首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
?afka Bro?ková D, La?t?vková J, ?těpánková H, Kr?tová M, Trková M, My?ka P, Seeman P. DFNB49 is an important cause of non-syndromic deafness in Czech Roma patients but not in the general Czech population. Due to endogamy, the Roma have a higher risk for autosomal recessive (AR) disorders. We used homozygosity mapping on single-nucleotide polymorphism chips in one Czech Roma consanguineous family with non-syndromic hearing loss (NSHL). The second largest homozygous region in a deaf patient was mapped to the previously reported DFNB49 region. The MARVELD2 gene was recently reported as a causal gene for NSHL DFNB49. Sequencing of the MARVELD2 gene revealed a previously reported homozygous mutation c.1331+2 T>C (IVS4 + 2 T>C) in the deaf child. Subsequently, the same mutation was found in two more Roma families from an additional 19 unrelated Czech Roma patients with deafness tested for the MARVELD2 gene. To explore the importance of MARVELD2 mutations and DFNB49 for the general Czech and Central European population with early hearing loss we also tested 40 unrelated Czech patients with AR NSHL. No pathogenic mutation in the MARVELD2 gene was found in a group of 40 Czech non-Roma patients. Mutations in the MARVELD2 gene seem to be a significant cause of early NSHL in Czech Roma and this gene should be tested in this group of patients after GJB2.  相似文献   

2.
Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 2 (USH2) is the most common type of USH and is frequently caused by mutations in USH2A , which accounts for 74–90% of USH2 cases. This is the first study reporting the results of scanning for USH2A mutations in Japanese patients with USH2. In 8 of 10 unrelated patients, we identified 14 different mutations. Of these mutations, 11 were novel. Although the mutation spectrum that we identified differed from that for Caucasians, the incidence of mutations in USH2A was 80% for all patients tested, which is consistent with previous findings. Further, c.8559-2A>G was identified in four patients and accounted for 26.7% of mutated alleles; it is thus a frequent mutation in Japanese patients. Hence, mutation screening for c.8559-2A>G in USH2A may prove very effective for the early diagnosis of USH2.  相似文献   

3.
Increasing attention has been directed toward assessing mutational fallout of stereocilin (STRC), the gene underlying DFNB16. A major challenge is due to a closely linked pseudogene with 99.6% coding sequence identity. In 94 GJB2/GJB6‐mutation negative individuals with non‐syndromic sensorineural hearing loss (NSHL), we identified two homozygous and six heterozygous deletions, encompassing the STRC region by microarray and/or quantitative polymerase chain reaction (qPCR) analysis. To detect smaller mutations, we developed a Sanger sequencing method for pseudogene exclusion. Three heterozygous deletion carriers exhibited hemizygous mutations predicted as negatively impacting the protein. In 30 NSHL individuals without deletion, we detected one with compound heterozygous and two with heterozygous pathogenic mutations. Of 36 total patients undergoing STRC sequencing, two showed the c.3893A>G variant in conjunction with a heterozygous deletion or mutation and three exhibited the variant in a heterozygous state. Although this variant affects a highly conserved amino acid and is predicted as deleterious, comparable minor allele frequencies (MAFs) (around 10%) in NSHL individuals and controls and homozygous variant carriers without NSHL argue against its pathogenicity. Collectively, six (6%) of 94 NSHL individuals were diagnosed with homozygous or compound heterozygous mutations causing DFNB16 and five (5%) as heterozygous mutation carriers. Besides GJB2/GJB6 (DFNB1), STRC is a major contributor to congenital hearing impairment.  相似文献   

4.
Usher syndrome (USH) is a hereditary disorder associated with sensorineural hearing impairment, progressive loss of vision attributable to retinitis pigmentosa (RP) and variable vestibular function. Three clinical types have been described with type I (USH1) being the most severe. To date, six USH1 loci have been reported. We ascertained two large Pakistani consanguineous families segregating profound hearing loss, vestibular dysfunction, and RP, the defining features of USH1. In these families, we excluded linkage of USH to the 11 known USH loci and subsequently performed a genome-wide linkage screen. We found a novel USH1 locus designated USH1H that mapped to chromosome 15q22-23 in a 4.92-cM interval. This locus overlaps the non-syndromic deafness locus DFNB48 raising the possibility that the two disorders may be caused by allelic mutations.  相似文献   

5.
6.
Usher syndrome type III is an autosomal recessive disorder clinically characterized by the association of retinitis pigmentosa (RP), variable presence of vestibular dysfunction and progressive hearing loss, being the progression of the hearing impairment the critical parameter classically used to distinguish this form from Usher syndrome type I and Usher syndrome type II. Usher syndrome type III clinical subtype is the rarest form of Usher syndrome in Spain, accounting only for 6% of all Usher syndrome Spanish cases. The gene responsible for Usher syndrome type III is named clarin-1 and it is thought to be involved in hair cell and photoreceptor cell synapses. Here, we report a screening for mutations in clarin-1 gene among our series of Usher syndrome Spanish patients. Clarin-1 has been found to be responsible for the disease in only two families: the first one is a previously reported family homozygous for Y63X mutation and the second one, described here, is homozygous for C40G. This accounts for 1.7% of Usher syndrome Spanish families. It is noticeable that, whereas C40G family is clinically compatible with Usher syndrome type III due to the progression of the hearing loss, Y63X family could be diagnosed as Usher syndrome type I because the hearing impairment is profound and stable. Thus, we consider that the progression of hearing loss is not the definitive key parameter to distinguish Usher syndrome type III from Usher syndrome type I and Usher syndrome type II.  相似文献   

