首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Hypoxia is a stress that causes alterations in signal transduction and gene instability. In the cancer microenvironment, hypoxia plays a significant role in forming a tumor phenotype and tumor progression. We aimed to identify the genes upregulated by hypoxia in human breast cancer cell lines, a hormone-dependent MCF-7 and a hormone-independent MDA-MB-231, using microarray analysis. These cells were exposed to two oxygen concentrations such as 21% and 1% in a time-course. Out of 12625 genes, 26 genes were identified as commonly upregulated in both MCF-7 and MDA-MB-231 cells. Some of these genes were already reported as hypoxia-related, but some of those were identified newly. These commonly upregulated genes between hormone-dependent and hormone-independent cells would be a clue to study hypoxia-related events and to explore the novel therapeutic targets in human breast cancer.  相似文献   

2.

Purpose

Ovarian cancer remains a deadly malignancy because most patients develop recurrent disease that is resistant to chemotherapy. Organic anion-transporting polypeptides (OATPs) mediate the uptake of clinically important drugs thereby effecting intracellular drug accumulation. In this study, we investigated whether OATPs may also contribute to paclitaxel transport in estrogen-responsive and estrogen-independent ovarian carcinoma cell lines and tumor tissue.

Methods

Expression of all 11 human OATPs in human ovarian cancer tissue samples and in the ovarian carcinoma cell lines OVCAR-3 and SK-OV-3 was investigated using real-time RT-PCR. Kinetic analysis of paclitaxel uptake was characterized in both cell lines and in OATP-transfected Xenopus laevis oocytes. Cytotoxicity of paclitaxel in OVCAR-3, SK-OV-3 and OATP1B1- and OATP1B3-transfected SK-OV-3 cells was performed using the CellTiter-Glo assay.

Results

OATP1B1 and OATP1B3 are active paclitaxel transporters in transfected X. laevis oocytes. Real-time RT-PCR analysis revealed expression of both OATPs in human ovarian cancer tissue specimens and in cancer cell lines. The higher mRNA levels for OATP1B1 and OATP1B3 found in SK-OV-3 cells correlated with higher initial uptake rates for paclitaxel. In addition, cytotoxicity studies with OATP1B1- and OATP1B3-transfected SK-OV-3 cells demonstrated lower IC50 values compared to cells transfected with the empty vector.

Conclusions

Our results revealed OATP1B1 and OATP1B3 as high-affinity paclitaxel transporters expressed in ovarian cancer cell lines and tumor tissues, suggesting a role for these polypeptides in the disposition of paclitaxel during therapy.  相似文献   

3.
4.
Multidrug resistance is a major problem in successful cancer chemotherapy. Various mechanisms of resistance, such as ABC transporter-mediated drug efflux, have been discovered using established model cancer cell lines. While characterizing a drug-resistant breast cancer cell line, MCF7/AdVp3000, we found that fatty acid synthase (FASN) is overexpressed. In this study, we showed that ectopic overexpression of FASN indeed causes drug resistance and that reducing the FASN expression increased the drug sensitivity in breast cancer cell lines MCF7 and MDA-MB-468 but not in the normal mammary epithelial cell line MCF10A1. Use of FASN inhibitor, Orlistat, at low concentrations also sensitized cells with FASN overexpression to anticancer drugs. The FASN-mediated drug resistance appears to be due to a decrease in drug-induced apoptosis from an overproduction of palmitic acid by FASN. Together with previous findings of FASN as a poor prognosis marker for breast cancer patients, our results suggest that FASN overexpression is a new mechanism of drug resistance and may be an ideal target for chemosensitization in breast cancer chemotherapy.  相似文献   

