首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chk1 and Chk2 kinases in checkpoint control and cancer   总被引:25,自引:0,他引:25  
Bartek J  Lukas J 《Cancer cell》2003,3(5):421-429
Accumulation of mutations and chromosomal aberrations is one of the hallmarks of cancer cells. This enhanced genetic instability is fueled by defects in the genome maintenance mechanisms including DNA repair and cell cycle checkpoint pathways. Here, we discuss the emerging roles of the mammalian Chk1 and Chk2 kinases as key signal transducers within the complex network of genome integrity checkpoints, as candidate tumor suppressors disrupted in sporadic as well as some hereditary malignancies and as potential targets of new anticancer therapies.  相似文献   

2.
Checkpoint kinase 2 (Chk2) has been implicated in DNA damage signaling. By using BJ human fibroblasts, HCT116 colorectal cancer cells and HeLa cervical cancer cells, we further detailed phosphorylation kinetics of Chk2 under treatment with neocarcinostatin (NCS) or doxorubicin (Dox). After NCS treatment, phosphorylation of Chk2 Thr68 occurs in 3 min, followed by phosphorylation of Ser19 and Ser33/35. In ATM deficient fibroblasts, NCS does not induce phosphorylation of NBS1 Ser343 and Chk2 Ser19 and Ser33/35, however Chk2 Thr68 is still phosphorylated, indicating that ATM is essential for phosphorylation of these residues when treated with NCS. By using Chk2-deficient HCT116 cells re-expressing phospho-mutant Chk2 (T68A), we found that inhibition of Thr68 phosphorylation enhances Ser19 phosphorylation in NCS treated cells. Interestingly, in contrast to NCS, Dox does not induce Ser33/35 phosphorylation in HeLa and HCT116 cells. Phosphorylation of Thr68 is sustained until 3 to 4 hours, and phosphorylation of Ser19 occurs 70 to 80 min after Dox treatment. These results demonstrate that Chk2 s involved in the early stages of DNA damage response. Differential phosphorylation kinetics of these residues suggests that DNA damage determines intermolecular and intramolecular interaction of Chk2, which may regulate phosphorylation.  相似文献   

3.
The cellular response to the introduction of double strand DNA breaks involves complexes of protein interactions that govern cell cycle checkpoint arrest and repair of the DNA lesions. The checkpoint kinases Chk1 and Chk2 phosphorylate the carboxy-terminal domain of hBRCA2, a protein involved in recombination-mediated DNA repair (HRR) and replication fork maintenance. Cells deficient in hBRCA2 are hypersensitive to DNA damaging agents. Phosphorylation of the residue in hBRCA2 targeted by the Chk1 and Chk2 kinases regulates its interaction with Rad51. Furthermore, the cell line lex1/lex2, which lacks the carboxy-terminal domain containing the phosphorylated residue, does not support localization of Rad51 to nuclear foci after exposure to UV or treatment with ionizing radiation (IR). The data show that either phosphorylation of Rad51 by Chk1 or phosphorylation of the carboxy-terminal domain of hBRCA2 by Chk1 or Chk2 plays a critical role in the binding of Rad51 to hBRCA2 and the subsequent recruitment of Rad51 to sites of DNA damage. While depletion of Chk1 from cells leads to loss of Rad51 localization to nuclear foci in response to replication arrest, cells lacking Chk2 also show a defect in Rad51 localization, but only in presence of double strand DNA breaks, indicating that each of these kinases may contribute somewhat differently to the formation of Rad51 nucleoprotein filaments depending on the type of DNA damage incurred by the cells.  相似文献   

4.
5.
Chen CR  Wang W  Rogoff HA  Li X  Mang W  Li CJ 《Cancer research》2005,65(14):6017-6021
The human checkpoint kinase 2 (Chk2) plays a central role in regulation of the cellular response to DNA damage, resulting in cell cycle arrest, DNA repair, or apoptosis depending on severity of DNA damage and the cellular context. Chk2 inhibitors are being developed as sensitizers for chemotherapeutic agents. In contrast, here we report that direct activation of Chk2 alone (without chemotherapeutic agents) led to potent inhibition of cancer cell proliferation. In the absence of de novo DNA damage, checkpoint activation was achieved by increased Chk2 expression, as evidenced by its phosphorylation at Thr68, resulting in senescence and apoptosis of cancer cells (DLD1 and HeLa). The Chk2-induced apoptosis was p53 independent and was mediated by caspase activation triggered by loss of mitochondrial potential. The Chk2-induced senescence was also p53 independent and was associated with induction of p21. These results suggest that direct activation of checkpoint kinases may be a novel approach for cancer therapy.  相似文献   

