首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fuselloviridae are ubiquitous crenarchaeal viruses found in high-temperature acidic hot springs worldwide. The type virus, Sulfolobus spindle-shaped virus 1 (SSV1), has a double-stranded DNA genome that contains 34 open reading frames (ORFs). Fuselloviral genomes show little similarity to other organisms, generally precluding functional predictions. However, tertiary protein structure can provide insight into protein function. We have thus undertaken a systematic investigation of the SSV1 proteome and report here on the F112 gene product. Biochemical, proteomic and structural studies reveal a monomeric intracellular protein that adopts a winged helix DNA binding fold. Notably, the structure contains an intrachain disulfide bond, prompting analysis of cysteine usage in this and other hyperthermophilic viral genomes. The analysis supports a general abundance of disulfide bonds in the intracellular proteins of hyperthermophilic viruses, and reveals decreased cysteine content in the membrane proteins of hyperthermophilic viruses infecting Sulfolobales. The evolutionary implications of the SSV1 distribution are discussed.  相似文献   

2.
Our understanding of archaeal viruses has been limited by the lack of genetic systems for examining viral function. We describe the construction of an infectious clone for the archaeal virus Sulfolobus turreted icosahedral virus (STIV). STIV was isolated from a high temperature (82 °C) acidic (pH 2.2) hot spring in Yellowstone National Park and replicates in the archaeal model organism Sulfolobus solfataricus (Rice et al., 2004). While STIV is one of most studied archaeal viruses, little is known about its replication cycle. The development of an STIV infectious clone allows for directed gene disruptions and detailed genetic analysis of the virus. The utility of the STIV infectious clone was demonstrated by gene disruption of STIV open reading frame (ORF) B116 which resulted in crippled virus replication, while disruption of ORFs A197, C381 and B345 was lethal for virus replication.  相似文献   

3.
Sulfolobus turreted icosahedral virus (STIV) infects Sulfolobus species found in the hot springs of Yellowstone National Park. Its 37 open reading frames (ORFs) generally lack sequence similarity to other genes. One exception, however, is ORF B116. While its function is unknown, orthologs are found in three additional crenarchaeal viral families. Due to the central importance of this protein family to crenarchaeal viruses, we have undertaken structural and biochemical studies of B116. The structure reveals a previously unobserved fold consisting of a five-stranded beta-sheet flanked on one side by three alpha helices. Two subunits come together to form a homodimer with a 10-stranded mixed beta-sheet, where the topology of the central strands resembles an unclosed beta-barrel. Highly conserved loops rise above the surface of the saddle-shaped protein and suggest an interaction with the major groove of DNA. The predicted B116-DNA interaction is confirmed by electrophoretic mobility shift assays.  相似文献   

4.
Viruses infecting archaeal cells are less well understood than those infecting eukaryotic and bacterial cells. Here we study the distribution of the structural proteins between the capsid and the membrane of icosahedral SH1 virus, an archaeal virus infecting extreme halophilic Haloarcula hispanica cells. General features such as morphology, linear dsDNA genome and presence of lipids suggest that it may belong to the recently proposed PRD1-adenovirus lineage of viruses. To investigate this we have initiated structural studies of the virion. Quantitative dissociation of SH1 by 3 M urea or by lowering the salt concentration identified a number of soluble capsid-associated proteins (VP2, VP3, VP4, VP6, VP7 and VP9). These released proteins left behind a particle, or lipid core, containing two major proteins VP10 and VP12 and viral phospholipids. VP1 was released from the lipid core in low ionic strength conditions but not with 3 M urea. Approximately half of the protein VP5 stayed with the lipid core and the other half was released. Analysis of the soluble capsid-associated proteins by their sedimentation and hydrodynamic properties suggests that the most abundant proteins, putative capsomers VP4 and VP7, form an intricate pattern of protein complexes. We also observed large differences in the sizes of the complexes determined by the two different methods suggesting an elongated overall structure for most of the capsid-associated proteins or protein complexes. This work verifies that there is an internal membrane vesicle residing inside the complex icosahedral capsid that is akin to the overall structure of PRD1-like viruses.  相似文献   

