首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endochondral bone formation occurs through a series of developmentally regulated cellular stages, from initial formation of cartilage tissue to calcified cartilage, resorption, and replacement by bone tissue. Nasal cartilage cells isolated by enzymatic digestion from rat fetuses were seeded at a final density of 105 cell/cm2 and cultured in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal calf serum in the presence of ascorbic acid and β-glycerophosphate. First, cells lost their phenotype but in this condition they rapidly reexpressed the chondrocyte phenotype and were able to form calcified cartilaginous nodules with the morphological appearance of cartilage mineralization that occurs in vivo during endochondral ossification. In this mineralizing chondrocyte culture system, we investigated, between day 3 and day 15, the pattern expression of types II and X collagen, proteoglycan core protein, characteristic markers of chondrocyte differentiation, as well as alkaline phosphatase and osteocalcin associated with the mineralization process. Analysis of labeled collagen and immunoblotting revealed type I collagen synthesis associated with the loss of chondrocyte phenotype at the beginning of the culture. However, our culture conditions promoted extracellular matrix mineralization and cell differentiation towards the hypertrophic phenotype. This differentiation process was characterized by the induction of type X collagen mRNA, alkaline phosphatase, and diminished expression of type II collagen and core protein of large proteoglycan after an increase in their mRNA levels before the mineralizing process. These results revealed distinct switches of the specific molecular markers and indicated a similar temporal expression to that observed in vivo recapitulating all stages of the differentiation program in vitro. Received: 12 December 1996 / Accepted: 26 June 1997  相似文献   

2.
The Sonic Accelerated Fracture Healing System (SAFHS) is a relatively new fracture management tool which incorporates the application of a specifically modified diagnostic ultrasound unit to healing fractures with the intention of accelerating repair. In an animal fracture model, this device has been shown to accelerate the rate of biomechanical healing by a factor of 1.4–1.6. In two randomized, controlled trials in humans, the same unit has been shown to reduce the time frame of clinical and radiographic healing by 38%. In the two fracture regions investigated, tibial diaphysis and distal radius, this represented a 58 day and 37 day reduction in healing time, respectively. Despite its effect on the entire process of fresh fracture repair, the effect of the SAFHS on the individual stages and processes involved has not been established. This paper reviews these stages and processes, and discusses the clinical and practical implications of the effect of the SAFHS on fracture repair and the need for further research into this modality. Received: 24 December 1998 / Accepted: 13 August 1999  相似文献   

3.
Fracture healing and callus formation have traditionally been evaluated by using X-ray radiography. Here we compared X-ray radiography and peripheral quantitative computed tomography (pQCT) in evaluating the healing callus of standardized tibial fractures in 141 female rats after a 4- or 8-week follow-up. The results were compared with the tensile (4-week) and compressive (8-week) failure load of the callus. The projectional size of callus, as defined from lateral ex vivo radiographs, correlated significantly with the pQCT-defined cross-sectional area (CSA) of mid-callus. This relationship was dependent on the pQCT attenuation threshold, being higher for the CSA of compact bone (r = 0.85, P < 0.0001) than for the total bone CSA (r = 0.68, P < 0.0001). Radiographically defined callus projectional area also correlated strongly with bone mineral content (BMC) (r = 0.84–0.86, P < 0.0001). The mean optical density of the callus analyzed from the radiographs had only a weak correlation with the pQCT-defined bone mineral density (BMD) of callus. A weak negative relationship was found between CSA and BMD. The optical density analyzed from lateral radiographs did not correlate with the tensile or compressive failure load of callus. Callus size, BMC, and BMD were associated with the compressive failure load, whereas both radiographs and pQCT were poor in explaining the failure load in tension. Received: 28 June 1999 / Accepted: 28 October 1999  相似文献   

