共查询到20条相似文献,搜索用时 15 毫秒
1.
A genipin-crosslinked gelatin membrane as wound-dressing material: in vitro and in vivo studies 总被引:1,自引:0,他引:1
Chang WH Chang Y Lai PH Sung HW 《Journal of biomaterials science. Polymer edition》2003,14(5):481-495
A naturally occurring crosslinking agent (genipin) was used in this study to crosslink gelatin hydrogel to develop a wound-dressing membrane. The study was to investigate the in vitro characteristics of the genipin-crosslinked gelatin membrane. The glutaraldehyde-crosslinked counterpart, at a similar crosslinking degree, was used as control. Additionally, an in vivo experiment was undertaken to study the wound healings covered with the glutaraldehyde- and genipin-crosslinked dressings in a rat model. The in vitro results obtained suggested that crosslinking of gelatin membranes with glutaraldehyde or genipin may produce distinct crosslinking structures. The differences in crosslinking structure can significantly affect the mechanical property, water-vapor-transmission rate, swelling ratio, degradation against enzyme and cellular compatibility of the crosslinked membranes. In the in vivo study, it was found that the degree of inflammatory reaction for the wound treated with the genipin-crosslinked dressing was significantly less severe than that covered with the glutaraldehyde-crosslinked dressing throughout the entire course of the study. Additionally, the healing rate for the wound treated with the genipin-crosslinked dressing was notably faster than its glutaraldehyde-crosslinked counterpart. 相似文献
2.
Tae Ho Kim Se Heang Oh Dan Bi An Ji Youl Lee 《Journal of biomaterials science. Polymer edition》2013,24(5):322-337
Growth factors (GFs) (basic fibroblast growth factor (bFGF) and/or nerve growth factor (NGF))-immobilized polycaprolactone (PCL)/Pluronic F127 microspheres were prepared using an isolated particulate-melting method and the sequential binding of heparin and GFs onto the microspheres. The GFs immobilized on the microspheres were released in a sustained manner over 28 days, regardless of GF type. From the in vitro culture of muscle-derived stem cells, it was observed that the NGF-immobilized microspheres induced more neurogenic differentiation than the bFGF-immobilized microspheres, as evidenced by a quantitative real-time polymerase chain reaction using specific neurogenic markers (Nestin, GFAP, β-tubulin, and MAP2) and Western blot (Nestin and β-tubulin) analyses. The dual bFGF/NGF-immobilized microspheres showed better neurogenic differentiation than the microspheres immobilized with single bFGF or NGF. From the preliminary animal study, the dual bFGF/NGF-immobilized microsphere group also showed effective nerve regeneration, as evaluated by immunocytochemistry using a marker – β-tubulin. The dual bFGF/NGF-immobilized PCL/Pluronic F127 microspheres may be a promising candidate for nerve regeneration in certain target tissues (i.e. muscles) leading to sufficient reinnervation. 相似文献
3.
Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes 总被引:3,自引:0,他引:3
Balthasar S Michaelis K Dinauer N von Briesen H Kreuter J Langer K 《Biomaterials》2005,26(15):2723-2732
Established methods of protein chemistry can be used for the effective attachment of drug targeting ligands to the surface of protein-based nanoparticles. In the present work gelatin nanoparticles were used for the attachment of biotinylated anti-CD3 antibodies by avidin-biotin-complex formation. These antibody modified nanoparticles represent a promising carrier system for the specific drug targeting to T-lymphocytes. The objective of this work was the comprehensive quantification of every chemical reaction step during the preparation procedure of these cell specific nanoparticles. Gelatin nanoparticles were formed by a two-step desolvation process. After the first desolvation step the remaining sediment and the supernatant were analysed for molecular weight distribution by size exclusion chromatography (SEC). Nanoparticles then were formed using the high molecular gelatin fraction and subsequently were stabilised by glutaraldehyde crosslinking. A part of the detectable amino groups on the particle surface was reacted with 2-iminothiolane in order to introduce reactive sulfhydryl groups. The thiolated nanoparticles were coupled to NeutrAvidin (NAv) which previously was activated with the heterobifunctional crosslinker sulfo-MBS. All these reaction steps were quantified by photometry or gravimetry. The functionality of NAv after covalent conjugation was confirmed by a biotin-4-fluorescein assay. The NAv-modified nanoparticles then were used for the binding of biotinylated anti-CD3 antibodies by avidin-biotin-complex formation. A highly effective attachment of the ligand was ascertained by different, indirect methods: immunoblotting and fluorimetry. Therefore, a well-defined nanoparticle system with drug targeting ligand modification was established that holds promise for further effective preclinical testing. 相似文献
4.