6.
Yao LM  He JP  Chen HZ  Wang Y  Wang WJ  Wu R  Yu CD  Wu Q 《Carcinogenesis》2012,33(2):301-311
Cisplatin is a widely used antitumor agent that induces aggressive cancer cell death via triggering cellular proteins involved in apoptosis. Here, we demonstrate that cisplatin effectively induces orphan nuclear receptor TR3 phosphorylation by activating Chk2 kinase activity and promoting cross talk between these two proteins, thereby contributing to the repression of intestinal tumorigenesis via apoptosis. Mechanistic analysis has demonstrated that Chk2-induced phosphorylation enables TR3 to bind to its response elements on the promoters of the BRE and RNF-7 genes, leading to the negative regulation of these two anti-apoptotic genes. Furthermore, the induction of apoptosis by cisplatin is mediated by TR3, and knockdown of TR3 reduces cisplatin-induced apoptosis in colon cancer cells by 27%. The role of TR3 in cisplatin chemotherapy is further clarified in mouse models. In Apc(min/+) mice, cisplatin inhibits intestinal tumorigenesis by 70% in a TR3 phosphorylation-dependent manner; however, the loss of TR3 function in Apc(min/+)/TR3(-/-) mice leads to the failure of cisplatin-induced repression of tumorigenesis. Consistently, xenografts derived from TR3 knockdown colon cancer cells are insensitive to cisplatin treatment, whereas a significant curative effect (50% inhibition) is observed in xenografts with functional TR3. Taken together, our study reveals a novel cross talk between Chk2 and TR3 and sheds light on the mechanism of cisplatin-induced apoptosis through TR3. Therefore, TR3 may be a new target of cisplatin for colon cancer therapy.  相似文献   

7.
Myers JS  Zhao R  Xu X  Ham AJ  Cortez D 《Cancer research》2007,67(14):6685-6690
The ATR-ATRIP kinase complex regulates cellular responses to DNA damage and replication stress. Mass spectrometry was used to identify phosphorylation sites on ATR and ATRIP to understand how the kinase complex is regulated by post-translational modifications. Two novel phosphorylation sites on ATRIP were identified, S224 and S239. Phosphopeptide-specific antibodies to S224 indicate that it is phosphorylated in a cell cycle-dependent manner. S224 matches a consensus site for cyclin-dependent kinase (CDK) phosphorylation and is phosphorylated by CDK2-cyclin A in vitro. S224 phosphorylation in cells is sensitive to CDK2 inhibitors. Mutation of S224 to alanine causes a defect in the ATR-ATRIP-dependent maintenance of the G(2)-M checkpoint to ionizing and UV radiation. Thus, ATRIP is a CDK2 substrate, and CDK2-dependent phosphorylation of S224 regulates the ability of ATR-ATRIP to promote cell cycle arrest in response to DNA damage.  相似文献   

8.
Alternative splicing of survivin mRNA gives rise to multiple isoforms, that is, survivin and 3 splice variants, survivin-2B, survivin-3B and survivin-DeltaEx3. The aim of this study was to compare the expression of survivin, survivin-2B and survivin-DeltaEx3 in normal breast tissue, fibroadenomas, primary breast cancer and axillary nodal metastases. Survivin, survivin-2B and survivin-DeltaEx3 mRNA were measured using semiquantitative RT-PCR. In the primary carcinomas, we related mRNA for each form of survivin to both survivin protein and apoptosis. For each type of breast tissue, survivin was the predominant form detected, being present in 146 out of 156 (93.6%) primary breast carcinomas, 11 out of 11 (100%) axillary nodal metastases, 21 out of 31 (67.7%) fibroadenomas and five out of 22 (22.7%) specimens of normal breast tissue. Levels of the three forms of survivin were significantly higher in the carcinomas compared to normal breast tissue (P < 0.0001). Levels of both survivin-2B and survivin-DeltaEx3 but not survivin were significantly higher in nodal metastases than primary carcinomas. Survivin mRNA levels correlated significantly with survivin protein. Finally, both survivin and survivin-DeltaEx3 but not survivin-2B correlated positively with apoptosis. Although survivin, survivin-2B and survivin-DeltaEx3 were all detected in both malignant and nonmalignant breast tissue, the predominant form was survivin. Our results suggest that the different forms of survivin may have different roles in apoptosis in breast cancer.  相似文献   