4.
During endochondral ossification, proliferative activity of chondrocytes is arrested and the cells undergo terminal hypertrophic differentiation. We examined the expression of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1 in permanent cartilage (xyphoid and articular cartilage) and in cartilage undergoing endochondral ossification (growth plate, epiphyseal ossification centers, and costochondral junctions) to determine if p21 is up-regulated in chondrocytes during hypertrophic differentiation. Northern blot analyses demonstrated expression of p21 in chondrocytes undergoing endochondral ossification and from sites of permanent cartilage. Quantitative analyses of Northern data showed an association between expression of the hypertrophic-specific marker, collagen type X, and the level of 21 expression. In situ hybridization of rodent femoropatellar joints and costochondral junctions localized p21 mRNA to chondrocytes within both the proliferative and hypertrophic zones of the growth plates, in chondrocytes involved in formation of the epiphyseal ossification centers, and in articular chondrocytes. Immunohistochemical analyses of p21 expression in the same tissues demonstrated comparatively higher levels of p21 protein in postmitotic chondrocytes. These data suggest that p21 is active in cell cycle regulation in chondrocytes, and that increased p21 expression is associated with hypertrophic differentiation. Received: 11 October 1996 / Accepted: 23 April 1997  相似文献   

5.
王欢博  贺婷  郑超  卢玮光  范静  颉强  杨柳 《骨科》2021,12(6):485-492
目的 探究Indian Hedgehog(IHH)信号通路对软骨内成骨过程中软骨细胞成熟以及转分化的影响。方法 取10日龄野生型小鼠的胫骨组织,采用原位杂交和免疫组织化学染色检测生长板区域IHH信号通路相关分子IhhPtch1Gli1的表达水平。构建肥大软骨细胞特异性Ihh基因敲除小鼠(Col10a1Cre/+; Ihhnull/C),并采用影像学检查和阿利新蓝染色评估该小鼠的骨骼发育状况。构建肥大软骨细胞IHH信号通路持续激活小鼠(Col10a1Cre/+; R26SmoM2/M2Col10a1Cre/+; Ptch1LacZ/C),采用HE染色、原位杂交和TUNEL染色分别对受精15.5天胎鼠胫骨组织形态结构、Ihh(肥大软骨细胞分子标志物)和Col1a1(成骨细胞分子标志物)以及肥大软骨细胞凋亡水平进行检测;另外应用HE染色对10日龄小鼠的胫骨组织进行组织学分析。结果 肥大软骨细胞合成分泌IHH,但不表达Ptch1Gli1。抑制肥大软骨细胞合成IHH蛋白会导致出生后小鼠出现侏儒症;X线检查结果显示小鼠出现严重的骨骼发育不良,包括胸廓狭小、球形头骨以及椎骨发育异常等表现。持续启动IHH信号通路时,胚胎早期软骨细胞成熟分化过程虽未见异常,但是出生后小鼠的骨小梁、骨内膜以及皮质骨等结构均出现一定的异常表现。结论 IHH信号通路虽然不参与肥大软骨细胞的终末分化过程,但在软骨细胞转分化的过程中起到了重要的调控作用。  相似文献   

6.
Fracture repair provides an interesting model for chondrogenesis and osteogenesis as it recapitulates in an adult organism the same steps encountered during embryonic skeletal development and growth. The fracture callus is not only a site of rapid production of cartilage and bone, but also a site of extensive degradation of their extracellular matrices. The present study was initiated to increase our understanding of the roles of different proteolytic enzymes, cysteine cathepsins B, H, K, L, and S, and matrix metalloproteinases (MMPs) 9 and 13, during fracture repair, as this aspect of bone repair has previously received little attention. Northern analysis revealed marked upregulation of cathepsin K, MMP-9, and MMP-13 mRNAs during the first and second weeks of healing. The expression profiles of these mRNAs were similar with that of osteoclastic marker enzyme tartrate-resistant alkaline phosphatate (TRAP). The changes in the mRNA levels of cathepsins B, H, L, and S were smaller when compared with those of the other enzymes studied. Immunohistochemistry and in situ hybridization confirmed the predominant localization of cathepsin K and MMP-9 and their mRNA in osteoclasts and chondroclasts at the osteochondral junction. MMP-13 was present in osteoblasts and individual hypertrophic chondrocytes near the cartilage-bone interphase. In cartilaginous callus, the expression of cathepsins B, H, L, and S was mainly related to chondrocyte hypertrophy. During bone remodeling both osteoblasts and osteoclasts contained these cathepsins. The present data demonstrate that degradation and remodeling of extracellular matrices during fracture healing involves activation of MMP-13 production in hypertrophic chondrocytes and osteoblasts, and cathepsin K and MMP-9 production in osteoclasts and chondroclasts. Received: 2 February 2000 / Accepted: 25 May 2000 / Online publication: 2 November 2000  相似文献   