5.
Viruses of the family Luteoviridae are ssRNA plant viruses that have particles that exhibit icosahedral symmetry. To identify the residues that might be exposed on the surface of the Potato leafroll virus (PLRV; genus Polerovirus, family Luteoviridae) capsid, and therefore involved in biological interactions, we performed a structural analysis of the PLRV coat protein (CP) on the basis of comparisons with protein sequences and known crystal structures of CPs of other viruses. The CP of PLRV displays 33% sequence similarity with that of Rice yellow mottle virus (genus Sobemovirus) when the sequences were aligned by using the hidden Markov model method. A structure model for PLRV CP was designed by protein homology modeling, using the crystal structure of RYMV as a template. The resulting model is consistent with immunological and site-directed mutagenesis data previously reported. On the basis of this model it is possible to predict some surface properties of the PLRV CP and also speculate about the structural evolution of small icosahedral viruses.  相似文献   

6.
The complete nucleotide sequence of an Albanian isolate of grapevine leafroll-associated virus 7 (GLRaV-7-Alb) was determined. The viral genome consists of 16,404 nucleotides and has nine open reading frames (ORFs) that potentially encode proteins, most of which are typical for members of the family Closteroviridae. Only the 25-kDa (ORF8) and 27-kDa (ORF9) proteins had no apparent similarity to other viral proteins in the sequence databases. The genome structure of GLRaV-7-Alb closely resembles that of little cherry virus 1 and cordyline virus 1. In phylogenetic trees constructed with HSP70h sequences, these three viruses cluster together in a clade next to that comprising members of the genus Crinivirus, to which they are more closely related than to the clostero- and ampeloviruses. The molecular properties of these three viruses differ sufficiently from those of members of the three extant genera of the family Closteroviridae to warrant their classification in a novel genus.  相似文献   

7.
Himani Bisht  Bernard Moss 《Virology》2010,398(2):187-193
Poxviruses encode a redox system for intramolecular disulfide bond formation in cytoplasmic domains of viral proteins. Our objectives were to determine the kinetics and intracellular location of disulfide bond formation. The vaccinia virus L1 myristoylated membrane protein, used as an example, has three intramolecular disulfide bonds. Reduced and disulfide-bonded forms of L1 were distinguished by electrophoretic mobility and reactivity with monoclonal and polyclonal antibodies. Because disulfide bonds formed during 5 min pulse labeling with radioactive amino acids, a protocol was devised in which dithiothreitol was present at this step. Disulfide bond formation was detected by 2 min after removal of reducing agent and was nearly complete in 10 min. When the penultimate glycine residue was mutated to prevent myristoylation, L1 was mistargeted to the endoplasmic reticulum and disulfide bond formation failed to occur. These data suggested that viral membrane association was required for oxidation of L1, providing specificity for the process.  相似文献   

8.
9.
Yokoi T  Takemoto Y  Suzuki M  Yamashita S  Hibi T 《Virology》1999,264(2):344-349
Sclerophthora macrospora Virus B (SmV B) found in S. macrospora, the pathogenic fungus responsible for downy mildew in gramineous plants, is a small icosahedral, monopartite virus containing a positive-strand ssRNA genome. In the present study, the complete nucleotide sequence of the SmV B genome was determined. The viral genome consists of 5533 nucleotides and has two large open reading frames (ORFs). ORF1 encodes a putative polyprotein containing the motifs of chymotrypsin-related serine protease and RNA-directed RNA polymerase. ORF2 encodes a capsid protein. The deduced amino acid sequence shows some similarity to those of certain positive-strand RNA viruses, but the genome organization is characteristic and distinct from those of other known fungal RNA viruses. These results suggest that SmV B should be classified into a new group of mycoviruses.  相似文献   