5.
目的研究TNF-α对乳腺癌的影响。方法采用RT-PCR和WesternBlotting分析30例乳腺浸润性导管癌及癌旁正常乳腺组织,乳腺正常上皮细胞系及乳腺癌细胞系中TNF-α的表达情况;采用流式细胞术观察TNF-α对乳腺癌细胞凋亡的影响。结果RT-PCR和Western Blotting结果碌示,TNF-αmRNA和蛋白在乳腺癌组织中表达都明显低于配对的癌旁正常组织(P〈0.05),在乳腺上皮细胞系中表达均高于乳腺癌三利一细胞系,流式细胞术检测结果显示与未处理组桐比.经TNF-α处理的MDA-MB-435S(16.7±0.31)和MCF7(18.6±0.42)细胞的凋亡率明显增加,差异均有统计学意义(P〈0.05)。结论TNF-α可促进乳腺癌细胞的凋亡,TNF-α可为乳腺癌的治疗提供新靶点。  相似文献   

6.
HER2, a member of the human epidermal growth factor (EGF) receptor family, not only plays important roles in the progression of breast cancer tumorigenesis and metastasis, but may protect cancer cells from conventional cytotoxic therapies as well. In the current study, we evaluated the effect of targeting HER2 on radiosensitization of human breast cancer cells. Using six breast cancer cell lines with various levels of HER2 (BT474, SKBR3, MDA453, MCF7, ZR75B, and MDA468), we found that trastuzumab (Herceptin), a humanized monoclonal antibody that may inhibit breast cancer cell proliferation but does not induce apoptosis when used alone, enhanced radiation-induced apoptosis of the cells in a HER2 level-dependent manner. We furthered this study in MCF7 cells transfected for high levels of HER2 (MCF7HER2). Compared with parental or control vector-transfected MCF7 cells, MCF7HER2 cells showed increased phosphorylation of at least two important HER2 downstream molecules, protein kinase B/Akt and mitogen-activated protein kinase (MAPK), and increased resistance to radiotherapy, as shown by reduced induction of apoptosis and increased cell clonogenic survival after radiation. Exposure of the cells to trastuzumab down-regulated the levels of HER2 and reduced phosphorylation levels of Akt and MAPK in MCF7HER2 cells, and sensitized these cells to radiotherapy. When specific inhibitors of the phosphatidylinositol 3-kinase (PI3-K) and MAPK kinase (MEK) pathways were used, we found that exposure of MCF7HER2 cells to the PI3-K inhibitor LY294002 inhibited Akt phosphorylation and radiosensitized the cells, whereas the radiosensitization effect by the MEK inhibitor PD98059 was relatively weaker, albeit the phosphorylation of MAPK was reduced by PD98059 treatment. Our results indicate that the PI3-K pathway might be the major pathway for trastuzumab-mediated radiosensitization of breast cancer cells.  相似文献   

7.
8.
MicroRNAs (miRNAs) are 21–22 nucleotides regulatory small non-coding RNAs that inhibit gene expression by binding to complementary sequences especially the 3’ untranslated region (3’UTR) of mRNA. One miRNA can target many messenger RNAs, leading to a complex metabolic network. Previous studies have shown that miRNA-223 regulates migration and invasion of tumor cells and targets cytoplasmic activation/proliferation-associated protein-1 (Caprin-1). In the present study, we detected the expression of miRNA-223 and Caprin-1 in MCF-7, T-47D and MDA-MB-231 cancer cell lines, and MCF-10A normal breast cell line, and analyzed the role of miRNA-223 in Caprin-1-induced proliferation and invasion of human breast cancer cells. We found that miRNA-223 expression levels are significantly lower in MCF-7, T-47D and MDA-MB-231 cancer cells than in MCF-10A normal breast cells, while Caprin-1 expression is higher in cancer cells than in normal breast cells. The most malignant cancer cell line MDA-MB-231 has the lowest expression of miR-223, but the highest expression of Caprin-1. Further, we found that miR-223 targets the 3’UTR of Caprin-1 miRNA and down-regulates the expression of Caprin-1. We also found that over-expression of Caprin-1 can promote the proliferation and the invasion of breast cancer cells, but miRNA-223 can inhibit the proliferation and the invasion. miRNA-223-induced inhibition can be reversed by ectopic over-expression of Caprin-1. These findings suggest that miR-223 may suppress the proliferation and invasion of cancer cells by directly targeting Caprin-1. Our study also indicates that expression levels of miR-223 and Caprin-1 can be used to predict the state of cancer in breast cancer patient.  相似文献   

