共查询到20条相似文献,搜索用时 15 毫秒
1.
Thybusch-Bernhardt A Aigner A Beckmann S Czubayko F Juhl H 《European journal of cancer (Oxford, England : 1990)》2001,37(13):1688-1694
We have analysed HER-2 expression and function in pancreatic cancer cells to determine whether HER-2 has a rate-limiting role for pancreatic cancer cell growth in vitro and in vivo. To specifically assess HER-2 function, we used HER-2-targeted ribozymes expressed under the control of the tet-off promoter system. Six out of 11 human pancreatic cancer cell lines expressed all four epidermal growth factor (EGF)-receptor family members (HER-1 (EGF-R), HER-2, HER-3, and HER-4), including Panc89 cells. Expression of the ribozymes quenched endogenous HER-2 mRNA levels in Panc89 cells by approximately 40-60% which was reflected by a 40-50% reduction of the HER-2 surface glycoprotein. HER-2 depletion inhibited the in vitro proliferation rate by approximately 40% and decreased in vivo tumour growth by approximately 60% (P<0.05). Our study demonstrates for the first time a rate-limiting role for HER-2 in pancreatic cancer cell proliferation and suggests HER-2 targeting as a potential approach in pancreatic cancer therapy. 相似文献
2.
K-ras oncogene silencing strategy reduces tumor growth and enhances gemcitabine chemotherapy efficacy for pancreatic cancer treatment 总被引:2,自引:0,他引:2
Pancreatic adenocarcinoma remains a fatal disease characterized by rapid tumor progression, high metastatic potential and profound chemoresistance. Gemcitabine is the current standard chemotherapy for advanced pancreatic cancer, but it is still far from optimal and novel therapeutic strategies are needed urgently. Mutations in the k-ras gene have been found in more than 90% of pancreatic cancers and are believed to play a key role in this malignancy. Thus, the goal of this study was to investigate the impact of k-ras oncogene silencing on pancreatic tumor growth. Additionally, we examined whether combining k-ras small interfering RNA (siRNA) with gemcitabine has therapeutic potential for pancreatic cancer. The treatment of tumor cell cultures with the corresponding k-ras siRNA resulted in a significant inhibition of k-ras endogenous expression and cell proliferation. In vivo, tumor xenografts were significantly reduced with k-ras siRNA(GAT) delivered by electroporation. Moreover, combined treatment with pSsik-ras(GAT) plus gemcitabine resulted in strong growth inhibition of orthotopic pancreatic tumors. Survival rate was significantly prolonged and the mean tumor volume was dramatically reduced in mice receiving the combined treatment compared with single agents. Collectively, these findings show that targeting mutant k-ras through specific siRNA might be effective for k-ras oncogene silencing and tumor growth inhibition. The improvement of gemcitabine-based chemotherapy suggests that this strategy might be used therapeutically against human pancreatic cancer to potentiate the effects of conventional therapy. 相似文献
3.
Prakash Radhakrishnan Paul M. Grandgenett Ashley M. Mohr Stephanie K. Bunt Fang Yu Sanjib Chowdhury Michael A. Hollingsworth 《International journal of cancer. Journal international du cancer》2013,133(12):2824-2833
Core 3‐derived glycans, a major type of O‐glycan expressed by normal epithelial cells of the gastrointestinal tract, are downregulated during malignancy because of loss of expression of functional β3‐N‐acetylglucosaminyltransferase‐6 (core 3 synthase). We investigated the expression of core 3 synthase in normal pancreas and pancreatic cancer and evaluated the biological effects of re‐expressing core 3 synthase in pancreatic cancer cells that had lost expression. We determined that pancreatic tumors and tumor cell lines have lost expression of core 3 synthase. Therefore, we re‐expressed core 3 synthase in human pancreatic cancer cells (Capan‐2 and FG) to investigate the contribution of core 3 glycans to malignant progression. Pancreatic cancer cells expressing core 3 synthase showed reduced in vitro cell proliferation, migration and invasion compared to vector control cells. Expression of core 3 O‐glycans induced altered expression of β1 integrin, decreased activation of focal adhesion kinase, led to the downregulation of expression of several genes including REG1α and FGFR3 and altered lamellipodia formation. The addition of a GlcNAc residue by core 3 synthase leads to the extension of the tumor‐associated Tn structure on MUC1. Orthotopic injection of FG cells expressing core 3 synthase into the pancreas of nude mice produced significantly smaller tumors and decreased metastasis to the surrounding tissues compared to vector control FG cells. These findings indicate that expression of core 3‐derived O‐glycans in pancreatic cancer cells suppresses tumor growth and metastasis through modulation of glycosylation of mucins and other cell surface and extracellular matrix proteins. 相似文献
4.