7.
We have previously shown that restoration of a local bone defect in the rat not only leads to a regional acceleratory phenomenon (RAP), but also to a systemic acceleration of osteogenesis (SAP) at distant sites of the skeleton. In this study, we investigated whether specific inhibition of osteoblasts would affect the local RAP and the systemic acceleratory phenomenon (SAP) healing sites. Systemic inhibition of osteoblasts was induced by inflammation-mediated osteopenia (IMO), a nonspecific type of inflammation initiated by S.C. injections of sterile talc. A drill hole defect 1.2 mm in diameter was performed at the midshaft of the left tibia of female rats. On day 7, during the formation phase of the local healing process, IMO did not influence the number of osteoblasts or the bone volume in the marrow cavity of the local healing site, whereas it did lead to a significant reduction of osteoblast number and bone volume at the systemic site (subepiphyseal spongiosa of the tibia). By contrast, on days 14 and 21, during the resorption phase of bone healing, IMO led to a significant reduction in both osteoblast number and bone volume in the marrow cavity of the local healing site. At the same time, however, it did not influence the cortical area of the bone defect where newly formed bone is needed to ensure mechanical stability. In summary, our model of bone healing reveals that a humoral noxious osteoblast stimulus such as IMO is able to inhibit systemically osteoblasts stimulated by SAP, whereas it is not able to inhibit osteoblasts either from producing woven bone during a RAP or from producing bone that is needed to mechanically stabilize a defect. Received: 31 March 1997 / Accepted: 20 February 1998  相似文献   

8.
To establish the PTH dosage that maintains normal mineral homeostasis in the PTX rat, a series of doses of rat 1-34 PTH were infused via a subcutaneously implanted miniosmotic pump. The doses were 0, 0.011, 0.022, 0.044, and 0.11 μg/100 g/hour. After 48 hours, serum calcium ranged from 5.56 ± 0.02 to 16.29 ± 0.25 mg/dl, ANOVA P < 0.001, and serum phosphorus from 12.49 ± 0.03 to 5.33 ± 0.34 mg/dl, ANOVA P < 0.001. By post hoc test, the serum calcium level was different (P < 0.05) at every PTH dose; the serum phosphorus level was different (P < 0.05) at every PTH dose except between the two highest doses. The PTH dosage that produced a normal serum calcium (10.09 ± 0.10 mg/dl) and phosphorus (6.90 ± 0.18 mg/dl) was 0.022 μg/100 g/hour. The relationship between increasing doses of PTH and both serum calcium and phosphorus was curvilinear and the calcium-phosphorus product was remarkably constant from a serum calcium of 7–13 mg/dl. The increase in serum calcium and the decrease in serum phosphorus were more rapid at lower than at higher PTH doses so that for both, an asymptote was reached. At the highest serum calcium values, the calcium-phosphorus product increased and in individual rats, an increase in serum phosphorus was associated with a decrease in serum calcium. In summary, this study shows that (1) for rat 1-34 PTH, the normal replacement dose in the PTX rat with normal renal function on a normal diet is 0.022 μg/100 g/hour; (2) the relationship between PTH and both serum calcium and phosphorus is curvilinear, and an asymptote is reached for both; and (3) the calcium-phosphorus product is remarkably constant as the serum calcium increases from 7 to 13 mg/dl and only increased during marked hypercalcemia when serum phosphorus did not decrease further or even tended to increase. Received: 30 May 1997 / Accepted: 15 October 1997  相似文献   