Macroporous elastic scaffolds containing gelatin (4% or 10%) and 0.25% hyaluronic acid (HA) were fabricated by cryogelation for application in adipose tissue engineering. These cryogels have interconnected pores (~200 μm), high porosity (>90%) and a high degree of cross-linking (>99%). The higher gelatin concentration reduced the pore size, porosity and swelling ratio of the cryogel but improved its swelling kinetics. Compressive mechanical testing of cryogel samples demonstrated non-linear stress–strain behavior and hysteresis loops during loading–unloading cycles, but total recovery from large strains. The presence of more gelatin increased the elastic modulus, toughness and storage modulus and yielded a cryogel that was highly elastic, with a loss tangent equal to 0.03. Porcine adipose-derived stem cells (ADSCs) were seeded in the cryogel scaffolds to assess their proliferation and differentiation. In vitro studies demonstrated a good proliferation rate and the adipogenic differentiation of the ADSCs in the cryogel scaffolds, as shown by their morphological change from a fibroblast-like shape to a spherical shape, decreased actin cytoskeleton content, growth arrest, secretion of the adipogenesis marker protein leptin, Oil Red O staining for triglycerides and expression of early (LPL and PPARγ) and late (aP2 and leptin) adipogenic marker genes. In vivo studies of ADSCs/cryogel constructs implanted in nude mice and pigs demonstrated adipose tissue and new capillary formation, the expression of PPARγ, leptin and CD31 in immunostained explants, and the continued expression of adipocyte-specific genes. Both the in vitro and in vivo studies indicated that the gelatin/HA cryogel provided a structural and chemical environment that enabled cell attachment and proliferation and supported the biological functions and adipogenesis of the ADSCs. 相似文献
5.
Extracellular matrix-enriched polymeric scaffolds as a substrate for hepatocyte cultures: in vitro and in vivo studies 总被引:2,自引:0,他引:2
Zavan B Brun P Vindigni V Amadori A Habeler W Pontisso P Montemurro D Abatangelo G Cortivo R 《Biomaterials》2005,26(34):7038-7045
Tissue engineering is a promising approach to developing hepatic tissue suitable for the functional replacement of a failing liver. The aim of the present study was to investigate whether an extracellular cell matrix obtained from fibroblasts-cultured within scaffolds of hyaluronic acid (HYAFF) could influence the proliferation rate and survival of rat hepatocytes both during long-term culture and after in vivo transplantation. Cultures were evaluated by histological and morphological analysis, a proliferation assay and metabolic activity (albumin secretion). Hepatocytes cultured in extracellular matrix-enriched scaffolds exhibited a round cellular morphology and re-established cell-cell contacts, growing into aggregates of several cells along and/or among fibers in the fabric. Hepatocytes were able to secrete albumin up to 14 days in culture. In vivo results demonstrated the biocompatibility of HYAFF-11 implanted in nude mice, in which hepatocytes maintained small well-organised aggregates until the 35th day. In conclusion, the presence of a fibroblast-secreted extracellular matrix improved the biological properties of the hyaluronan scaffold, favoring the survival and morphological integrity of hepatocytes in vitro and in vivo. 相似文献
6.