Objective
We studied the role of specific cytotoxic T lymphocytes (CTLs) activated by dendritic cells (DCs) presenting cationic nanoparticles with the K-ras (12-Val) mutant peptide and whole tumor antigen in the killing of different pancreatic cancer cell lines in vitro and in vitro. 相似文献5.
Rui Tian Renyi Qin Zhiyong Du Wei Xia Chengjian Shi 《中德临床肿瘤学杂志》2007,6(5):464-468
Objective To investigate the antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)gene transfection mediated by adenovirus into human pancreatic carcinoma cell line Panc-1, and the mechanisms involved in this effect. Methods TRAIL gene was transfected into pancreatic cancer cell line Panc-1 by an adenovirus vector (Ad-TRAIL).Level of TRAIL mRNA expression was determined using RT-PCR, and TRAIL protein synthesis was evaluated with Western blot. Cell-growth activities were determined by MTT assay. The bystander effect was observed by co-culturing the Panc-1cells with the transfected TRAIL gene at different ratios. Apoptosis in pancreatic cancer cells was detected by flow cytometry.Procaspase-8 and procaspase-3 were determined by Western blot. Results The stable overexpression of TRAIL was detected in Panc-1 cells transfected by Ad-TRAIL. Ad-TRAIL significantly inhibited of cell viability of Panc-1 cells. Furthermore,co-culture of cancer cells transfected with TRAIL with that nontransfected resulted in the cell death of both cells by bystander effect. Moreover, the percentage of apoptotic cells was significantly higher in the Ad-TRAIL-treatment group compared to the control groups (P < 0.01). And there was a diminished amount of procaspase-8 and procaspase-3 after infection with Ad-TRAIL. Conclusion The overexpression of TRAIL gene in Panc-1 cells by Ad-TRAIL exerts its antitumor effects, and themechanisms involved in this effect may be proapoptosis and bystander effect. 相似文献
6.
Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis 总被引:6,自引:0,他引:6
The MUC4 mucin is a high molecular weight membrane-bound glycoprotein. It is aberrantly expressed in pancreatic tumors and tumor cell lines with no detectable expression in the normal pancreas. A progressive increase of MUC4 expression has also been observed in pancreatic intraepithelial neoplasia, suggesting its association with disease development. Here, we investigated the consequences of silencing MUC4 expression in an aggressive and highly metastatic pancreatic tumor cell line CD18/HPAF that expresses high levels of MUC4. The expression of MUC4 was down-regulated by the stable integration of a plasmid-construct expressing antisense-MUC4 RNA. A decrease in MUC4 expression, confirmed by Western blot and immunofluorescence analyses, resulted in diminished growth and clonogenic ability of antisense-MUC4-transfected (EIAS19) cells compared with parental, empty vector (ZEO) and sense transfected (ES6) control cells. In addition, EIAS19 cells displayed a significant decrease in tumor growth and metastatic properties when transplanted orthotopically into the immunodeficient mice. In vitro biological assays for motility, adhesion, and aggregation demonstrated a 3-fold decrease in motility of EIAS19 cells compared with control cells, whereas these cells adhered more and showed an increase in cellular aggregation. Interestingly, MUC4 down-regulation also correlated with the reduced expression of its putative interacting partner, HER2/neu, in antisense-MUC4-transfected cells. In conclusion, the present work demonstrates, for the first time, a direct association of the MUC4 mucin with the metastatic pancreatic cancer phenotype and provides experimental evidence for a functional role of MUC4 in altered growth and behavioral properties of the tumor cell. 相似文献
7.