9.
Hip fracture, the most dramatic complication of osteoporosis, constitutes a serious health problem of the elderly, with great socioeconomic consequences. Hip fracture epidemiology has been studied by many investigators. Until now, reported studies in Greece include either data from only one region, or they do not include all the epidemiological parameters concerning hip fractures. We studied hip fractures that occurred in Greece in 1992 and compared the findings with those of previous years (1977, 1982, 1987), in order to identify age and sex incidence and increase rate during 1977–1992. There has been an average annual increase of 7.6%, thus total hip fractures in Greece increased from 5,100 in 1977 (54.75 fractures/100,000 inhabitants) to 10,953 in 1992 (107.30 fractures/100,000 inhabitants). In 1992, 70% of the patients were women. During the 1977–1992 period, age-adjusted incidence for people aged over 50 increased in both sexes (from 173.54 fractures/100,000 inhabitants in 1977 to 314.07 fractures/100,000 inhabitants in 1992, an increase of age-adjusted incidence of 80.97%). Approximately 50% of the patients in 1992 were aged 80 and over, whereas in 1977 there were only 22.49% patients of the same age. The increase in hip fracture numbers is greater than expected due to population aging, suggesting the existence of other factors influencing this increase. The most affected age group is 80 and over. Received: 3 June 1997 / Accepted: 9 October 1997  相似文献   

10.
Osteocalcin (OC), which is a marker of the mature osteoblasts, can also be found in posthypertrophic chondrocytes of the epiphyseal growth plate, but not in chondrocytes of the resting zone or in adult cartilage. In human osteoarthritis (OA), chondrocytes can differentiate to a hypertrophic phenotype characterized by type X collagen. The protein- and mRNA-expression pattern of OC was systematically analyzed in decalcified cartilage and bone sections and nondecalcified cartilage sections of human osteoarthritic knee joints with different stages of OA to investigate the differentiation of chondrocytes in OA. In severe OA, we found an enhanced expression of the OC mRNA in the subchondral bone plate, demonstrating an increased osteoblast activity. Interestingly, the OC protein and OC mRNA were also detected in osteoarthritic chondrocytes, whereas in chondrocytes of normal adult cartilage, both the protein staining and the specific mRNA signal were negative. The OC mRNA signal increased with the severity of OA and chondrocytes from the deep cartilage layer, and proliferating chondrocytes from clusters showed the strongest signal for OC mRNA. In this late stage of OA, chondrocytes also stained for alkaline phosphatase and type X collagen. Our results clearly show that the expression of OC in chondrocytes correlates with chondrocyte hypertrophy in OA. Although the factors including this phenotypic shift in OA are still unknown, it can be assumed that the altered microenvironment around osteoarthritic chondrocytes and systemic mediators could be potential inducers of this differentiation. Received: 20 May 1999 / Accepted: 10 February 2000  相似文献   

11.
Two methods of collecting osteoblast-like cells from newborn rat calvaria were tested, either placing individual glass fragments or tipping dense glass beads onto the endocranial surface of periosteum-free bone. Inoculated at high density, cells collected by using these two methods form large mineralized plates after three weeks of culture. The main purpose of our investigation was to analyze the progressive formation of this mineralized structure and to localize alkaline phosphatase activity. At the beginning of the culture, flattened cells gathered into multilayers and synthesized collagen fibers. Cells in the upper layer became rapidly cuboidal in shape and continued to secrete collagen at their basal pole, whereas other cells became progressively embedded in the extracellular matrix. The upper cells featured ultrastructural characters of osteoblasts, whereas the embedded cells resembled osteocytes. After two weeks, the matrix began to mineralize: crystals appeared on collagen fibers, on matrix vesicles, and on cell debris. During the first days of the culture, the alkaline phosphatase activity was localized on the plasma membranes and on the collagen fibers. Thereafter, only the upper cells and collagen fibers that were juxtaposed to these cells showed alkaline phosphatase activity. In addition, the presence of mineralized matrix prevented the reaction product from being visualized on collagen fibers. The ultrastructural analysis reveals large mineralized plates with a structure resembling that of bone in vivo. This culture appears to be an appropriate model to study bone formation and regulation. Received: 30 September 1995 / Accepted: 3 May 1996  相似文献   