Lihui Weng Parinaz Rostamzadeh Navid Nooryshokry Hung C. Le Jafar Golzarian 《Acta biomaterialia》2013,9(6):6823-6833
Natural polymer-derived materials have attracted increasing interest in the biomedical field. Polysaccharides have obvious advantages over other polymers employed for biomedical applications due to their exceptional biocompatibility and biodegradability. None of the spherical embolic agents used clinically is biodegradable. In the current study, microspheres prepared from chitosan and carboxymethyl cellulose (CMC) were investigated as a biodegradable embolic agent for arterial embolization applications. Aside from the enzymatic degradability of chitosan units, the cross-linking bonds in the matrix, Schiff bases, are susceptible to hydrolytic cleavage in aqueous conditions, which would overcome the possible shortage of enzymes inside the arteries. The size distribution, morphology, water retention capacity and degradability of the microspheres were found to be affected by the modification degree of CMC. An anticancer drug, doxorubicin, was successfully incorporated into these microspheres for local release and thus for killing cancerous cells. These microspheres demonstrated controllable degradation time, variable swelling and tunable drug release profiles. Co-culture with human umbilical vein endothelial cells revealed non-cytotoxic nature of these microspheres compared to monolayer control (P > 0.95). In addition, a preliminary study on the in vivo degradation of the microspheres (100–300 μm) was performed in a rabbit renal embolization model, which demonstrated that the microspheres were compatible with microcatheters for delivery, capable of occluding the arteries, and biodegradable inside arteries. These microspheres with biodegradability would be promising for embolization therapies. 相似文献
7.
Feng Su Yuandou Wang Xue Liu Xin Shen Xingjian Zhang 《Journal of biomaterials science. Polymer edition》2018,29(13):1515-1528
Carboxymethyl chitosan-graft-polylactide (CMCS-PLA) and carboxymethyl chitosan (CMCS) hydrogels were prepared by using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) as crosslinking agent and catalyst at room temperature. The biocompatibility of the hydrogels was evaluated with the aim of assessing their potential as drug carrier. Various aspects of biocompatibility were considered, including MTT assay, agar diffusion test, release of lactate dehydrogenase (LDH), hemolytic test, plasma recalcification time (PRT), and dynamic clotting time. MTT assay showed that the cytotoxicity level of both hydrogels to L-929 cells was 0 or 1. The LDH release of CMCS and CMCS-PLA was 26 and 29%, respectively, which is slightly higher than that of the negative control (21%) and much lower than that of the negative control (87%). The hemolysis ratio of CMCS and CMCS-PLA was 1.4 and 1.7%, respectively, suggesting outstanding anti-hemolysis properties of both materials. The PRT value of CMCS and CMCS-PLA was higher by 77 and 99% than the value of the positive control. All the results revealed that the hydrogels present good cytocompatibility and hemocompatibility in vitro. In vivo degradation and tissue compatibility were evaluated by subcutaneous injection in the dorsal area of rats. CMCS and CMCS-PLA hydrogels were completely degraded and the inflammatory response also completely disappeared around hydrogels after 19 days in vivo. It is thus concluded that hydrogels formed of CMCS and CMCS-PLA with outstanding biocompatibility are promising as potential drug carrier. 相似文献
8.