Lebedeva IV Su ZZ Emdad L Kolomeyer A Sarkar D Kitada S Waxman S Reed JC Fisher PB 《Oncogene》2007,26(5):733-744
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a cancer-specific, growth-suppressing and apoptosis-inducing gene with broad-spectrum antitumor activity. However, when administered by means of a replication-incompetent adenovirus, Ad.mda-7, several colorectal carcinoma cell lines are resistant to its antiproliferative and antisurvival effects. We have presently endeavored to determine if K-ras mutations, present in approximately 40-50% of colorectal cancers and which may mediate resistance to chemotherapy and radiotherapy, represent a predisposing genetic factor mitigating reduced sensitivity to Ad.mda-7. To suppress ras expression, three structurally different replication-incompetent adenoviral vectors were engineered that express (1) an intracellular, neutralizing single-chain antibody (scAb) to p21 ras (Ad.K-ras scAb), (2) an antisense (AS) K-ras gene (Ad.K-ras AS) or (3) both mda-7/IL-24 and a K-ras AS gene in a single bipartite virus (Ad.m7.KAS). Simultaneous inhibition of K-ras and expression of mda-7/IL-24 enhanced killing of colorectal carcinoma cells with mutated K-ras, but not with wild-type K-ras. The extent of killing depended on the degree of K-ras downregulation, with Ad.K-ras AS being generally more efficient than Ad.K-ras scAb in combination with Ad.mda-7. These findings support an effective dual-combinatorial approach for the therapy of colorectal cancers that employs a unique cancer-specific suppressor gene (mda-7/IL-24) with targeted inhibition of oncogene (ras) expression. 相似文献
8.
AIM: To investigate the effect of small interfering RNAs targeting mutant K-ras on the growth of pancreatic carcinoma cell lines in vitro and in vivo. MATERIALS AND METHODS: We cloned targeting sequence spanning codon 12 of mutant K-ras into the pSilencer-hygro plasmid, yielding two recombinant vectors with one base different. Both human pancreatic carcinoma cell lines were transfected by these two recombinant vectors. The transfected PC-7 cells were injected subcutaneously into nude mice to observe its tumorigenicity. RT-PCR and Western blot analysis were carried out to test the expression of K-ras in all of the transfected cell lines. Growth curves assay were performed to test the abilities of cells proliferation. Anti-K-ras therapy of PC-7 and Panc-1 in subcutaneous mice models were performed by intratumor injection of polyethylenimine/siRNAs complex. RESULTS: The expressions of K-ras in PC-7 cells and Panc-1 cells were significantly inhibited by corresponding small interfering RNAs. The expression of K-ras was particularly inactivated by siRNA without any base mismatch to its homologous mRNA, while this oncogene with central base mismatch could not be inhibited as effectively as that of the former. The growth of PC-7 cells and Panc-1 cells transfected by corresponding mutant K-ras targeted siRNAs were significantly suppressed when compared with controls (p<0.05). The transfected PC-7 cells lost tumorigenic ability. Four weeks treatment of Xenograft of pancreatic carcinoma (PC-7 and Panc-1) in nude mice with Polyethylenimine-encapsulated mutant K-ras targeted siRNAs (20 microg/mouse twice weekly) were effective in reducing tumor growth, when compared with controls (p<0.05). CONCLUSION: The central base may play a key role in the process of RNA interference. The mutant point and its vicinity of 19 nucleotides in K-ras may be the effective targeting sequence for RNA interference. Targeting mutant-k-ras therapy of pancreatic carcinoma may be a clinically applicable therapeutic modality. 相似文献
9.