9.
Ashra H  Rao KV 《Cancer letters》2006,237(2):188-198
Malachite green (MG), consisting of green crystals with a metallic lustre, is highly soluble in water, cytotoxic to various mammalian cells and also acts as a liver tumor promoter. In view of its industrial importance and possible exposure to human beings, MG poses a potential environmental health hazard. We have earlier reported the malignant transformation of Syrian hamster embryo (SHE) cells in primary culture by MG. In this study, we have studied the ability of MG to cause DNA damage, cell cycle arrest in mimosine synchronised and the possible roles of Chk1, Chk2, Cdc2, Cdc25C, 14-3-3 and Cyclin B1 in control and MG transformed SHE cells in order to understand the differential mechanisms associated with G2/M checkpoint control. Exposure of MG to control and transformed cells causes DNA damage. Flow cytometric analysis of mimosine synchronised cells when exposed to MG showed an increase of G2/M phase in control cells whereas no such accumulation of cells at the G2/M phase was observed in response to MG in transformed cells. Western blots of phosphoactive forms of Chk1 and Chk2 cells showed opposing levels. Control cells treated with MG showed a decrease in Chk1 and increase in Chk2, whereas the transformed cells treated with MG showed an increase in Chk1 and decrease in Chk2. Also a decrease in Cdc25C, 14-3-3 and Cyclin B1 was observed in MG treated transformed cells, whereas MG treated control cells showed elevated levels. Stabilization of the proteins seems to be the possible mechanism. The present study indicates elevated phosphorylation of Chk1 and decreased phosphorylation of Chk2 and decreased levels of Cyclin B1 are the critical changes associated with abrogation of G2/M checkpoint control during transformation of SHE cells by MG.  相似文献   

10.
Cell cycle checkpoints are surveillance mechanisms that monitor and coordinate the order and fidelity of cell cycle events. When defects in the division program of a cell are detected, checkpoints prevent the pursuant cell cycle transition through regulation of the relevant cyclin-cdk complex(es). Checkpoints that respond to DNA damage have been described for the G1, S and G2 phases of the cell cycle. The p53 tumour suppressor is a key regulator of G1/S checkpoints, and can promote cell cycle delay or apoptosis in response to DNA damage. The importance of these events to cellular physiology is highlighted by the fact that tumours, in which p53 is frequently mutated, have widespread defects in the G1/S DNA damage checkpoints and a heightened level of genomic instability. G2/M DNA damage checkpoints have been defined by yeast genetics, though the genes in this response are conserved in mammals. We show here using biochemical and physiological assays that p53 is dispensable for a DNA damage checkpoint activated in the G2 phase of the cell cycle. Moreover, upregulation of p53 through serine 20 phosphorylation, does not occur in G2. Conversely, we show that the Chk1 protein kinase is essential for the human G2 DNA damage checkpoint. Importantly, inhibition of Chk1 in p53 deficient cells greatly sensitizes them to radiation, validating the hypothesis of targeting Chk1 in rational drug design and development for anti-cancer therapies.  相似文献   

11.
5-fluorouracil (5-FU) is the first line component used in colorectal cancer (CRC) therapy however even in combination with other chemotherapeutic drugs recurrence is common. Mutations of the adenomatous polyposis coli (APC) gene are considered as the initiating step of transformation in familial and sporadic CRCs. We have previously shown that APC regulates the cellular response to DNA replication stress and recently hypothesized that APC mutations might therefore influence 5-FU resistance. To test this, we compared CRC cell lines and show that those expressing truncated APC exhibit a limited response to 5-FU and arrest in G1/S-phase without undergoing lethal damage, unlike cells expressing wild-type APC. In SW480 APC-mutant CRC cells, 5-FU-dependent apoptosis was restored after transient expression of full length APC, indicating a direct link between APC and drug response. Furthermore, we could increase sensitivity of APC truncated cells to 5-FU by inactivating the Chk1 kinase using drug treatment or siRNA-mediated knockdown. Our findings identify mutant APC as a potential tumor biomarker of resistance to 5-FU, and importantly we show that APC-mutant CRC cells can be made more sensitive to 5-FU by use of Chk1 inhibitors.  相似文献   