N-succinyl-chitosan (Suc-Chi) has favourable properties as a drug carrier such as biocompatibility, low toxicity and long-term retention in the body. It was long retained in the systemic circulation after intravenous administration, and the plasma half-lives of Suc-Chi (MW: 3.4 x 10(5); succinylation degree: 0.81 mol/sugar unit; deacetylation degree: 1.0 mol/sugar unit) were ca. 100.3h in normal mice and 43 h in Sarcoma 180-bearing mice. The biodistribution of Suc-Chi into other tissues was trace apart from the prostate and lymph nodes. The maximum tolerable dose for the intraperitoneal injection of Suc-Chi to mice was greater than 2 g/kg. The water-insoluble and water-soluble conjugates could be prepared using a water-soluble carbodiimide and mitomycin C (MMC) or using an activated ester of glutaric MMC. In vitro release characteristics of these conjugates showed similar patterns, i.e. a pH-dependent manner, except that water-insoluble conjugates showed a slightly slower release of MMC than water-soluble ones. The conjugates of MMC with Suc-Chi showed good antitumour activities against various tumours such as murine leukaemias (L1210 and P388), B16 melanoma, Sarcoma 180 solid tumour, a murine liver metastatic tumour (M5076) and a murine hepatic cell carcinoma (MH134). This review summarizes the utilization of Suc-Chi as a drug carrier for macromolecular conjugates of MMC and the therapeutic efficacy of the conjugates against various tumours. 相似文献
9.
Wu H Zhang Z Wu D Zhao H Yu K Hou Z 《Journal of biomedical materials research. Part B, Applied biomaterials》2006,78(1):56-62
Gelatin microspheres (GMs) containing Pingyangmycin hydrochloride were prepared for the interventional embolization by a double-phase emulsified thermal gelation method using oxidized dextran (ox-dex) as the cross-linking agent. The average diameter of the microspheres was 82 microm with 74% ranging from 50-200 microm. Drug content and the characteristics of drug release in vitro and in vivo were evaluated using UV-spectroscopy and HPLC, respectively. The prepared microspheres showed a rather high percentage of encapsulation ranging from 85 to 88% and drug content at 7.2%. The results of in vitro experiments showed that about 65.5% of the total amount of the encapsulated drug was released after 6 h at 37 degrees C. Experiments conducted through artery perfusion and artery embolization in rabbits revealed that the local drug concentration was significantly higher than the systemic blood-drug concentration, with a high level of local drug concentration maintained for more than 120 min after artery embolization with the Pingyangmycin-loaded ox-dex-GMs. The results indicated that the external carotid artery embolization with Pingyangmycin-loaded ox-dex-GMs at reduced dosages prolonged the local drug concentration at a higher level, and could achieve the purpose of a localized targeting tumor therapy. Compared with other embolization materials, ox-dex-GMs are an excellent alternative interventional embolization material for the treatment of head and neck tumors. 相似文献
10.
Bioresorbable microspheres by spinning disk atomization as injectable cell carrier: from preparation to in vitro evaluation 总被引:3,自引:0,他引:3
Vesico-ureteral reflux, a common pathology in children, can be treated cystoscopically by injection of a bulking material underneath the most distal, intramural ureter, which forces the latter to do a detour, increasing its submucosal path. This increase of the length of the submucosal path of the ureter within the bladder is directly responsible for the anti-reflux effect. So far Teflon and collagen paste have been commonly used as bulking materials. We suggest replacing these materials by living tissue consisting of bladder smooth muscle, normally present at this location. The aim of this work is to provide a long-term effective treatment by producing bioresorbable microspheres which can act as a support matrix and an entrapment substance for bladder smooth muscle cells, with the goal of an in vivo transfer of the in vitro cultured cells with a minimal surgical procedure. By the use of Spinning Disk Atomization, which has specifically been developed for this purpose, we have shown two methods for the preparation of porous poly(lactic acid) microspheres with tunable sizes from 160 to 320 microm. The controlled solvent burst method has shown the advantage over the crystal leaching method in the direct creation of microspheres with large closed pores, by atomizing the polymer solution in controlled temperature conditions. Microspheres with various closed pore structures have thus been prepared. The innovation of this work is in the direct and rapid formation of porous microspheres with a pore morphology which is designed to create cavities suitable for adherence and growth of cells by adapting the temperature conditions of atomization. Injection tests have shown promising results in using these cell-loaded microspheres for future non-invasive tissue engineering. 相似文献
11.
