首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The effects of cocaine on memory are controversial. Furthermore, the psychostimulant action of cocaine can be a critical issue in the interpretation of its effects on learning/memory models. The effects of a single administration of cocaine on memory were investigated during the presence of its motor stimulating effect or just after its termination. The plus-maze discriminative avoidance task (PM-DAT) was used because it provides simultaneous information about memory, anxiety and motor activity. In Experiment I, mice received saline, 7.5, 10, 15 or 30 mg/kg cocaine 5 min before the training session. In Experiment II, mice were trained 30 min after the injection of saline, 7.5, 10, 15 or 30 mg/kg cocaine. In Experiment III, mice received 30 mg/kg cocaine 30 min pre-training and pre-test. In Experiment IV, mice received 30 mg/kg cocaine immediately post-training. Tests were always conduced 24 h following the training session. Given 5 min before training, cocaine promoted a motor stimulant effect at the highest dose during the training session but did not impair memory. When cocaine was injected 30 min pre-training, the drug did not modify motor activity, but produced marked amnestic effects at all doses tested. This amnesia induced by cocaine given 30 min pre-training was not related to a state-dependent learning because it was not abolished by pre-test administration of the drug. Post-training cocaine administration did not induce memory deficits either. Our results suggest that the post-stimulant phase is the critical moment for cocaine-induced memory deficit in a discriminative task in mice.  相似文献   

2.
The acquisition and consolidation of a new grapho-motor symbol into long-term memory was studied in 5-year-old children with language impairment (LI) and peers matched for age and visual-motor integration skills. The children practiced the production of a new symbol and were tested 24h and two weeks post-practice day. Differences in performance speed emerged between the groups: children with LI showed a later onset of rapid learning in the practice phase, and only the comparison group exhibited delayed, consolidation, gains 24h post-training. At two weeks post-training, children with LI improved, closing the gap in performance speed. Speed-accuracy trade-off was characteristic of speed improvements in LI. These results indicate atypical and delayed acquisition in children with LI, and support the view that deficient skill acquisition in LI goes beyond the language system.  相似文献   

3.
The reuniens nucleus (RE) is the largest nucleus of the midline thalamic nuclei (MLN). RE has strongly connections with the amygdala and hippocampus, the structures that are involved in the learning and memory processes. In our previous report we have shown the role of RE in the spatial learning and memory using Morris water maze (MWM) task. Since RE is connected to multiple limbic structures, its involvement in the emotional learning and memory is a possibility. The present study was designed to elucidate the role of RE in acquisition, consolidation, and retrieval on the passive avoidance (PA) task which depends on a distributed network including the thalamus, amygdala, medial prefrontal cortex (mPFC) and hippocampus. For this purpose, rats were chronically implanted with a cannula aimed at the RE through which 0.5 μl tetracaine (2%) or saline were injected. Rats were trained in a PA task and their retention test was performed 24 h later. The injection of saline or tetracaine was applied 5 min before or 5, 90, and 360 min after the acquisition trial and 5 min before the retention tests. Our findings showed that inactivation of RE before training did not affect acquisition, but affected memory retention 24 h later in PA task. Moreover, inactivation of RE only 5 min after training impaired consolidation but not after 90 or 360 min. Also, inactivation of the RE, 5 min before the retrieval test impaired memory retrieval in PA task. In conclusion, it seems that RE is involved in memory processes in rats.  相似文献   

4.
The current study used a single trial bead discrimination task for the young chick to ascertain if inhibitors of P2 purinergic receptors would impair memory retention. Suramin and PPADS provided similar retention profiles. Loss of memory retention was evident by 60 min post-training. Both drugs caused persistent memory loss which was still evident 24 h post-training. These findings suggest that P2 receptors have a role in memory processing.  相似文献   