12.
In odontoblasts as well as osteoblasts, a number of mechanisms for the inflow and extrusion of Ca2+ have been demonstrated. The entrance of Ca2+ ions into odontoblasts occurs mainly through voltage-gated calcium channels. Extrusion of Ca2+ is found to be an ATP-dependent process and, in addition, Na+/Ca2+-antiports exist, which are provoked by extracellular Na+. The aim of this study was to identify the Na+/Ca2+-antiport isoforms expressed in dentinogenically active rat incisor odontoblasts and to make a comparison with different osteoblastic cells. Using RT-PCR and RNAse protection assay, we demonstrated the expression of three different isoforms, NaCa 3, 7, and 10, of the NCX1-encoded antiport in odontoblasts and osteoblastic cells. When incubated in the presence of Na+, dissected rat incisor odontoblasts as well as the osteoblastic cells extruded Ca2+ ions, as detected by chlorotetracycline and Fura-2 fluorometry, thus supporting a physiological role for the detected isoform expression. Odontoblasts and rat calvarial osteoblasts, as well as osteoblast-like cell lines UMR-106.01 and Saos-2, were shown to exhibit identical phenotypes of Na+/Ca2+-antiport isoform expression, different from the expression patterns of other tissues. The significance of this specific expression pattern is unknown, but there is a possibility that it is in some way related to the unique demands on these cell types to produce mineralized connective tissue. Received: 8 May 1999 / Accepted: 21 January 2000  相似文献   

13.
14.
There are obvious sexual differences in adult skeletal morphology which for the most part are related to differences in size. Higher androgen serum levels in males exert potent osteoanabolic effects and therefore may contribute to this sexual dimorphism of the skeleton. The presence of androgen receptors (AR) in bone cells is a prerequisite for a direct osteoanabolic action of androgens. To investigate the possibility that, in addition to gender-related differences in androgen serum levels, there are also gender-related differences in the osteoblastic expression pattern of the androgen receptor, we examined AR mRNA expression, androgen binding sites, and mitogenic responses to the androgen dihydrotestosterone (DHT) in human osteoblastic cell (HOC) populations. HOCs were isolated from bone biopsy specimens derived from different skeletal sites of healthy adult males and females (2–69 years old). We found that male and female HOCs of all examined ages express similar AR mRNA levels and similar numbers of androgen binding sites. Using whole-cell-binding assays, we observed 3129–8417 androgen binding sites per femoral HOC with apparent KDs of 1.45–2.83 nM depending on the age of the investigated HOC population. Mandibular and cortical HOC of both sexes expressed higher AR mRNA levels, significantly more androgen binding sites per cell, and exhibited significantly greater mitogenic responses to DHT than iliac crest-derived and trabecular HOC of the same skeletal system and the same skeletal-site, respectively. In early adulthood, HOCs of both sexes appear to express somewhat higher AR mRNA levels and to possess more androgen binding sites than prepubertal and senescent HOC. Because sex hormone serum levels rise in puberty, we investigated the regulation of the AR mRNA expression by various steroids. We found that dexamethasone (dexa) and in some experiments also 17β-estradiol (E2) and 1,25-dihydroxyvitamin D3 (D3) increased AR mRNA levels and androgen binding in HOC cultures. A pretreatment with dexa, E2, and D3 significantly increased the mitogenic response of HOCs to DHT. We conclude that (1) higher androgen serum levels in males together with a higher AR expression at certain skeletal sites may contribute to the development of sex-related differences in skeletal morphology, (2) glucocorticoids induce AR gene expression in HOC cultures, and (3) glucocorticoids, E2, and D3 enhance the mitogenic action of DHT. Received: 3 June 1996 / Accepted: 30 April 1997  相似文献   