Lee JS Chae GS Kim MS Cho SH Lee HB Khang G 《Bio-medical materials and engineering》2004,14(2):185-192
Biodegradable polymers have been extensively investigated because of regulating drug release rate easily, obviating the need to remove the device, and good biocompatibility. Among the biodegradable polymers currently under investigation, poly(D,L-lactide-co-glycolide) (PLGA) copolymers are the most widely studied because of their long history of safe clinical use as drug carrier. 50 : 50 PLGA was used as a model degradable polymer in this study to investigate the degradation behaviour on drug release from bulk degradable polymers in vitro. 5-fluorouracil (5-FU) was used as a model drug. Molecular weight change, residual mass, water uptake, morphological change of PLGA wafers, and pH of release test medium were characterized to investigate the effect of polymer degradation on drug release. The release rate of 5-FU increased with the increase of 5-FU loading amount and the release profiles of 5-FU irrespective of 5-FU loading amount followed near first order release kinetics. 相似文献
12.
Cheng M Li Q Wan T Hong X Chen H He B Cheng Z Xu H Ye T Zha B Wu J Zhou R 《Journal of biomedical materials research. Part B, Applied biomaterials》2011,99(1):70-80
While chitosan (CS) has been researched widely as a non-viral vector, its usefulness has been limited by its low cell specificity and transfection efficiency. Therefore, we successfully synthesized galactosylated chitosan (GC) and complexed it with an enhanced green fluorescent protein plasmid (pIRES-EGFP) for transfection into cultured H22 cells (murine hepatic cancer cell line) using various GC/EGFP (N/P) charge ratios. Maximal gene transfection rates detected by flow cytometry occurred at an N/P ratio 5:1. Compared with those of lipofectin/EGFP and naked pIRES-EGFP, GC/EGFP complexes show a very efficient cell-selective transfection to hepatocytes. The MTT assay detected relatively low cytotoxicity in cells transfected with GC. A recombinant plasmid granulocyte-macrophage colony-stimulating factor (GM-SCF) and interleukin (IL) 21 (pIRES/GM-CSF-IL21) was successfully constructed and GC/GM-CSF-IL21 nanoparticles (average diameter, 82.1 nm) were administered via the tail vein of mice with liver metastasis of colon cancer model, for 5 consecutive days. The GC/GM-CSF-IL21 nanoparticles exhibited hepatocyte and passive tumor specificity, increased therapeutic efficacy compared to control groups, promoted leukocytes to aggregate in tumor tissues, and activated the cytotoxicity of natural killer (NK) cells and cytolytic T lymphocyte (CTL). Our results indicate that GC can be used in gene therapy to improve transfection efficiency and can be used as an immunological stimulant in vivo. 相似文献
13.
A study was performed to investigate the effectiveness of hydroxyapatite cement (HAC) as a new carrier system in the treatment of chronic, posttraumatic osteomyelitis. In the in vitro study, release of gentamicin from standard cylinders of HAC were measured by agar diffusion test. As a representative for mechanical properties, compression strength was measured in order to detect changes when mixing HAC with gentamicin. In the in vivo study, bone infection was induced according to the model of Norden by injection of 1 ml Na-morrhuat and 3 x 10(6)CFU Staphylococcus aureus. After 3 weeks, when chronic stage of infection was obtained, 17 animals were treated by debridement and filling the marrow either with HAC alone or HAC mixed with gentamicin (32 mg/g). Animals of the control groups were left untreated. After 6 weeks, all animals were sacrificed. Hematological, radiological, microbiological and histological examinations were carried out by covered investigation. Best evidence of the efficiency of treatment was observed in histopathological and microbiological findings. In all swabs of the control groups, taken 6 weeks following infection S. aureus were detected which were clonal to the strain used for induction of osteomyelitis. In HAC/gentamicin-treated animals, no growth was detectable after 7 days of culturing in BHI bouillon. In the HAC/gentamicin-treated group, there was no histopathological evidence of infection. In all other groups different stages of chronic osteomyelitis were found. No side effect was observed, neither locally nor systemically by HAC or gentamicin. Therefore, HAC is considered to be a very effective carrier for antibiotics in treatment of chronic, posttraumatic osteomyelitis. 相似文献
14.