12.
Fusion between nonsynchronized cells leads to the formation of heterokarya which transiently activate Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 and enter the prophase of the cell cycle, where they arrest due to a loss of Cdk1/cyclin B1 activity, activate p53, disorganize centrosomes, and undergo apoptosis. Here, we show that the down regulation of Cdk1/cyclin B is secondary to the activation of the DNA structure checkpoint kinase Chk2. Thus, syncytia generated by the fusion of asynchronous HeLa cells contain elevated levels of active Chk2 but not Chk1. Chk2 bearing the activating phosphorylation on threonine-68 accumulates in BRCA1 nuclear bodies when the cells arrest at the G2/M boundary. Inhibition of Chk2 by transfection of a dominant-negative Chk2 mutant or a chemical inhibitor, debromohymenialdesine, stabilizes centrosomes, maintains high cyclin B1 levels, and allows for a prolonged activation of Cdk1. Under these conditions, multinuclear HeLa syncytia do not arrest at the G2/M boundary and rather enter mitotis and subsequently die during the metaphase of the cell cycle. This mitotic catastrophe is associated with the activation of the pro-apoptotic caspase-3. Inhibition of caspases allows the cells to go beyond the metaphase arrest, indicating that apoptosis is responsible for cell death by mitotic catastrophe. In another, completely different model of mitotic catastrophe, namely 14.3.3 sigma-deficient HCT116 colon carcinoma cells treated with doxorubicin, Chk2 activation was also found to be deficient as compared to 14.3.3 sigma-sufficient controls. Inhibition of Chk2 again facilitated the induction of mitotic catastrophe in HCT116 wild-type cells. In conclusion, a conflict in cell cycle progression or DNA damage can lead to mitotic catastrophe, provided that the checkpoint kinase Chk2 is inhibited. Inhibition of Chk2 thus can sensitize proliferating cells to chemotherapy-induced apoptosis.  相似文献   

13.
Kim JM  Kakusho N  Yamada M  Kanoh Y  Takemoto N  Masai H 《Oncogene》2008,27(24):3475-3482
Cdc7 kinase is evolutionarily conserved and is involved in initiation and progression of DNA replication. However, roles of Cdc7 in checkpoint responses remain largely unknown. In this study, we show that deletion of the Cdc7 genes in mouse embryonic stem (ES) cells abrogates hydroxyurea (HU)- or UV-induced activation of Chk1. HU-induced Chk1 activation is also impaired in human cancer cell lines in which Cdc7 is depleted by siRNA, and Cdc7-depleted cells are more sensitive to HU treatment. In contrast, ATR and Rad17 are relocated to chromatin in these cells following HU treatment, indicating that stalled DNA replication forks are detected normally. Cdc7-depleted cells exhibit defects in chromatin association and phosphorylation of Claspin, suggesting that Cdc7 exerts its effect at least partially through Claspin. Consistent with this prediction, Cdc7 interacts with and phosphorylates Claspin. We propose that Cdc7 is required for activation of the ATR-Chk1 checkpoint pathway through regulation of Claspin.  相似文献   

14.
15.
Accumulating evidence has suggested that myristoylated alanine-rich C-kinase substrate (MARCKS) is critical for regulating multiple pathophysiological processes. However, the molecular mechanism underlying increased phosphorylation of MARCKS at Ser159/163 (phospho-MARCKS) and its functional consequence in neoplastic disease remain to be established. Herein, we investigated how phospho-MARCKS is regulated in breast carcinoma, and its role in the context of chemotherapy. In a screen of patients with breast tumors, we find that the abundance of phospho-MARCKS, not MARCKS protein per se, increased in breast cancers and positively correlated with tumor grade and metastatic status. Among chemotherapeutic agents, mitotic inhibitors, including paclitaxel, vincristine or eribulin, notably promoted phospho-MARCKS accumulation in multiple breast cancer cells. We further show that phospho-MARCKS acted upstream of Src activation upon paclitaxel exposure. Reduction of phospho-MARCKS by knockdown of MARCKS or pharmacological agents increased paclitaxel sensitivity. Particularly, a known phospho-MARCKS inhibitor, MANS peptide, was demonstrated to increase paclitaxel efficacy and attenuate angiogenesis/metastasis of xenografted breast cancer cells by decreasing abundance of phospho-MARCKS and messages of inflammatory mediators. Our data suggest that unresponsiveness of breast cancer to paclitaxel treatment is, at least in part, mediated by phospho-MARCKS and also provide an alternative therapeutic strategy against breast cancer by improving taxanes sensitivity.  相似文献   

16.
Gibson SL  Bindra RS  Glazer PM 《Cancer research》2005,65(23):10734-10741
Chk2 is a serine/threonine kinase that signals to cell cycle arrest, DNA repair, and apoptotic pathways following DNA damage. It is activated by phosphorylation in response to ionizing radiation, UV light, stalled replication forks, and other types of DNA damage. Hypoxia is a common feature of solid tumors and has been shown to affect the regulation of many genes, including several DNA repair factors. We show here that Chk2 is phosphorylated on Thr68 and thereby activated in cells in response to hypoxia, and that this phosphorylation is dependent on the damage response kinase ataxia telangiectasia mutated (ATM) but not on the related kinase ATM and Rad3-related. Moreover, phosphorylation of Chk2 under hypoxia was attenuated in cells deficient in the repair factors MLH1 or NBS1. Finally, Chk2 serves to protect cells from apoptosis under hypoxic growth conditions. These results identify hypoxia as a new stimulus for Chk2 activation in an ATM-, MLH1-, and NBS1-dependent manner, and they suggest a novel pathway by which tumor hypoxia may influence cell survival and DNA repair.  相似文献   