15.
The small proteoglycan decorin had been localized previously at the d-band in the gap zone of collagen fibrils in nonmineralizing tissues. In bone matrix this zone is proteoglycan free and is at least in some species the place where mineralization along collagen fibrils starts. To study the metabolism of the small proteoglycans decorin and biglycan under mineralizing conditions, osteoblasts from human nasal bone were cultured for several weeks in the presence or absence of β-glycerophosphate and ascorbate. An immediate consequence of the treatment was a reduced expression of decorin, as judged by immune precipitation, whereas the biosynthesis of biglycan was not affected. Pulse-chase experiments were performed with osteoblasts embedded in floating type I collagen gels. In the presence of β-glycerophosphate and ascorbate, a more rapid turnover of both proteoglycans was noted; the one of biglycan reached statistical significance. Indirect evidence for an enhanced rate of proteoglycan endocytosis was obtained. This effect was not seen in cultured skin fibroblasts. Thus, osteoblasts respond rapidly to mineralizing conditions with alterations of small proteoglycan biosynthesis and turnover. Received: 30 October 1995 / Accepted: 3 January 1997  相似文献   

16.
Bone morphogenetic proteins (BMPs) and their receptors (BMPRs) are thought to play an important role in bone morphogenesis. The purpose of this study was to determine the locations of BMP-2/-4, osteogenic protein-1 (OP-1, also termed BMP-7), and BMP type II receptor (BMPR-II) during rat fracture healing by immunostaining, and thereby elucidate the possible roles of the BMPs and BMPR-II in intramembranous ossification and endochondral ossification. In the early stage of fracture repair, the expression of BMP-2/-4 and OP-1 was strongly induced in the thickened periosteum near the fracture ends, and coincided with an enhanced expression of BMPR-II. On day 7 after fracture, staining for BMP-2/-4 and OP-1 immunostaining was increased in various types of chondrocytes, and was strong in fibroblast-like spindle cells and proliferating chondrocytes in endochondral bone. On day 14 after fracture, staining with OP-1 antibody disappeared in proliferating and mature chondrocytes, while BMP-2/-4 staining continued in various types of chondrocytes until the late stage. In the newly formed trabecular bone, BMP-2/-4 and OP-1 were present at various levels. BMPR-II was actively expressed in both intramembranous ossification and endochondral ossification. Additionally, immunostaining for BMP-2/-4 and OP-1 was observed in multinucleated osteoclast-like cells on the newly formed trabecular bone, along with BMPR-II. In reference to our previous study of BMP type I receptors (BMPR-IA and BMPR-IB), BMPR-II was found to be co-localized with BMPR-IA and BMPR-IB. BMP-2/-4 and OP-1 antibodies exhibited distinct and overlapping immunostaining patterns during fracture repair. OP-1 may act predominantly in the initial phase of endochondral ossification, while BMP-2/-4 acts throughout this process. Thus, these findings suggested that BMPs acting through their BMP receptors may play major roles in modulating the sequential events leading to bone formation.  相似文献   