Miura Y Ohnami S Yoshida K Ohashi M Nakano M Ohnami S Fukuhara M Yanagi K Matsushita A Uchida E Asaka M Yoshida T Aoki K 《Cancer letters》2005,218(1):53-62
We examined the antitumor effect and safety of the adenovirus-mediated expression of antisense K-ras RNA in two peritoneal dissemination models of pancreatic cancer. First, we found that the infection of an adenovirus vector expressing antisense human K-ras RNA (AxCA-AS) induced significant apoptosis in vitro in human pancreatic cancer cells with K-ras mutation. Second, the intraperitoneal (ip) injection of AxCA-AS effectively suppressed the growth of human pancreatic cancer cells in the peritoneal cavity of nude mice. Third, in the hamster syngeneic peritoneal dissemination model, the ip injection of an adenovirus expressing antisense hamster K-ras RNA significantly suppressed the peritoneal growth of hamster pancreatic cancer cells, and no significant systemic toxicity was observed in the treated hamsters. This study suggests a feasibility of the development of a therapeutic strategy against pancreatic cancer based on the adenovirus-mediated transduction of an antisense K-ras construct. 相似文献
10.
Silencing of gene expression by small interfering RNAs (siRNAs) is rapidly becoming a powerful tool for genetic analysis and represents a potential strategy for therapeutic product development. However, there are no reports of systemic delivery of siRNAs for stable treatment except short hairpin RNAs (shRNAs). On the other hand, there are many reports of systemic delivery of siRNAs for transient treatment using liposome carriers and others. With regard to shRNAs, a report showed fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Therefore, we decided to use original siRNA microspheres instead of shRNA for stable treatment of disease. In this study, we designed rat-specific siRNA sequences for Erc/mesothelin, which is a tumor-specific gene expressed in the Eker (Tsc2 mutant) rat model of hereditary renal cancer and confirmed the efficacy of gene silencing in vitro. Then, by using siRNA microspheres, we found that the suppression of Erc/mesothelin caused growth inhibition of Tsc2 mutant renal carcinoma cells in tumor implantation experiments in mice. 相似文献
11.
It has been reported that the local introduction of a promoter-less DNA containing the complementary DNA (cDNA) sequence of a gene could induce gene-specific silencing in plants. The feasibility of this kind of silencing in human cancer cells is as yet unknown. The current study was designed to investigate the anti-tumor effects of a homologous promoterless K-ras cDNA system on pancreatic cancer. A full-length K-ras cDNA fragment was cloned into the promoterless plasmid puc19 to yield puc-K-ras. This construct was then transfected into pancreatic cancer cells. Our results demonstrated that the transfection of a promoterless K-ras cDNA resulted in a significant decrease in endogenous K-ras in a dose- and time-dependent manner and induced pancreatic cell apoptosis. Furthermore, stable puc-K-ras transfection decreased the endogenous protein level of K-ras and inhibited cell proliferation, clone formation and tumorigenicity in vivo. These findings indicate a promising application of this homologous promoterless cDNA silencing system in pancreatic cancer gene therapy. 相似文献
12.
Kawaguchi J Adachi S Yasuda I Yamauchi T Yoshioka T Itani M Kozawa O Moriwaki H 《Oncology reports》2012,27(4):935-939
We have recently reported that short wavelength ultraviolet-C (UVC) irradiation inhibits cell growth and induces apoptosis in human pancreatic cancer cells. In this study, we investigated the effect of UVC on platelet-derived growth factor (PDGF)-BB-induced migration in pancreatic cancer cells, AsPC1 and BxPC3. In cell migration assays using a Boyden chamber Transwell, PDGF-BB exerted a maximum effect on migration of these cells at a dose of 70 ng/ml after 36 h of treatment. PDGF-BB also caused phosphorylation of p44/p42 mitogen-activated protein kinase (MAPK), stress-activated protein kinase/c-Jun-N-terminal kinase (SAPK/JNK) and Akt, but not of p38 MAPK in these cells. Pretreatment of these cells with UVC at a dose over 10 J markedly suppressed PDGF-BB-induced migration. Since UVC significantly inhibited PDGF-BB-induced phosphorylation of Akt, and subsequent glycogen synthase kinase (GSK) 3β, but not p44/p42 MAPK and SAPK/JNK, it is likely that UVC inhibits PDGF-BB-induced migration by suppressing the Akt-GSK3β pathway in pancreatic cancer cells. Taken together with our previous findings, UVC could be a useful tool for the treatment of patients with pancreatic cancer. 相似文献
13.
RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells 总被引:25,自引:0,他引:25
Hata T Furukawa T Sunamura M Egawa S Motoi F Ohmura N Marumoto T Saya H Horii A 《Cancer research》2005,65(7):2899-2905
AURKA/STK15/BTAK, the gene encoding Aurora A kinase that is involved in the regulation of centrosomes and segregation of chromosomes, is frequently amplified and overexpressed in various kinds of human cancers, including pancreatic cancer. To address its possibility as a therapeutic target for pancreatic cancer, we employed the RNA interference technique to knockdown AURKA expression and analyzed its phenotypes. We found that the specific knockdown of AURKA in cultured pancreatic cancer cells strongly suppressed in vitro cell growth and in vivo tumorigenicity. The knockdown induced the accumulation of cells in the G(2)-M phase and eventual apoptosis. Furthermore, we observed a synergistic enhancement of the cytotoxicity of taxanes, a group of chemotherapeutic agents impairing G(2)-M transition, by the RNA interference-mediated knockdown of AURKA. These results indicate that inhibition of AURKA expression can result in potent antitumor activity and chemosensitizing activity to taxanes in human pancreatic cancer. 相似文献
14.
Horiguchi A Zheng R Goodman OB Shen R Guan H Hersh LB Nanus DM 《Cancer gene therapy》2007,14(6):583-589
Neprilysin (neutral endopeptidase, NEP) is a cell surface peptidase whose expression is lost in approximately 50% of prostate cancers (PC). NEP normally functions to inactivate peptides such as bombesin and endothelin-1, and potentiates the effects of the PTEN tumor suppressor via a direct protein-protein interaction. NEP loss contributes to PC progression. We investigated the therapeutic efficacy of using a lentiviral vector system to restore NEP expression in PC cells. Third-generation lentiviral vectors encoding wild-type NEP (L-NEP) or green fluorescent protein (L-GFP) were introduced into NEP-deficient 22RV1 PC cells. Cells infected with L-NEP or L-GFP at a multiplicity of infection of 10 demonstrated NEP enzyme activity of 1171.2+/-4.9 and 17.2+/-5.3 pmol/microg/min (P<0.0001), respectively. Cell viability, proliferation and invasion were each significantly inhibited in 22RV1 cells expressing NEP compared with control cells infected with L-GFP (P<0.01). Analysis of known downstream effects of NEP showed NEP-expressing cells exhibiting decreased Akt and focal adhesion kinase phosphorylation and increased PTEN protein expression. Finally, injection of L-NEP into established 22RV1 xenograft tumors significantly inhibited tumor growth (P<0.01). These experiments demonstrate that lentiviral NEP gene transfer is a novel targeted strategy for the treatment of NEP-deficient PC. 相似文献
15.
Hua Li Grace Y. Sun Yongchao Zhao Dafydd Thomas Joel K. Greenson Mark M. Zalupski Edgar Ben-Josef Yi Sun 《Oncotarget》2014,5(24):12811-12819
DEPTOR was reported as a naturally occurring inhibitor of mTORC1 and mTORC2. The role of DEPTOR in the growth and survival of pancreatic cancer cells has not previously been determined. Here we report that while DEPTOR shows a cytoplasmic expression in both normal pancreatic acinar and islet cells in a patchy manner, its expression is reduced in PanIN1 and PanIN2 and completely lost in 100 out of 101 pancreatic ductal adenocarcinoma (PDAC) tissues. Ectopic DEPTOR expression in two pancreatic cancer cell lines, Panc-1 and Miapaca-2, caused a significant 1) suppression of anchorage-dependent growth in monolayer culture, particularly under conditions with growth factor deprivation; 2) decreased clonogenic survival, and 3) suppressed anchorage-independent growth in soft agar. These effects are attributable to moderate induction of apoptosis and growth arrest at the S and G2/M phases, in a cell line dependent manner. Furthermore, ectopic DEPTOR expression moderately inhibited mTORC1 activity, as demonstrated by reduced phosphorylation of S6K, S6, and 4E-BP1. Taken together, these data suggest that DEPTOR has a tumor suppressive activity against pancreatic cancer cells, and its loss of expression may contribute to pancreatic tumorigenesis. 相似文献
16.