5.
In humans the consolidation of recently learned motor skills is a multi-step process. We previously showed that performance on the finger-tapping task (FTT; i.e. a sequential motor skill) temporarily improves early on, 5-30 min after practice has ended, but not 4 h later. In the absence of any further practice to the task, this early boost in performance was predictive of the performance levels eventually achieved 48 h later, suggesting its functional relevance for long-term memory consolidation [Hotermans, Peigneux, Maertens de Noordhout, Moonen, and Maquet (2006) Early boost and slow consolidation in motor skill learning. Learn. Mem., 13, 580-583]. Here, we focused on the role of the primary motor cortex (M1) in consolidation using repetitive transcranial magnetic stimulation (rTMS) applied immediately before testing at 30 min, 4 or 24 h after practice of the FTT. Immediately after learning, rTMS over M1 depressed the early boost in performance, but did not affect the delayed improvement observed 48 h later. Four and 24 h after practice, rTMS did not disrupt performance anymore. These results suggest that M1 supports performance during the early post-training phase of motor skill consolidation, but is no longer mandatory in the subsequent, delayed stages of consolidation.  相似文献   

6.
In this study, the time course of the procedural learning of a visuomotor sequence skill was followed over a 24-hour and a 1-week time period in children with and without specific language impairment (SLI). Two aspects of memory consolidation in implicit sequence learning were examined: the evolution of post-training gains in sequence knowledge (Experiment 1) and the susceptibility to interference (Experiment 2). In the first experiment, 18 children with SLI and 17 control children matched for sex, age, and nonverbal intelligence completed a serial reaction-time (SRT) task and were tested 24 hours and 1 week after practicing. The two groups of children attained an equal level of sequence knowledge in the training session, but the children with SLI lacked the consolidation gains displayed by the control children in the two post-training sessions. Working with a new group of children, 17 with SLI and 17 control peers, Experiment 2 examined resistance to interference by introducing a second sequence 15 min after the first training session. Similar results were obtained for the performance of both groups in the training session. However, although the performance of the control group improved in the post-training sessions, the performance of the SLI group deteriorated significantly during the consolidation phase due to the interfering sequence. These findings suggest that the consolidation phase of sequence learning is impaired in children with SLI.  相似文献   

7.
Memory consolidation is the process by which acquired information is converted to something concrete to be retrieved later. Here we examined a potential role for brain-derived neurotrophic factor (BDNF) in mediating the enhanced memory consolidation induced by the GABA(A) receptor antagonist, bicuculline methiodide. With the administration of an acquisition trial in na?ve mice using a passive avoidance task, mature BDNF (mBDNF) levels were temporally changed in the hippocampal CA1 region, and the lowest levels were observed 9?h after the acquisition trial. In the passive avoidance task, bicuculline methiodide administration within 1?h of training but not after 3?h significantly increased latency time in the retention trial 24?h after the acquisition trial. Concomitantly, 1?h post-training administration of bicuculline methiodide, which enhanced memory consolidation, significantly increased mBDNF levels 9?h after training compared to those of the vehicle-treated control group. In addition, exogenous human recombinant BDNF (hrBDNF) administration 9?h after training into the hippocampal CA1 region facilitated memory consolidation confirming that the increase in mBDNF at around 9?h after training plays a key role in the enhancement of memory consolidation. Moreover, the increases in latency time and immediate early gene expressions by bicuculline methiodide or hrBDNF were significantly blocked by anisomycin, a protein synthesis inhibitor, K252a, a tyrosine receptor kinase (Trk) inhibitor, or anti-TrkB IgG. These findings suggest that the increase in the level of mBDNF and its function during a restricted time window after training are required for the enhancement of memory consolidation by GABA(A) receptor blockade.  相似文献   