10.
A novel virus, termed Pyrobaculum spherical virus (PSV), is described that infects anaerobic hyperthermophilic archaea of the genera Pyrobaculum and Thermoproteus. Spherical enveloped virions, about 100 nm in diameter, contain a major multimeric 33-kDa protein and host-derived lipids. A viral envelope encases a superhelical nucleoprotein core containing linear double-stranded DNA. The PSV infection cycle does not cause lysis of host cells. The viral genome was sequenced and contains 28337 bp. The genome is unique for known archaeal viruses in that none of the genes, including that encoding the major structural protein, show any significant sequence matches to genes in public sequence databases. Exceptionally for an archaeal double-stranded DNA virus, almost all the recognizable genes are located on one DNA strand. The ends of the genome consist of 190-bp inverted repeats that contain multiple copies of short direct repeats. The two DNA strands are probably covalently linked at their termini. On the basis of the unusual morphological and genomic properties of this DNA virus, we propose to assign PSV to a new viral family, the Globuloviridae.  相似文献   

11.
Krupovic M  Bamford DH 《Virology》2008,375(1):292-300
The viral lineage hypothesis predicting a common origin for viruses that infect hosts residing in different domains of life gains more support as data on viral structures accumulates. One such lineage is the PRD1-adenovirus lineage, which unites icosahedral dsDNA viruses with large facets and a double beta-barrel trimer coat protein. This lineage is represented by a number of viruses infecting bacteria and eukaryotes. However, only one member of the lineage, Sulfolobus turreted icosahedral virus, infecting a crenarchaeal host, has been identified in the domain Archaea. In this study we characterize the genomic sequences of two archaeal proviruses, TKV4 and MVV, integrated into the 5'- and 3'-distal regions of tRNA genes of the euryarchaeal species Thermococcus kodakaraensis KOD1 and Methanococcus voltae A3, respectively. Bioinformatic approaches allowed placement of TKV4 and MVV into the PRD1-adenovirus lineage, thus extending the lineage to the second archaeal phylum, Euryarchaeota.  相似文献   

12.
A putative circular single-stranded DNA (ssDNA) virus was recovered from Hypericum japonicum collected in Vietnam. The viral isolate was tentatively named Hypericum japonicum-associated circular DNA virus (HJasCV). HJasCV shares 58.7-65.4% nucleotide sequence identity with Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) and SsHADV-1-like viruses. Like this group of viruses, the genome of HJasCV (2 200 nt) has two large ORFs, one in the virion-sense and the other in the complementary-sense DNA. The proteins encoded in the virion-sense and complementary-sense ORFs share 39-46 % and 45-67 % amino acid sequence identity with the putative capsid and replication-associated proteins (Reps), respectively, of SsHADV-1 and SsHADV-1-like viruses. The putative Rep of HJasCV contains all of the motifs related to rolling-circle replication. Its 111-bp intergenic region (IR) contains a hairpin structure with a geminivirus-like nonanucleotide sequence, TAATGTTAT, at the apex of the loop. Phylogenetic analysis revealed that HJasCV forms a monophyletic clade with SsHADV-1 and SsHADV-1-like viruses.  相似文献   

13.
Yokose virus (strain Oita-36) was isolated from the bat in Japan in 1971. In the present study, we determined complete nucleotide sequences of Yokose virus using RT-PCR and RACE techniques. Yokose virus genome consists of 10,857 nucleotides in length (accession no. AB114858), containing a single open reading frame (3425 amino acids) encoding 11 viral proteins. We deduced the boundaries of each protein in the polyprotein sequence according to the protein cleavage sites of other flaviviruses. The nucleotide sequences of the 5' and 3' nontranslated region (NTR) and amino acid sequences of individual proteins of the virus were compared with those of six other flaviviruses including Japanese encephalitis virus, dengue-2 virus, yellow fever virus, West Nile virus, tick-borne encephalitis virus, and Rio Bravo virus or Modoc virus. Yokose virus demonstrated the highest similarity to yellow fever virus. Yokose virus also has CS1 motif, which are well-conserved specifically in mosquito-born flaviviruses, in its 3' NTR. When a part of the NS5 amino acid sequence (345 amino acids) was compared with those of other four flaviviruses, Entebbe bat virus, Sokuluk virus, Sepik virus, and yellow fever virus, the three former viruses are more closely related to Yokose virus than yellow fever virus. Human sera from dengue-virus-infected case and yellow fever vaccine reacted with the viral proteins. Moreover, human serum from a yellow fever vaccine weakly neutralized Yokose virus. Our results suggest that there are cross-reactive antigenicities among Yokose virus and other flaviviruses.  相似文献   

