shown that hippocampus (HC) and scene‐responsive regions (retrosplenial complex [RSC] and parahippocampal gyrus/parahippocampal place area [PPA]) were crucial for spatial orienting and navigation. Resting‐state functional connectivity and a self‐reported questionnaire of navigational ability were used to examine the hypothesis that the pattern of reciprocal connections between these regions reflects individual differences in spatial navigation. It was found that the functional connectivity between the posterior HC and RSC was significantly higher in good than in poor navigators. These results confirmed the crucial role of hippocampal and extra‐hippocampal regions in spatial navigation and provided new insight into how spontaneous brain activity may account for individual differences in spatial ability. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Thermal biofeedback (BFB) training is used extensively in clinical psychophysiology. However, there are large individual differences in the ability to control peripheral skin temperature and the magnitude of changes obtained varies considerably across studies. The aims of this study were: (1) to investigate the relationship between spontaneous peripheral temperature changes and changes voluntarily produced through a six-session thermal BFB training and (2) to investigate whether gender or other subjects' variables (trait anxiety, locus of control (LC) and field dependence) were related to learning of voluntary control of peripheral skin temperature. Results demonstrated that during the rest period preceding the feedback trials, there were consistent systematic temperature increases in which changes were bigger than those recorded in the BFB increase trials; among the subjects' variables considered, the only one that correlated significantly with learning ability was gender: Females showed greater control than males. Implications for clinical practice are discussed.  相似文献   

13.
Considerable individual differences exist in trait-like patterns of behavioral and physiological responses to salient environmental challenges. This individual variation in stress coping styles has an important functional role in terms of health and fitness. Hence, understanding the neural embedding of coping style variation is fundamental for biobehavioral neurosciences in probing individual disease susceptibility. This review outlines individual differences in trait-aggressiveness as an adaptive component of the natural sociobiology of rats and mice, and highlights that these reflect the general style of coping that varies from proactive (aggressive) to reactive (docile). We propose that this qualitative coping style can be disentangled into multiple quantitative behavioral domains, e.g., flexibility/impulse control, emotional reactivity and harm avoidance/reward processing, that each are encoded into selective neural circuitries. Since functioning of all these brain circuitries rely on fine-tuned serotonin signaling, autoinhibitory control mechanisms of serotonergic neuron (re)activity are crucial in orchestrating general coping style. Untangling the precise neuromolecular mechanisms of different coping styles will provide a roadmap for developing better therapeutic strategies of stress-related diseases.  相似文献   

14.
Recent studies with multiple sclerosis (MS) participants have provided evidence for cortical reorganization. Greater recruitment of task-related areas and additional brain regions are thought to play an adaptive role in the performance of cognitive tasks. In this study, we compared cortical circuitry recruited by MS patients and controls during a selective attention task that requires both focusing attention on task-relevant information and ignoring or inhibiting task-irrelevant information. Despite comparable behavioral performance, MS patients demonstrated increased neural recruitment of task-related areas along with additional activation of the prefrontal cortices. However, this additional activation was associated with poor behavioral performance, thereby providing evidence against compensatory brain reorganization. Future studies specifically investigating the nature of additional activation seen in MS patients in a wider variety of cognitive tasks would provide insight into the specific cognitive decline in MS.  相似文献   

15.
Sutton SK  Davidson RJ 《Neuropsychologia》2000,38(13):1723-1733
Measures of left–right asymmetry in resting brain activity were derived from spectral estimates of electroencephalogram (EEG) -band power density in 13 homologous scalp electrode pairs from 81 right-handed individuals (43 F) on two occasions separated by 6 weeks. At a third, later session, these individuals completed a cognitive task, comparing word-pairs that systematically differed in affective tone. For an extended series of paired-comparisons, the subject chose the one word-pair that ‘went together best’. Objectively, associative strength was comparable for both word-pairs. Individuals with relatively greater left-sided anterior frontal resting activity were more likely to select the more pleasant word-pair. Relations between word-pair selection and asymmetry in resting brain activity at central and posterior sites were not significant.  相似文献   

16.
The previously separate literatures on visual attention and on visual working memory are converging, with growing interest in how visual attention may relate to visual short-term memory, as exemplified by this special issue. We report exploratory analysis of how individual behavioural differences in separable aspects of attention may relate to particular aspects of visual working memory. Previous work with the Attention Network Test (ANT; Fan, McCandliss, Sommer, Raz, & Posner, 2002) proposed that it can measure three distinct aspects of attention: alerting, spatial orienting, plus executive control of response competition. We implemented the ANT in 50 healthy young adults, who also underwent a behavioural battery of visual working memory (WM) tests. These visual WM tests were all variations on recent paradigms, used here with the aim of measuring potential individual differences in visual WM capacity; WM precision; or WM distractor-filtering. Principal component analysis of the behavioural dataset revealed three main components. Interestingly, each component paired one aspect of ANT scores together with one aspect of WM scores, in terms of the strongest loadings. WM capacity loaded with ANT alerting; WM precision with ANT orienting; and WM filtering with ANT executive control. These results suggest that visual WM may involve separate component processes, and that different aspects of attention relate to different aspects of visual WM, in terms of behavioural individual differences. We discuss the observed pattern in relation to current issues and with respect to possible future work on the potential neural bases of individual differences in the distinct components.  相似文献   