8.
The hippocampus is essentially involved in learning and memory, and is known to be a target for androgen actions. Androgen receptors are densely expressed in CA1 of rat hippocampus, and mediate the effects of testosterone (T) on learning and memory. T depletion or administration can modulate neural function and cognitive performance. We conducted series of experiments to further investigate the effect of castration or intra hippocampal injection of T on acquisition, consolidation and retrieval of inhibitory avoidance learning and memory. Male adult rats were bilaterally cannulated into CA1 of hippocampus, and then received T (1, 10, 20, 40 and 80mug/0.5mul/side) or vehicle (DMSO), 30min before training, immediately after training and 30min before retrieval in inhibitory avoidance task. Castration was made by gonadectomy of male rats and behavioral tests performed 4 weeks later. Our results showed that gonadectomy of male rats did not influence performance on inhibitory avoidance task, as compared to sham-operated rats. We have also found that pre-training, post-training and pre-retrieval intra CA1 injections of T significantly decreased step-through latencies in inhibitory avoidance learning at doses 1 and 80, 20, and 20 and 40mug/0.5mul/side, respectively. The data suggest that intra CA1 administration of T could impair learning and memory acquisition, consolidation and retrieval, while systemic androgen's depletion have no effect on memory, in inhibitory avoidance task.  相似文献   

9.
In the domestic chick, mild hypoxia (24 h of 14% oxygen) at two stages of embryonic development results in post-hatch memory deficiencies tested using a discriminated bead avoidance task. The nature of the memory loss depends on the gestational age at which the hypoxia occurs. Hypoxia on embryonic day 10 (E10) of a 21 day incubation results in chicks with no short-term memory 10 min after training, whereas hypoxia on day 14 (E14) results in chicks with good labile memory 30 min after training but no consolidation of memory into permanent storage (120 min). Hypoxia at E14 is associated with increased plasma levels of noradrenaline and therefore we suggest that altered catecholamine exposure within the brain contributes to cognitive problems by modifying the responsiveness of brain β-adrenoceptors. In ovo administration of noradrenaline, or the β2-adrenoceptor agonist formoterol, at E14 had the same effect on memory consolidation as hypoxia. Following hypoxia at E14, memory could be rescued after training by central injection of a β3-adrenoceptor agonist, but not by a β2-adrenoceptor agonist. The differences in the responsiveness of memory processing to β2-adrenoceptor agonists suggests alterations to the receptors or downstream of the receptor activation. However, both types of β-adrenoceptor agonists rescued memory in E10 treated chicks implying that at this age hypoxia does not affect the receptors. In summary, hypoxia or increased levels of stress hormones during incubation alters β-adrenoceptor responsiveness; the outcome of the insult depends upon the cellular developmental processes at a given embryonic stage.  相似文献   

10.
To evaluate possible differential effects of lateral hypothalamic intracranial self-stimulation (ICSS) on memory consolidation and retrieval, independent groups of Wistar rats were trained in a single session of two-way active avoidance task (acquisition session) and tested 24 h later (retention session). The post-ICSS groups received an ICSS treatment immediately after the acquisition session, and the pre-ICSS groups received the same treatment immediately before the retention session. Because the ICSS effects on memory seem to be dependent on the initial performance level shown by the subjects, the possible influence of initial training (number of trials) on ICSS effects was also studied. Therefore, we used different control and experimental groups, which received either 30 or 50 trials in the acquisition session. Post-training ICSS facilitated the 24-h retention in both training conditions (30 and 50 trials). In contrast, pre-retention ICSS treatment did not facilitate performance in the retention test. We also observed that post-training ICSS was more effective for improving the 24-h retention than increasing the initial training from 30 to 50 trials. This findings confirm that ICSS treatment improves memory consolidation and suggest that it might not affect memory retrieval mechanisms.  相似文献   

11.
Spatial memory can be strengthened by adverse stimuli that activate the stress system, and administration of the stress hormone corticosterone in close-context with the learning task. Less is known about modulation of spatial memory by post-training positive reinforcers (reward). Cognitive performance was assessed in male C57BL/6J mice using two learning tasks: the water maze (WM) and circular hole board (CHB). Sugar was chosen as a post-training reinforcer. We expected that the free access to sugar immediately (0 h) after training would facilitate spatial memory; delayed access to sugar (4h after training) or no sugar served as controls. In both tasks, 0 h sugar mice showed superior performance, indicated by shorter latencies and distances to the trained spatial location. The memory facilitating effect of sugar became visible at distinct times during training: on the CHB from the first trial onwards, in the WM on training days 4 and 5. Sugar-rewarded mice kept their superior performance during the free exploration/swim trial, expressed by more persistent search strategies for the exit hole or platform. Post-training sugar reward in close-context with performance strengthens memory via modulation of consolidation. This finding supports the integrative theory of reinforcement and memory. We suggest that our experimental set-up will allow to differentiate between direct effects on memory and alterations in reward processes in animal models of stress-related diseases.  相似文献   