17.
Macip S  Kosoy A  Lee SW  O'Connell MJ  Aaronson SA 《Oncogene》2006,25(45):6037-6047
Reactive oxygen species (ROS), the principal mediators of oxidative stress, induce responses such as apoptosis or permanent growth arrest/senescence in normal cells. Moreover, p53 activation itself contributes to ROS accumulation. Here we show that treatment of p53-null cancer cells with sublethal concentrations of ROS triggered an arrest with some morphological similarities to cellular senescence. Different from a classical senescent arrest in G(1), the ROS-induced arrest was predominantly in the G(2) phase of the cell cycle, and its establishment depended at least in part on an intact Chk1-dependent checkpoint. Chk1 remained phosphorylated only during the repair of double strand DNA breaks, after which Chk1 was inactivated, the G(2) arrest was suppressed, and some cells recovered their ability to proliferate. Inhibition of Chk1 by an RNAi approach resulted in an increase in cell death in p53-null cells, showing that the Chk1-dependent G(2) checkpoint protected cells that lacked a functional p53 pathway from oxidative stress. It has been proposed that the induction of a senescent-like phenotype by antineoplastic agents can contribute therapeutic efficacy. Our results indicate that oxidative stress-induced growth arrest of p53-null tumor cells cannot be equated with effective therapy owing to its reversibility and supports the concept that targeting Chk1 may enhance the effects of DNA-damaging agents on cancer progression in such tumors.  相似文献   

18.
19.
It has been suggested that attenuation of the decatenation G(2) checkpoint function, which ensures sufficient chromatid decatenation by topoisomerase II before entering into mitosis, may contribute to the acquisition of genetic instability in cancer cells. To date, however, very little information is available on this type of checkpoint defect in human cancers. In this study, we report for the first time that a proportion of human lung cancer cell lines did not properly arrest before entering mitosis in the presence of a catalytic, circular cramp-forming topoisomerase II inhibitor ICRF-193, whereas the decatenation G(2) checkpoint impairment was present independently of the impaired DNA damage G(2) checkpoint. In addition, the presence of decatenation G(2) checkpoint dysfunction was found to be associated with diminished activation of ataxia-telangiectasia mutated in response to ICRF-193, suggesting the potential involvement of an upstream pathway sensing incompletely catenated chromatids. Interestingly, hypersensitivity to ICRF-193 was observed in cell lines with decatenation G(2) checkpoint impairment and negligible activation of ataxia-telangiectasia mutated. These findings suggest the possible involvement of decatenation G(2) checkpoint impairment in the development of human lung cancers, as well as the potential clinical implication of selective killing of lung cancer cells with such defects by this type of topoisomerase II inhibitor.  相似文献   

20.
Immunotherapy against cancer, through immune checkpoint inhibitors targeting the programmed cell death-1/programmed cell death-ligand 1 axis, is particularly successful in tumors by relieving the immune escape. However, interindividual responses to immunotherapy are often heterogeneous. Therefore, it is essential to screen out predictive tumor biomarkers. In this study, we analyzed the commensal microbiota in stool samples and paired sputum samples from 75 metastatic non-small-cell lung cancer (NSCLC) patients at baseline and during treatment with immune checkpoint inhibitors. Results showed distinct microbes’ signatures between the gut microbiota and paired respiratory microbiota. The alpha diversity between the gut and respiratory microbiota was uncorrelated, and only the gut microbiota alpha diversity was associated with anti-programmed cell death-1 response. Higher gut microbiota alpha diversity indicated better response and more prolonged progression-free survival. Comparison of bacterial communities between responders and nonresponders showed some favorable/unfavorable microbes enriched in responders/nonresponders, indicating that commensal microbiota had potential predictive value for the response to immune checkpoint inhibitors. Generally, some rare low abundance gut microbes and high abundance respiratory microbes lead to discrepancies in microbial composition between responders and nonresponders. A significant positive correlation was observed between the abundance of Streptococcus and CD8+ T cells. These results highlighted the intimate relationship between commensal microbiota and the response to immunotherapy in NSCLC patients. Gut microbiota and respiratory microbiota are promising biomarkers to screen suitable candidates who are likely to benefit from immune checkpoint inhibitor-based immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号