9.
目的探讨7-二氟甲氧基-5,4′-二-正辛烷氧基金雀异黄素(DFOG)对人乳腺癌细胞生长、凋亡的影响及其作用机制。方法体外培养人乳腺癌MCF-7和MDA-MB-453细胞。平皿集落形成法测定DFOG对乳腺癌细胞集落形成率的影响;碘化丙啶(PI)染色流式细胞术(FCM)检测细胞凋亡及分析细胞周期分布;Western blotting分析转录因子FoxM1及其下游蛋白CDK1、cyclin B、survivin、p27kip1表达。结果 DFOG以浓度依赖的方式抑制人乳腺癌MCF-7和MDA-MB-453细胞生长和诱导凋亡,并且伴随G2/M期细胞周期阻滞。DFOG能下调FoxM1及其下游蛋白CDK1、cyclin B、survivin表达,上调p27kip1蛋白表达。通过siRNA干扰技术下调FoxM1表达能增强DFOG对乳腺癌细胞的诱导凋亡作用。结论 DFOG显著抑制人乳腺癌MCF-7和MDA-MB-453细胞生长和诱导凋亡,下调FoxM1表达可能是其作用机制之一。  相似文献   

10.
Microcystins are a family of cyclic peptides that are potent inhibitors of the protein phosphatase families PP1 and PP2A. Only three human proteins are thought to be able to mediate the hepatic uptake of microcystins (the organic anion-transporting polypeptides OATP1B1, OATP1B3, and OATP1A2), and the predominant hepatic expression of these transporters accounts for the liver-specific toxicity of microcystins. A significant obstacle in the study of microcystins as anticancer drugs is the requirement of specific transport proteins for cellular uptake. We report that OATP1B3 mRNA is up-regulated in non-small cell lung cancer tumors in comparison with normal control tissues. This finding led to the exploration of microcystins as potential anticancer agents. We have developed a HeLa cell model with functional OATP1B1 and OATP1B3 activity. Transiently transfected HeLa cells are over 1,000-fold more sensitive to microcystin LR than the vector-transfected control cells, showing that transporter expression imparts marked selectivity for microcystin cytotoxicity. In addition, microcystin analogues showed variable cytotoxicities in the OATP1B1- and OATP1B3-transfected cells, including two analogues with IC(50) values <1 nmol/L. Cytotoxicity of microcystin analogues seems to correlate to the inhibition of PP2A in these cells and induces rapid cell death as seen by chromatin condensation and cell fragmentation. These studies show that microcystin-induced phosphatase inhibition results in potent cytotoxicity when microcystin compounds can gain intracellular access and are a potent novel class of therapeutic agents for tumors expressing these uptake proteins.  相似文献   

11.
12.
13.
Breast cancer is a malignancy and one of the most frequent causes of cancer death among women worldwide. Paclitaxel is a common chemotherapeutic drug and has recently been shown to facilitate tumor cell escape during cytotoxic chemotherapy by inducing inflammatory mediators and pro-survival protein expression. Hyperoside is a flavonoid glycoside compound and exerts anti-inflammation, and anti-tumor growth properties. However, its function in breast cancer chemosensitivity remains poorly elucidated. In this study, hyperoside exhibited little cytotoxicity to normal human breast mammary epithelial cell lines, and also protected against paclitaxel-induced cytotoxicity in MCF-10A. Importantly, treatment with hyperoside engendered not only inhibition of cell viability, but also potentiated cancer cell sensitivity to paclitaxel in TLR4-positive breast cancer MDA-MB-231 cells by suppressing cell viability, and increasing cell apoptosis and caspase-3 activity. Nevertheless, although hyperoside exposure restrained cell viability, its treatment presented little effects to paclitaxel sensitivity in TLR4-null HCC1806 cells. Intriguingly, paclitaxel stimulation activated the TLR4-NF-κB signaling, which was reversed after hyperoside administration. Concomitantly, hyperoside also attenuated paclitaxel-mediated anti-apoptotic Bcl-2 expression, but enhanced the effects of paclitaxel on pro-apoptotic Bax expression, and pro-inflammatory cytokine IL-6 and IL-6 levels in MDA-MB-231 cells. Importantly, restoring the TLR4 pathway overturned hyperoside-evoked chemosensitivity to paclitaxel in MDA-MB-231 cells. Thus, hyperoside may elevate breast cancer cell sensitivity to paclitaxel by blocking TLR4 activation-mediated pro-inflammatory and pro-survival approaches, thereby endorsing its usefulness as a promising therapeutic combination to overcome chemosensitivity in breast cancer.  相似文献   