17.
When resting, flamingos often lay their heads along their backs. While in this position they must curve their necks to either the right or left of their midline. Observations of captive Caribbean flamingos at the Philadelphia Zoo (Philadelphia, PA, USA) were conducted in order to determine if individual birds would display consistent preferences in neck-resting position over multiple observations. While individual birds were shown to vary greatly in regards to the strength and direction of their preferences, a significant flock-level preference towards neck resting to the right was obtained. Analysis of individual flamingos revealed that 5 out of 17 birds displayed preferences that significantly differed from chance, with each of these birds preferring to rest their necks to the right. From the present data we can conclude that flamingos display behavioural laterality of neck-resting position at both the level of the group and that of the individual.  相似文献   

18.
Previous studies of children with Williams syndrome (WS) have found a specific deficit in dorsal cortical stream function, indicated by poor performance in coherence thresholds for motion compared to form. Here we investigated whether this is a transient developmental feature or a persisting aspect of cerebral organization in WS. Motion and form coherence thresholds were tested in a group of 45 WS individuals aged 16-42 years, and 19 normal adult controls. Although there was considerable variation in the coherence thresholds across individuals with WS, the WS group showed overall worse performance than controls. A significant group x threshold condition interaction showed a substantially greater performance deficit for motion than for form coherence in the WS group relative to controls. This result suggests that the motion deficit is an enduring feature in WS and is a marker for one aspect of dorsal-stream vulnerability.  相似文献   

19.
BACKGROUND: Animal studies suggest that prenatal stress is associated with long-term disturbance in hypothalamic-pituitary-adrenal (HPA) axis function, but evidence in humans is lacking. This study examined the long-term association between prenatal anxiety and measures of diurnal cortisol at age 10 years. METHODS: Measures of cortisol were collected at awakening, 30 min after awakening, and at 4 pm and 9 pm on 3 consecutive days in a sample of 10-year-olds (n = 74) from the Avon Longitudinal Study of Parents and Children, a prospective longitudinal cohort study of mothers and children on whom measures of anxiety and depression were collected in pregnancy and the postpartum period. Analyses examined the links between symptoms of prenatal anxiety and multiple indicators of cortisol, an index of HPA axis functioning. RESULTS: Prenatal anxiety was significantly associated with individual differences in awakening and afternoon cortisol after accounting for obstetric and sociodemographic risk (partial correlations were .32 and .25, p < .05). The effect for awakening cortisol remained significant after controlling for multiple postnatal assessments of maternal anxiety and depression. CONCLUSIONS: This study provides the first human evidence that prenatal anxiety might have lasting effects on HPA axis functioning in the child and that prenatal anxiety might constitute a mechanism for an increased vulnerability to psychopathology in children and adolescents.  相似文献   

20.
Individuals differ consistently in the magnitude of their inflammatory responses to acute stressors, with females often showing larger responses than males. While the clinical significance of these individual differences remains unclear, it may be that greater inflammatory responses relate to increased systemic inflammation and thereby risk for chronic inflammatory disease. Here, we examined whether acute stressor-evoked interleukin (IL)-6 responses associate with resting levels of C-reactive protein (CRP), a marker of systemic inflammation, and whether this association differs by sex. Subjects were 57 healthy midlife adults (30–51 years; 33% female; 68% white). Blood was drawn before and 30-min after two mental stress tasks: a multisource interference task and a Stroop color word task. Hierarchical regressions controlling for age, sex, race, and BMI tested whether stressor-evoked IL-6 responses were associated with resting CRP and whether this association differed by sex. Results indicated that sex and stressor-evoked IL-6 responses interacted to predict CRP (ΔR2 = 0.08, B = −1.33, β = 0.39, p = 0.02). In males, larger stressor-evoked IL-6 responses associated with higher CRP, whereas in females, stressor-evoked IL-6 responses showed a non-significant negative association with CRP. These findings indicate that inflammatory responses to acute stressors associate with resting levels of CRP; however, this association differs by sex. Previous literature suggests that there are sex differences in stressor-evoked IL-6 responses, but this is the first study to show sex differences in the relationship between acute inflammatory responses and systemic inflammation. The contribution of these sex differences to inflammatory disease risk warrants further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号