Ihm JE Han KO Hwang CS Kang JH Ahn KD Han IK Han DK Hubbell JA Cho CS 《Acta biomaterialia》2005,1(2):165-172
We explored poly(4-vinylimidazole) (P4V) as a nonviral gene carrier. We show that P4V can form DNA condensates of small size (<110 nm) using a dye-exclusion assay with ethidium bromide and dynamic light scattering, and that the complexes form in a pH-sensitive manner, due to the amphotericity of the polymer. P4V was demonstrated to lead to transfection in vitro as effectively as polyethyleneimine (PEI), but at lower cytotoxicity, under conditions where higher amounts of either polymer are required, using luciferase and green fluorescent protein as examples. Transfection in vivo was also explored, using a gene encoding yellow fluorescent protein and human osteoprotegerin injected in the tail vein of the rat. Transfection was observed, both at the gene and protein levels in lung and spleen tissue. Transfection in vivo appeared to be at least as effective using P4V as with PEI. Based upon this good transfection and low cytotoxicity, P4V seems to show promise as a nonviral gene transfer vector. 相似文献
15.
Magnetic materials were suggested as carriers for protein immobilization about 10 years ago [1,2]. The main advantage of these carriers is their ability to be concentrated near magnetic terminals upon the application of the external magnetic field. This property is used in technological processes for selective catalyst removal from the reaction mixture [3], in immunological studies for the separation of cells to which magnetic particles are specifically bound modified with antibodies against cell surface components [4], in experiments for the drug targeting in vivo into appropriate tissues under the action of external magnetic field [5]. The properties of magnetic carriers are reviewed in [3]. There exist a number of methods to obtain porous magnetic carriers, containing immobilized matter not only on the surface, but also in the volume of a particle. Normally, these preparations are obtained by the granule formation from the suspension of ferromagnetic particles in the solution or melt of appropriate high-molecular-weight compound [5,6]. The drawback of the above-mentioned methods is the pronounced aggregation of ferromagnetic particles. The aggregation does not permit to use concentrated enough suspensions of magnetic particles and causes the formation of the product with a variety of sizes and magnetic properties. We made an attempt to synthesize the magnetic carrier for protein immobilization on the basis of commercial Sephadex porous spheres. Sephadex granules were made magnetic by adsorptional fixation of ferromagnetic particles in its pores. The properties of the "native" and "magnetic" Sephadexes as carriers for protein immobilization were compared by parallel immobilization on both carriers of alpha-chymotrypsin and 131I-albumin. In in vivo experiments we studied the ability of magnetic Sephadex to be concentrated in a desired region of the circulation under the action of external magnetic field. 相似文献
16.
A novel trans-lymphatic drug delivery system: implantable gelatin sponge impregnated with PLGA-paclitaxel microspheres 总被引:2,自引:0,他引:2
A translymphatic drug delivery system which incorporates poly-lactide-co-glycolide-paclitaxel (PLGA-PTX) or PLGA-rhodamine microspheres into gelatin sponge matrix is described. The system combines the sustained release properties of PLGA-PTX with the structural advantages of gelatin matrix that can be implanted directly to the lymphatic site for both therapeutic and prophylactic purposes. The PLGA microspheres were prepared using spray drying technique. The particles were in the size range of 1-8 microm, suitable for intraperitoneal and intrapleural lymphatic targeting delivery. Scanning electron microscopy revealed the homogeneous distribution of PLGA microspheres in the porous sponge network. The release of PTX was mainly controlled by the degradation of the PLGA. Crosslinking gelatin using carbodiimide reduced the biodegradation of the sponge and thereby delayed the release of the PLGA in vitro. In vivo lymphatic delivery was assessed in both healthy rats and rats bearing orthotopic lung cancer. Intraperitoneal and intrapleural implantation of the sponge impregnated with PLGA microspheres resulted in spontaneous absorption of the particles in the lymphatic system. It is concluded that the system provides great potential for targeted delivery of therapeutic agent to the lymphatic system especially for the control of lymphatic metastasis in cancer. 相似文献
17.