14.
The microtubule-associated protein Tau has been reported to be a predictive factor for clinical response to taxanes in metastatic breast cancer. We generated a panel of eight taxane-resistant variants from four human breast cancer cell lines (MCF-7, T-47D, MDA-MB-231, and BT-549). Four variants had higher levels of Tau compared with their T-47D and MDA-MB-231 parental cells. Using isoform-specific primers, we found that Tau 0N, 1N, 2N, 3R, and 4R isoforms are overexpressed in the resistant variants, as is Tau exon 6 but not exons 4A or 8. To determine whether Tau overexpression produces resistance to taxanes, we derived three independent T-47D clones stably overexpressing Tau 3R and 4R isoforms. Tau overexpression did not result in taxane resistance compared with parental cells transfected with vector alone. We then knocked down Tau expression in three cell lines that expressed Tau constitutively (MCF-7 and ZR-75-1 breast cancer cells, and OVCAR-3 ovarian cancer cells). Lentivirus-mediated silencing of Tau expression in MCF-7 and OVCAR-3 cells did not result in increased taxane sensitivity compared with luciferase short hairpin RNA-infected cells and uninfected parental cells. Transient silencing using Tau-specific small interfering RNAs also did not alter taxane sensitivity relative to nontargeting controls in both MCF-7 and ZR-75-1 cells. These results show that neither overexpression nor depletion of Tau modulates cellular sensitivity to taxanes. Although Tau overexpression has been reported to be a predictive marker of taxane resistance, it is not likely to be a direct mechanism of taxane resistance in breast cancer.  相似文献   

15.
Potassium channels have been involved in epithelial tumorigenesis but the role of small-conductance Ca(2+)-activated K(+) channels is unknown. We report here that small-conductance Ca(2+)-activated K(+) channels are expressed in a highly metastasizing mammary cancer cell line, MDA-MB-435s. Patch-clamp recordings showed typical small-conductance Ca(2+)-activated K(+) channel-mediated currents sensitive to apamin, 4-aminopyridine, and tetraethylammonium. Moreover, the cells displayed a high intracellular calcium concentration, which was decreased after 24 hours of apamin treatment. By regulating membrane potential and intracellular calcium concentration, these channels were involved in MDA-MB-435s cell migration, but not in proliferation. Only SK3 protein expression was observed in these cells in contrast to SK2, which was expressed both in cancer and noncancer cell lines. Whereas small interfering RNA directed against SK3 almost totally abolished MDA-MB-435s cell migration, transient expression of SK3 increased migration of the SK3-deficient cell lines, MCF-7 and 184A1. SK3 channel was solely expressed in tumor breast biopsies and not in nontumor breast tissues. Thus, SK3 protein channel seems to be a new mediator of breast cancer cell migration and represents a potential target for a new class of anticancer agents.  相似文献   