17.
18.
Spinal Trabecular Bone Loss and Fracture in American and Japanese Women   总被引:7,自引:0,他引:7  
This study examined trabecular bone mineral density (BMD) in Japanese women with and without spinal fracture, and compared the results to American women with and without fracture. The quantitative computed tomography (QCT) systems used at the University of California, San Francisco (UCSF) and at Nagasaki University were cross-calibrated. Normative BMD was assessed with the K2HPO4 liquid phantom in 538 Americans aged 20–85 years, and with the B-MAS200 phantom in 577 Japanese aged 20–83 years. These BMD were adjusted for use with the Image Analysis solid phantom using the result of cross-calibration. The trabecular BMD in 111 postmenopausal American women (55 with fracture), and in 185 postmenopausal Japanese women (67 with fracture) were compared for investigation of the difference in BMD values relative to fracture status. The absolute BMD values in Japanese were lower than those in Americans, and the differences were greater with advancing age. The magnitude of the BMD difference was 8.6, 20.5, 38.1 mg/cm3 in women aged 20–24 years, 40–44 years, 60–64 years, respectively. In premenopausal women, BMD began to decrease at the age of 20 in Japanese, whereas the peak bone mass was maintained until the age of 35 in the American women. In immediate postmenopausal women, BMD significantly decreased in both populations. In later postmenopausal women, BMD significantly decreased with age in the Japanese women but decreased less rapidly in the American women. The aging decrease of BMD was 1.4% and 2.2% per year in the later postmenopausal American and Japanese women, respectively. The fracture threshold is considered to be lower in Japanese women. However, the BMD difference between American and Japanese women with fracture was similar to that without fracture. The Z-scores of fracture subjects versus controls were 2.9 in American and 1.8 in Japanese women. In conclusion, Japanese women were found to have a lower BMD and lower fracture threshold than American women. The significant decrease of spinal trabecular BMD in late postmenopause is potentially responsible for the higher prevalence of spinal fracture in Japanese women. Received: 18 December 1995 / Accepted: 23 September 1996  相似文献   

19.
The steroid sex hormones exert major effects on bone formation although the molecular events associated with their activity remain unclear. We have investigated the effects of ovariectomy and dihydrotestosterone (DHT) administration to both sham-operated and ovariectomized (ovx) rats on the bone mRNA levels of osteoblast genes. Rats were randomly allocated to either sham or ovariectomy operations and were administered either vehicle or 40 mg/kg body weight DHT by silastic tube implants at the time of operation for 8 weeks, at which time they were killed and total RNA was extracted from the long bones. Northern blot analysis indicated that the mRNA levels of the bone cell genes α1(I) collagen, alkaline phosphatase, osteocalcin, and osteopontin were markedly increased in ovx rats between 6- and 30-fold. DHT administration to ovary-intact, estrogen-sufficient rats increased the mRNA levels of α1(I) collagen, alkaline phosphatase, osteopontin, and osteocalcin between 3- and 9-fold. In contrast, DHT did not alter levels of these mRNA species in ovx rats. The data demonstrate that estrogen deficiency increased mRNA levels of genes expressed during osteoblast development and suggest an interplay between estrogen and androgen action in regulating the expression of a number of bone cell genes. Received: 20 May 1999 / Accepted: 21 January 2000  相似文献   

20.
Expression of BMP-2 by Rat Bone Marrow Stromal Cells in Culture   总被引:7,自引:0,他引:7  
To investigate the role of bone morphogenetic protein (BMP-2) in ossifying rat bone marrow stromal cell cultures, we determined the population of fibroblast-like stromal cells that expressed BMP-2 immunocytochemically (anti-rhBMP-2 monoclonal antibody), and compared that to alkaline phosphatase (AP) and collagen synthesis formed in culture over a 4-week period in control and dexamethasone-supplemented mineralizing media. In control media, the percentage of BMP-2-positive stromal cells (BMP-2+) increased from 12 to 25% within the first 4 days of culture. In mineralizing media, the level of BMP-2+ cells was significantly increased (43–44%). The intensity of immunostaining gradually increased with time. The levels of AP were undetectable at 1 week in both control and mineralizing media, but increased gradually over the next 2 weeks and peaked at 3 weeks. ALP levels were significantly greater in cultures grown in mineralizing medium (P < 0.05 at 3 weeks, P < 0.01 at 4 weeks). Collagen synthesis peaked and was significantly greater at 3 weeks (P < 0.05) in cultures grown in mineralizing medium. The levels of AP and collagen synthesis most closely reflected the changes in the percentage of BMP-2+ cells from 7 to 28 days. Though these changes may reflect a primary action of BMP-2 on marrow osteoprogenitor-like stromal cells, they do not exclude a mechanism that involves the induction of other members of the BMP family known to stimulate AP and collagen synthesis. We conclude that BMP-2 expression in cultures of fibroblast-like marrow stromal cells is enhanced when those cells are induced to become osteoblasts by exposure to dexamethasone. Received: 30 October 1997 / Accepted: 24 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号