14.
A fatal relationship--influenza virus interactions with the host cell.   总被引:3,自引:0,他引:3  
  相似文献   

15.
R P Anthony  A M Paredes  D T Brown 《Virology》1992,190(1):330-336
Sindbis virus is a membrane-containing virus which has two glycoproteins organized in an icosahedral lattice. Protein-protein associations have been identified which participate in the formation of the icosahedron and these associations are stabilized by intramolecular disulfide bridges (Anthony, R. P., and Brown, D. T., 1990, J. Virol. 65, 1187-1194). The present study further examines the role of disulfides in the structure and function of Sindbis virus by following the effect of dithiothreitol on the protease sensitivity of envelope proteins as well as the electron microscopic appearance and infectivity of Sindbis virus. Treatment of isolated virus with 5 mM dithiothreitol for 6 hr causes a marked increase in trypsin sensitivity of both E1 and E2, profound morphological alterations in the viral envelope, increased susceptibility of the nucleocapsid to RNase, and 95% loss of infectivity. These effects are greatly enhanced and accelerated when treatment with DTT is preceded by a brief exposure of the virus to pH 5.3, suggesting that acid-induced conformational changes render structurally critical disulfides more accessible to reductive cleavage by DTT. When compared to other manipulations known to change the conformation of the viral envelope, such as heating to 51 or 60 degrees or exposure to acid pH, only the exposure to DTT with or without prior acid treatment caused marked structural changes correlated with a loss of infectivity. These data provide electron microscopic and functional evidence that intact disulfide bonds are critical for the stability of the virus envelope and suggest that the cleavage of critical disulfide(s) may play a role in the process of virus infection.  相似文献   

16.
17.
Yokoi T  Yamashita S  Hibi T 《Virology》2003,311(2):394-399
Sclerophthora macrospora virus A (SmV A) found in S. macrospora, the pathogenic fungus responsible for downy mildew of gramineous plants, is a small icosahedral virus containing three segments (RNAs 1, 2, and 3) of the positive-strand ssRNA genome. In the present study we report the complete nucleotide sequence of the SmV A genome. The viral genome RNA 1 consists of 2928 nucleotides (nt) and has two open reading frames (ORFs 1a and 1b). ORF 1a contains the motifs of RNA-directed RNA polymerase (RdRp). The function of ORF 1b is unknown. RNA 2 consists of 1981 nt and single ORF (ORF 2). ORF 2 encodes a capsid protein. RNA 3 consists of 977 nt but not any ORFs, suggesting it as a satellite RNA. The deduced amino acid sequence of ORF 1a shows some similarity to those of RdRp of certain positive-strand RNA viruses, especially to the members of the family Nodaviridae, and that of ORF 2 to CP of the members in the family Tombusviridae. The nucleotide sequence of RNA 3 shows a 40-nucleotide length of partial similarity to S. macrospora virus B (SmV B) RNA. The capsid of SmV A is composed of two capsid proteins, CP 1 (p43) and CP 2 (p39), both encoded in ORF 2. CP 2 is apparently derived from CP 1 via proteolytic cleavage at the N-terminus. The genome organization of SmV A is characteristic and distinct from those of other known fungal RNA viruses, including SmV B. These results suggest that SmV A should be classified into a new group of mycoviruses.  相似文献   