12.
In the present study, we investigated the influence of intra-medial septum (intra-MS) injections of dopamine D1 receptor agents on amnesia induced by intra-CA1 injections of a muscarinic acetylcholine receptor antagonist, scopolamine. This study used a step-through inhibitory (passive) avoidance task to assess memory in adult male Wistar rats. The results showed that in the animals that received post-training intra-MS injections of saline, intra-CA1 administrations of scopolamine (0.75, 1, and 2 μg/rat) decreased inhibitory avoidance (IA) memory consolidation as evidenced by a decrease in step-through latency on the test day, which was suggestive of drug-induced amnesia. Post-training intra-MS injections of a dopamine D1 receptor agonist, SKF38393 at doses of 0.1, 0.15, and 0.3 μg/rat had no effect, but at dose of 0.5 μg/rat impaired IA memory consolidation. Interestingly, intra-MS injections of SKF38393 (0.15, 0.3 and 0.5 μg/rat) significantly prevented amnesia induced by intra-CA1 injections of scopolamine (1 μg/rat). Intra-MS injections of a dopamine D1 receptor antagonist, SCH23390 (0.5 and 0.75 μg/rat) by itself impaired IA memory consolidation, and also at dose of 0.75 μg/rat increased amnesia induced by intra-CA1 administrations of an ineffective dose of scopolamine (0.5 μg/rat). Post-training intra-MS injections of ineffective doses of SCH23390 (0.1, 0.3 and 0.5 μg/rat) prevented an effective dose of SKF38393 response to the impaired effect of scopolamine. These results suggest that dopamine D1 receptors in the MS via projection neurons to the hippocampus affect impairment of memory consolidation induced by intra-CA injections of scopolamine.  相似文献   

13.
Peripherally administered inflammatory stimuli, such as lipopolysaccharide (LPS), induce the synthesis and release of proinflammatory cytokines and chemokines in the periphery and the central nervous system, and trigger a variety of neurobiological responses. Indeed, prior reports indicate that peripheral LPS administration in rats disrupts contextual fear memory consolidation processes, potentially due to elevated cytokine expression. We used a similar, but partially olfaction-based, contextual fear conditioning paradigm to examine the effects of LPS on memory consolidation and reconsolidation in mice. Additionally, interleukin-1β (IL-1β), brain-derived neurotrophic factor (BDNF), and zinc finger (Zif)-268 mRNA expression in the hippocampus and the cortex, along with peripheral cytokines and chemokines, were assessed. As hypothesized, LPS administered immediately or 2 h, but not 12 h, post-training impaired memory consolidation processes that support the storage of the conditioned contextual fear memory. Additionally, as hypothesized, LPS administered immediately following the fear memory trace reactivation session impaired memory reconsolidation processes. Four hours post-injection, both central cytokine and peripheral cytokine and chemokine levels were heightened in LPS-treated animals, with a simultaneous decrease in BDNF, but not Zif-268, mRNA. Collectively, these data reinforce prior work showing LPS- and cytokine-related effects on memory consolidation, and extend this work to memory reconsolidation.  相似文献   