Arash Minai-Tehrani Seung-Hee Chang Jung-Taek Kwon Soon-Kyung Hwang Ji-Eun Kim Ji-Young Shin Kyeong-Nam Yu Sung-Jin Park Hu-Lin Jiang Ji-Hye Kim Seong-Ho Hong Bitna Kang Duyeoul Kim Chan-Hee Chae Kee-Ho Lee George R. Beck Jr Myung-Haing Cho 《Cellular oncology (Dordrecht)》2013,36(1):15-26
Background
Osteopontin (OPN) is a secreted glycophosphoprotein that has been implicated in the regulation of cancer development. The function of OPN is primarily regulated through post-translational modification such as glycosylation. As yet, however, the relationship between OPN glycosylation and lung cancer development has not been investigated. In this study, we addressed this issue by studying the effect of a triple mutant (TM) of OPN, which is mutated at three O-glycosylation sites, on lung cancer development in K-ras LA1 mice, a murine model for human non-small cell lung cancer.Methods
Aerosolized lentivirus-based OPN TM was delivered into the lungs of K-ras LA1 mice using a nose-only-inhalation chamber 3 times/wk for 4 wks. Subsequently, the effects of repeated delivery of OPN TM on lung tumorigenesis and its concomitant OPN-mediated signaling pathways were investigated.Results
Aerosol-delivered OPN TM inhibited lung tumorigenesis. In addition, the OPN-mediated Akt signaling pathway was inhibited. OPN TM also decreased NF-κB activity and the phosphorylation of 4E-BP1, while facilitating apoptosis in the lungs of K-ras LA1 mice.Conclusions
Our results show that aerosol delivery of OPN TM successfully suppresses lung cancer development in the K-ras LA1 mouse model and, therefore, warrant its further investigation as a possible therapeutic strategy for non-small cell lung cancer. 相似文献17.
Sheema Khan Mara C. Ebeling Mohd S. Zaman Mohammed Sikander Murali M. Yallapu Neeraj Chauhan Ashley M. Yacoubian Stephen W. Behrman Nadeem Zafar Deepak Kumar Paul A. Thompson Meena Jaggi Subhash C. Chauhan 《Oncotarget》2014,5(17):7599-7609
Pancreatic cancer has a poor prognosis due to late diagnosis and ineffective therapeutic multimodality. MUC13, a transmembrane mucin is highly involved in pancreatic cancer progression. Thus, understanding its regulatory molecular mechanisms may offer new avenue of therapy for prevention/treatment of pancreatic cancer. Herein, we report a novel microRNA (miR-145)-mediated mechanism regulating aberrant MUC13 expression in pancreatic cancer. We report that miR-145 expression inversely correlates with MUC13 expression in pancreatic cancer cells and human tumor tissues. miR-145 is predominantly present in normal pancreatic tissues and early Pancreatic Ductal Adenocarcinoma (PDAC) precursor lesions (PanIN I) and is progressively suppressed over the course of development from PanIN II/III to late stage poorly differentiated PDAC. We demonstrate that miR-145 targets 3′ untranslated region of MUC13 and thus downregulates MUC13 protein expression in cells. Interestingly, transfection of miR-145 inhibits cell proliferation, invasion and enhances gemcitabine sensitivity. It causes reduction of HER2, P-AKT, PAK1 and an increase in p53. Similar results were found when MUC13 was specifically inhibited by shRNA directed at MUC13. Additionally, intratumoral injections of miR-145 in xenograft mice inhibited tumor growth via suppression of MUC13 and its downstream target, HER2. These results suggest miR-145 as a novel regulator of MUC13 in pancreatic cancer. 相似文献
18.