18.
Bath C  Cukalac T  Porter K  Dyall-Smith ML 《Virology》2006,350(1):228-239
Spindle-shaped viruses are a dominant morphotype in hypersaline waters but their molecular characteristics and their relationship to other archaeal viruses have not been determined. Here, we describe the isolation, characteristics and genome sequence of His2, a spindle-shaped halovirus, and compare it to the previously reported halovirus His1. Their particle dimensions, host-ranges and buoyant densities were found to be similar but they differed in their stabilities to raised temperature, low salinity and chloroform. The genomes of both viruses were linear dsDNA, of similar size (His1, 14,464 bp; His2, 16,067 bp) and mol% G+C (approximately 40%), with long, inverted terminal repeat sequences. The genomic termini of both viruses are likely to possess bound proteins. They shared little nucleotide similarity and, except for their putative DNA polymerase ORFs, no significant similarity at the predicted protein level. A few of the 35 predicted ORFs of both viruses showed significant matches to sequences in GenBank, and these were always to proteins of haloarchaea. Their DNA polymerases showed 42% aa identity, and belonged to the type B group of replicases that use protein-priming. Purified His2 particles were composed of four main proteins (62, 36, 28 and 21 kDa) and the gene for the major capsid protein was identified. Hypothetical proteins similar to His2 VP1 are present in four haloarchaeal genomes but are not part of complete prophages. This, and other evidence, suggests a high frequency of recombination between haloviruses and their hosts. His1 and His2 are unlike fuselloviruses and have been placed in a new virus group, Salterprovirus.  相似文献   

19.
Mechanism of capsid assembly for an icosahedral plant virus   总被引:7,自引:0,他引:7  
Capsids of spherical viruses share a common architecture: an icosahedral arrangement of identical proteins. We suggest that there may be a limited number of common assembly mechanisms for such viruses. Previous assembly mechanisms were proposed on the basis of virion structure but were not rigorously tested. Here we apply a rigorous analysis of assembly to cowpea chlorotic mottle virus (CCMV), a typical, small, positive-strand RNA virus. The atomic resolution structure of CCMV revealed an interleaving of subunits around the quasi-sixfold vertices, which suggested that capsid assembly was initiated by a hexamer of dimers (Speir et al., 1995, Structure 3, 63-78). However, we find that the capsid protein readily forms pentamers of dimers in solution, based on polymerization kinetics observed by light scattering. Capsid assembly is nucleated by a pentamer, determined from analysis of the extent of assembly by size-exclusion chromatography. Subsequent assembly likely proceeds by the cooperative addition of dimers, leading to the T = 3 icosahedral capsid. At high protein concentrations, the concentration-dependent nucleation reaction causes an overabundance of five-dimer nuclei that can be identified by classical light scattering. In turn these associate to form incomplete capsids and pseudo-T = 2 capsids, assembled by oligomerization of 12 pentamers of dimers. The experimentally derived assembly mechanisms of T = 3 and pseudo-T = 2 CCMV capsids are directly relevant to interpreting the structure and assembly of other T = 3 viruses such as Norwalk virus and pseudo-T = 2 viruses such as the vp3 core of blue tongue virus.  相似文献   

20.
The Acidianus bottle-shaped virus, ABV, infects strains of the hyperthermophilic archaeal genus Acidianus and is morphologically distinct from all other known viruses. Its genome consists of linear double-stranded DNA, containing 23,814 bp with a G+C content of 35%, and it exhibits a 590-bp inverted terminal repeat. Of the 57 predicted ORFs, only three produced significant matches in public sequence databases with genes encoding a glycosyltransferase, a thymidylate kinase and a protein-primed DNA polymerase. Moreover, only one homologous gene is shared with other sequenced crenarchaeal viruses. The results confirm the unique nature of the ABV virus, and support its assignment to the newly proposed viral family the Ampullaviridae. Exceptionally, one region at the end of the linear genome of ABV is similar in both gene content and organization to corresponding regions in the genomes of the bacteriophage varphi29 and the human adenovirus. The region contains the genes for a putative protein-primed DNA polymerase, and a small putative RNA with a predicted secondary structure closely similar to that of the prohead RNA of bacteriophage varphi29. The apparent similarities in the putative mechanisms of DNA replication and packaging of ABV to those of bacterial and eukaryal viruses are most consistent with the concept of a primordial gene pool as a source of viral genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号