16.
Epidemiologic studies have revealed an inverse correlation between dietary intake of cruciferous vegetables and the risk of breast cancer. We now show that cruciferous vegetable constituent benzyl isothiocyanate (BITC) effectively suppresses growth of cultured human breast cancer cells (MDA-MB-231 and MCF-7) by causing G(2)-M phase cell cycle arrest and apoptosis induction. On the other hand, a normal mammary epithelial cell line (MCF-10A) is significantly more resistant to growth arrest and apoptosis by BITC compared with breast cancer cells. The BITC-mediated cell cycle arrest was associated with a decrease in levels of proteins involved in regulation of G(2)-M transition, including cyclin B1, cyclin-dependent kinase 1, and cell division cycle 25C. The BITC-induced apoptosis correlated with induction of proapoptotic proteins Bax (MCF-7) and Bak (MDA-MB-231 and MCF-7) and down-regulation of antiapoptotic proteins Bcl-2 and Bcl-xL (MDA-MB-231). The SV40-immortalized mouse embryonic fibroblasts derived from Bax and Bak double knockout mice were significantly more resistant to BITC-induced DNA fragmentation compared with wild-type mouse embryonic fibroblasts. The BITC treatment caused rapid disruption of the mitochondrial membrane potential, leading to cytosolic release of apoptogenic molecules, which was accompanied by formation of autophagosome-like structures as revealed by transmission electron microscopy. The BITC-mediated apoptosis was associated with generation of reactive oxygen species and cleavage of caspase-9, caspase-8, and caspase-3. Apoptosis induction by BITC was significantly attenuated in the presence of a combined superoxide dismutase and catalase mimetic EUK134 as well as caspase inhibitors. In conclusion, the present study reveals a complex signaling leading to growth arrest and apoptosis induction by BITC.  相似文献   

17.
Organic anion-transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) are liver-specific transporters that mediate the uptake of a broad range of drugs into hepatocytes, including statins, antibiotics, and many anticancer drugs. Compounds that alter transport by one or both of these OATPs could potentially be used to target drugs to hepatocytes or improve the bioavailability of drugs that are cleared by the liver. In this study, we applied a bioassay-guided isolation approach to identify such compounds from the organic extract of Rollinia emarginata Schlecht (Annonaceae). Fractions of the plant extract were screened for effects on OATP1B1- and OATP1B3-mediated transport of the model substrates estradiol-17β-glucuronide and estrone-3-sulfate. We isolated three compounds, ursolic acid, oleanolic acid, and 8-trans-p-coumaroyloxy-α-terpineol, which inhibited estradiol-17β-glucuronide uptake by OATP1B1 but not OATP1B3. In addition, a rare compound, quercetin 3-O-α-l-arabinopyranosyl(1→2) α-L-rhamnopyranoside, was identified that had distinct effects on each OATP. OATP1B1 was strongly inhibited, as was OATP1B3-mediated transport of estradiol-17β-glucuronide. However, OATP1B3-mediated uptake of estrone-3-sulfate was stimulated 4- to 5-fold. Kinetic analysis of this stimulation revealed that the apparent affinity for estrone-3-sulfate was increased (decreased K(m)), whereas the maximal rate of transport (V(max)) was significantly reduced. These results demonstrate a mechanism through which the hepatic uptake of drug OATP substrates could be stimulated.  相似文献   

18.
19.
目的 研究CENP-H对乳腺癌细胞增殖能力的影响,初步探讨CENP-H与乳腺癌发生、发展的关系.方法 将反转录病毒质粒pMSCV和pMSCV-CENP-H经脂质体转染至293FT细胞制备病毒,并感染MCF7细胞,用嘌呤霉素筛选及Western blot鉴定,建立CENP-H基因稳定表达的MCF7细胞株;应用噻唑盐(MTT)法、平板集落形成实验、5-溴-2-脱氧尿苷(BrdU)掺入法检测CENP-H对MCF7细胞增殖的影响.结果 成功建立稳定表达CENP-H的MCF7细胞株,并发现CENP-H过表达可上调细胞增殖相关分子cyclin D1的表达;MTT、平板克隆实验及Brdu掺入实验结果显示CENP-H过表达后,MCF7的增殖能力模型增强.结论 CENP-H可上调cyclin D1的表达,增强MCF7的增殖能力,提示CENP-H可能在乳腺癌发生、发展中起重要作用.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号