Haifeng Qiu Amanda L. Jackson Joshua E. Kilgore Yan Zhong Leo Li-Ying Chan Paola A. Gehrig Chunxiao Zhou Victoria L. Bae-Jump 《Oncotarget》2015,6(9):6915-6930
Amplification and overexpression of c-Myc is commonly seen in human ovarian cancers, and this could be a potentially novel therapeutic target for this disease. JQ1, a selective small-molecule BET bromodomain (BRDs) inhibitor, has been found to suppress tumor progression in several cancer cell types. Using ovarian cancer cell lines, a transgenic mouse model, and primary cell cultures from human ovarian cancer tissues, we demonstrated that JQ1 significantly suppressed cellular proliferation and induced cell cycle arrest and apoptosis in ovarian cancer cells and mouse model via targeting c-Myc. In addition, JQ1 had multiple influences on cancer metabolism, particularly in the aerobic glycolysis pathway. JQ1 reduced both the activity and phosphorylation of LDHA, inhibited lactate production, and decreased the energy supply to ovarian cancer cell lines and tumors. Taken together, our findings suggest that JQ1 is an efficacious anti-tumor agent in ovarian cancer that is associated with cell cycle arrest, induction of apoptosis and alterations of metabolism. 相似文献
19.
Vascular endothelial growth factor-trap suppresses tumorigenicity of multiple pancreatic cancer cell lines. 总被引:3,自引:0,他引:3
PURPOSE: Vascular endothelial growth factor A (VEGF-A) is a potent angiogenic agent that binds to two high affinity VEGF receptors (VEGFRs), a process facilitated by the low affinity neuropilin receptors. Although VEGF-A is overexpressed in pancreatic ductal adenocarcinoma, it is not known whether the in vivo growth of multiple pancreatic cancer cells can be efficiently blocked by VEGF-A sequestration. EXPERIMENTAL DESIGN: Four human pancreatic cancer cell lines were grown s.c. in athymic nude mice. One cell line also was used to generate an orthotopic model of metastatic pancreatic cancer. The consequences of VEGF-A sequestration on tumor growth and metastasis were examined by injecting the mice with a soluble VEGFR chimer (VEGF-Trap) that binds VEGF-A with high affinity. RESULTS: VEGF-Trap, initiated 2 days after tumor cell inoculation, suppressed the s.c. growth of four pancreatic cancer cell lines and markedly decreased tumor microvessel density. Analysis of RNA from tumors generated with T3M4 cells revealed that VEGF-Trap decreased the expression of VEGFR-1 and neuropilin-1 and -2. VEGF-Trap, initiated 3 weeks after tumor implantation, also attenuated intrapancreatic tumor growth and metastasis in an orthotopic model using PANC-1 cells. CONCLUSIONS: VEGF-Trap is a potent suppressor of pancreatic tumor growth and metastasis and also may act to attenuate neuropilin-1 and -2 and VEGFR-1 expression. Therefore, VEGF-Trap may represent an exceedingly useful therapeutic modality for pancreatic ductal adenocarcinoma. 相似文献
20.
Daniel Eliyahu Steve Evans Neal Rosen Siona Eliyahu James Zwiebel Soonmyoung Paik Marc Lippman 《Breast cancer research and treatment》1994,30(2):167-177
Summary One common step in the malignant progression of a wide variety of human cancers seems to be inactivation of the p53 gene, via point mutation or deletion or both; or overexpression of mutated protein with dominant transforming activity. This study shows a suppressive effect of wild type p53 on the growth of human breast cancer cells. Introduction of wild type p53 versus mutant into five human breast cancer cell lines containing mutant p53 resulted in a marked reduction in colony formation. Two of these were transfected with human wt p53 expression vectors and the other three were infected with retroviruses packaging human wt p53, both showing similar reduction in the number of surviving colonies, suggesting a role for wt p53 in suppression of breast cancer cell growth. Direct evidence for growth suppression was obtained by introduction of the temperature sensitive p53Val135 into Hs578T human breast cancer cells containing a mutant p53. This murine mutant allele p53Val135 functions as an oncogene at 37° C and as a tumor suppressor at 32° C. The cell line generated was strongly growth inhibited at the restrictive temperature (31.5° C), at which temperature the suppressor form is expressed. This inhibition of proliferation was reversible upon a temperature upshift. Analysis of the cell cycle distribution shows these growth suppressed cells to be inhibited in the G1 phase of the cell cycle. Thus wt p53 may have an important role in breast cancer tumorigenesis. 相似文献