14.
Neurohormones such as testosterone (TE) are important in modulation of learning and memory. In the present study, we investigated the interactive effects of pre-training bilateral intra-hippocampal infusions of testosterone and H-89, a selective PKAII inhibitor, on spatial acquisition in the Morris water maze (MWM). Different doses of TE (20, 40 and 80 μg/side) and H-89 (5 and 10 μM/side) were administered 30 min before start of the training each day. Control animals received bilateral intra-hippocampal infusions of DMSO as vehicle for TE and H-89. Animals were trained for 4 days and each day included one block of four trials. The results of this study showed that bilateral infusion of TE (40 and 80 μg/side) or H-89 (10 μM/side) impaired spatial learning as indicated by significant increases in escape latency and traveled distance compared to the control group. Although pre-training bilateral infusions of a low concentration of either TE (20 μg/side) or H-89 (5 μM/side) into the CA1 region of the hippocampus did not affect learning capabilities, but the combination of the low doses of the drugs led to significant deficits in spatial acquisition. Overall, our data suggest that spatial acquisition was affected by PKAII inhibition or TE administration. Moreover, when co-administered, these drugs had a negative synergistic impact on acquisition.  相似文献   

15.
A weakly reinforced variant of the single trial passive avoidance task developed for the day-old chick typically fails to consolidate long-term memory. However, administration of zaprinast, a phosphodiesterase (PDE) type 5 inhibitor, (ic; 10 microl/side) immediately post-training resulted in a dose-dependent increase in retention at test 180 min post-training. Further, 100 microM zaprinast resulted in high levels of retention at test 180 min post-training when administered from 10 min before training to 10 min after training. Finally, 100 microM zaprinast, when administered immediately post-training, resulted in the consolidation of long-term memory at a number of times of test extending as late as 24 h post-training. Inhibition of PDE type 5 is known to increase cellular cGMP levels. Previous investigations using a strongly reinforced variant of this task have suggested a role for cGMP in memory retrieval, we now postulate that cGMP is also necessary for memory formation in chicks trained using passive avoidance.  相似文献   

16.
This series of experiments evaluated the effects of amygdala damage on the acquisition and long-term retention of variants of the water task, and tested the hypothesis that the amygdala is an essential neural system for consolidation of hippocampal memories. In Experiment 1, rats with large, neurotoxic lesions of the amygdala (AMYG) showed normal acquisition on the standard spatial version of the water task, as well as normal retention and decay rate profiles on the 24-h and 30-day retention probes. In Experiment 2, AMYG rats showed normal one-trial place learning abilities and could retain this one-trial information over a 24 h delay. Experiment 3 showed that the amygdala lesions used in this study were functionally significant because AMYG rats, from Experiment 2, showed impairments in a discriminative fear conditioning to context paradigm. Experiment 4 was a critical test of the idea that the amygdala is a decisive locus for consolidation of hippocampal memories. AMYG rats were trained to sub-asymptotic levels of performance on the standard version of the water task. Following each training session, the subjects were given a post-training peripheral injection of D-amphetamine. A probe test revealed that normal subjects and AMYG rats showed similar post-training memory improvement effects. Taken together, the results show that hippocampal memory consolidation processes do not require amygdala modulation. Arguments for an alternative view are presented suggesting that there are multiple memory consolidation pathways, one of which may depend on amygdala neural circuitry.  相似文献   

17.
The sensorimotor striatum is important for procedural learning, including skill learning. Our previous findings indicate that this part of the striatum mediates the acquisition of a motor skill in a running-wheel task and that this skill learning is dependent on striatal D1 dopamine receptors. Here, we investigated whether the sensorimotor striatum is also involved in the consolidation of this skill memory and whether this consolidation is modified by the indirect dopamine receptor agonist cocaine. Rats were trained on a running wheel for 2 days (40 min/day) to learn a new motor skill, that is, the ability to control the movement of the wheel. Before each training session, the animals received an injection of vehicle or cocaine (25mg/kg, i.p.). Immediately following the training session, an intrastriatal infusion of 2% lidocaine (1 microl) or a sham infusion were administered. Wheel-skill performance was tested before and repeatedly after the training. Our results show that post-trial intrastriatal infusion of lidocaine disrupted late-stage long-term skill memory (post-training days 6-26), but spared early long-term memory (1 day after the training). Skill consolidation was more susceptible to such disruption in animals that practiced less during the training. Cocaine given pre-trial prevented this post-trial disruption of skill consolidation. These findings indicate that the sensorimotor striatum is critical for the consolidation of late but not early long-term skill memory. Furthermore, cocaine appeared to stabilize motor-memory formation by protecting consolidation processes after the training.  相似文献   