Bupivacaine-loaded comatrix, formed by bupivacaine-loaded microspheres included in a poly(lactide-co-glycolide) film, was assayed for the controlled release of the drug 'in vivo'. The comatrix, with 66.37 microg of bupivacaine, signifying a dose of 265.5 microg/kg, was subcutaneously implanted in the back of rats. Maximum plasma bupivacaine concentration was 147.6 +/- 5.0 ng/ml 95 h after the device implantation, and the drug was detected in plasma for 17 days. The half-life time of bupivacaine improves by more than 50 times with regard to that of the drug administered in a solution by intraperitoneal injection. After 15 days of implantation the comatrix was included in a thin fibrous capsule and degradation of the microspheres was observed. The histological studies show good biocompatibility of this comatrix. After 50 days the comatrix was degraded and its remains were almost indistinguishable from the surrounding tissue. Small number of microspheres was observed and they were surrounded by conjunctive tissue. Nerve packets and small blood vessels were also observed in the periphery of the implant. 相似文献
18.
Myelin basic protein (MBP) of guinea pig origin was incorporated into magnetically responsive albumin microspheres. Protein-protein bonding and stabilization of the GPMBP microspheres by heating at 120 degrees C did not adversely influence their capacity to bind anti-MBP antibodies or demonstrably alter the encephalitogenic activity of the incorporated GPMBP. The magnetic properties of the particles and the fact that immunodeterminants of some of the incorporated MBP fortuitously were distributed on the exterior surfaces of the microspheres allowed a number of experiments to be carried out in Lewis rats for the first time: (a) selective capture and deletion of that particular subpopulation of lymphoid cells responsible for transfer of experimental allergic encephalomyelitis (EAE) represented within the lymph node cells (LNC) of donor animals sensitized to neutral antigen, (b) enhancement of in vivo uptake of MBP by macrophages (M phi s) contained in oil-induced peritoneal cell exudates and exposed briefly to MBP microspheres, and (c) preparation of cell suspensions specifically enriched with respect to MBP-containing M phi s. 相似文献
19.
多肽在前体药物与药物载体方面的应用 总被引:1,自引:0,他引:1
多肽是一种生物活性物质 ,无毒 ,具有良好的生物降解性 ,已经受到许多研究者的关注。多肽主要应用于前体药物 ,利用肿瘤细胞的选择性激活机制 ,用于癌症治疗或将其引入缓释系统 ,制成各种载体材料 ,控制药物释放。本文将介绍国外最近几年关于多肽在前体药物以及药物载体方面的应用研究 相似文献
20.
Heparinized polyurethanes: in vitro and in vivo studies 总被引:2,自引:0,他引:2
P W Heyman C S Cho J C McRea D B Olsen S W Kim 《Journal of biomedical materials research》1985,19(4):419-436
Heparin immobilization chemistry using alkyl spacer arms was adapted to optimize yield on polyurethane (PU) surfaces. The resultant biological activity of immobilized heparin (HI) was examined in vitro and in vivo, and compared with a heparin releasing (HR) system. Immobilized heparin retained its ability to bind and inactivate thrombin and Factor Xa; nonspecific coagulation factor binding was insignificant. Such activity cannot be attributed to the leakage of improperly bound heparin. Immobilized heparin-polyurethane catheters implanted in canine femoral and jugular veins for 1 h periods exhibited significant reduction in thrombus formation compared with untreated PU contralateral controls. Polyurethane catheters coated with a 9% heparin dispersion in PU (HR) system provided even greater improvement in antithrombogenicity. 相似文献