18.
Introduction: Neurofeedback (NF) training aims the enhancement of self-regulation over brain activities. While it is largely recognized as an effective treatment for attention deficit hyperactivity disorder (ADHD), the existence of non-learners has also been reported. The present study explored pre-training assessment indices that could predict learners prior to NF training. Methods: Twenty-two children with ADHD participated in slow cortical potential (SCP) NF training and completed pre- and post-training assessments. Participants were classified into learners or non-learners based on their progress in the SCP regulation, and pre-training indices that differentiate the two groups were examined by decision tree analysis. Results and Discussion: The learner rate in NF training was 45.5%. Learners were predicted by pre-training cognitive and neurophysiological measures regarding Stroop tasks, which suggested relatively intact executive function as their characteristics. Given that NF training is not universally effective for children with ADHD, further studies are necessary to establish application criteria.  相似文献   

19.
The present study analyses the effects of the stage of learning on the spatial patterns and time-course of [14C] glucose uptake in BALB/c mice brain regions produced by spatial discrimination training in an eight-arm radial maze. Our particular approach was designed to follow, during the post-training period, the level of functional activity in individual brain areas which may underlie the memory consolidation process. Regional mapping of relative [14C] glucose uptake was assessed at three post-training time intervals (5 min, 1 and 3 h) after either the first (Day 1), the fourth (Day 4) or the last (Day 9) daily training session of the discrimination task and compared with sham-conditioned animals placed in the same experimental environment. The results indicated that numerous subcortical and cortical brain regions exhibit metabolic alterations following the acquisition of the spatial discrimination task. These alterations, which were specifically related to learning since they did not appear in sham-conditioned animals, were functions both of the post-training interval studied and of the degree of mastery of the task. On Day 1, a progressive, time-dependent and sequential increase in labelling was found from subcortical (5 min post-training) to cortical regions (3 h post-training). On Day 4, a peak of cortical metabolic activation was identified at 1 h post-training. In contrast, on Day 9, maximum labelling was found 5 min post-training in all subcortical and cortical regions followed by a general monotonic decline at 1 and 3 h post-training. These findings, which show widely distributed changes of metabolic activity in the brain, are consistent with the hypothesis that learning involves distributed neural networks. The sequential activation from subcortical to cortical regions seems to indicate a general mechanism whose function would ultimately be to store cortical memory representations. The acquisition-dependent shifts in the patterns of post-training metabolic labelling observed as a function of task mastery may be taken to represent a visualization of the spatio-temporal evolution of the networks of brain structures actively engaged in the memory consolidation process. In particular, the present data suggest that the duration of post-acquisition memory processing is a function of the quantity of new information which has to be dealt with by the central nervous system.  相似文献   

20.
Sleep supports the consolidation of declarative and procedural memory. While prefrontal cortex (PFC) activity supports the consolidation of declarative memory during sleep, opposite effects of PFC activity are reported with respect to the consolidation of procedural memory during sleep. Patients with attention-deficit/hyperactivity disorder (ADHD) are characterised by a prefrontal hypoactivity. Therefore, we hypothesised that children with ADHD benefit from sleep with respect to procedural memory more than healthy children. Sixteen children with ADHD and 16 healthy controls (aged 9-12) participated in this study. A modification of the serial-reaction-time task was conducted. In the sleep condition, learning took place in the evening and retrieval after a night of sleep, whereas in the wake condition learning took place in the morning and retrieval in the evening without sleep. Children with ADHD showed an improvement in motor skills after sleep compared to the wake condition. Sleep-associated gain in reaction times was positively correlated with the amount of sleep stage 4 and REM-density in ADHD. As expected, sleep did not benefit motor performance in the group of healthy children. These data suggest that sleep in ADHD normalizes deficits in procedural memory observed during daytime. It is discussed whether in patients with ADHD attenuated prefrontal control enables sleep-dependent gains in motor skills by reducing the competitive interference between explicit and implicit components within a motor task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号