7.
Usher syndrome (USH) is characterized by the associated findings of hearing loss and retinitis pigmentosa (RP), leading to progressive loss of vision. Three forms of USH can be distinguished clinically. In the most severe form, USH1, profound congenital deafness is associated with vestibular dysfunction and RP. To determine the frequency of USH1C mutations as a cause for USH1, 128 probands with Usher syndrome type 1 including seven from Acadian and 121 from non-Acadian populations were systematically screened for mutations in USH1C using a combined single-strand conformational polymorphisms (SSCP)/heteroduplex and sequencing method. All seven Acadian USH1 patients were found to be homozygous for both the 216G>A mutation and the 9-repeat VNTR which characterizes the Acadian allele, confirming previous evidence for a founder effect by haplotype analysis. However, USH1C mutations were identified in only two non-Acadian USH1 probands (1.65%) including one from Pakistan who was homozygous for a 238-239insC mutation and one from Canada was also homozygous for the Acadian allele. The low prevalence of USH1C mutations in the present study suggests that the high prevalence of the 238-239insC in Germany may reflect a founder effect. Comparison of the affected haplotypes in the Canadian patient with the Acadian USH1 patients yielded evidence for a founder effect. Our data suggest that USH1C is a relatively rare form of USH1 in non-Acadian populations and that in addition to the 216G>A Acadian mutation, the 238-239insC mutation appears to be common in some populations.  相似文献   

8.
Usher syndrome is an autosomal recessive disorder characterized by congenital hearing impairment and retinitis pigmentosa. Three clinical types are known (USH1, USH2 and USH3), and there is an extensive genetic heterogeneity, with at least ten genes implicated. The most frequently mutated genes are MYO7A, which causes USH1B, and usherin, which causes USH2A. We carried out a mutation analysis of these two genes in the Spanish population. Analysis of the MYO7A gene in patients from 30 USH1 families and sporadic cases identified 32% of disease alleles, with mutation Q821X being the most frequent. Most of the remaining variants are private mutations. With regard to USH2, mutation 2299delG was detected in 25% of the Spanish patients. Altogether the mutations detected in USH2A families account for 23% of the disease alleles.  相似文献   

9.
10.
Patients with Usher syndrome type II (USH2) show moderate-to-severe hearing loss (HL), retinitis pigmentosa and normal vestibular function. The progression of HL remains controversial. To evaluate whether a phenotype-genotype correlation exists regarding the issue of progression of HL, only USH2 patients with a defined genotype were selected. Ophthalmologic, vestibular and audiometric examination along with a mutation analysis of the USH2A gene (exons 1--21) was performed in twenty-eight Spanish USH2 patients. Ten different pathogenic mutations and 17 sequence variants not associated with the disease were found. Six of the 10 mutations are novel. Disease alleles were identified in 13 of the 28 families tested. Eight of these 13 families had a mutation found in both alleles. In the other five families, only one mutation was identified. The phenotypic data provide evidence for the existence of phenotypic differences between patients with the same genotype. These differences were observed at both the interfamilial and intrafamilial levels.  相似文献   

11.
Congenital hearing loss affects approximately one child in 1000. About 10% of the deaf population have Usher syndrome (USH). In USH, hearing loss is complicated by retinal degeneration with onset in the first (USH1) or second (USH2) decade. In most populations, diagnostic testing is hampered by a multitude of mutations in nine genes. We have recently shown that in French Canadians from Quebec, USH1 largely results from a single USH1C founder mutation, c.216G>A ('Acadian allele'). The genetic basis of USH2 in Canadians of French descent, however, has remained elusive. Here, we have investigated nine USH2 families from Quebec and New Brunswick (the former Acadia) by haplotype analyses of the USH2A locus and sequencing of the three known USH2 genes. Seven USH2A mutations were identified in eight patients. One of them, c.4338_4339delCT, accounts for 10 out of 18 disease alleles (55.6%). This mutation has previously been reported in an Acadian USH2 family, and it was found in homozygous state in the three Acadians of our sample. As in the case of c.216G>A (USH1C), a common haplotype is associated with c.4338_4339delCT. With a limited number of molecular tests, it will now be possible in these populations to estimate whether children with congenital hearing impairment of different degrees will develop retinal disease - with important clinical and therapeutic implications. USH2 is the second example that reveals a significant genetic overlap between Quebecois and Acadians: in contrast to current understanding, other genetic disorders present in both populations are likely based on common founder mutations as well.  相似文献   

12.
Pathogenic variants at the DFNB1 locus encompassing the GJB2 and GJB6 genes account for 50% of autosomal‐recessive, congenital nonsyndromic hearing loss in the United States. Most cases are caused by sequence variants within the GJB2 gene, but a significant number of DFNB1 patients carry a large deletion (GJB6‐D13S1830) in trans with a GJB2 variant. This deletion lies upstream of GJB2 and was shown to reduce GJB2 expression by disrupting unidentified regulatory elements. First‐tier genetic testing for hearing loss includes GJB2 sequence and GJB6‐D13S1830 deletion analysis; however, several other deletions in this locus, each with distinct breakpoints, have been reported in DFNB1 patients and are missed by current panels. Here, we report the development of a targeted droplet digital polymerase chain reaction‐based assay for comprehensive copy‐number analysis at the DFNB1 locus that detects all deletions reported to date. This assay increased detection rates in a multiethnic cohort of 87 hearing loss patients with only one identified pathogenic GJB2 variant. We identify two deletions, one of which is novel, in two patients (2/87 or 2.3%), suggesting that other pathogenic deletions at the DFNB1 locus may be missed. Mapping the assayed DFNB1 deletions also revealed a ~95 kb critical region, which may harbor the GJB2 regulatory element(s).  相似文献   

13.
This study focuses on further characterization of the audiovestibular phenotype and on genotype‐phenotype correlations of DFNB77, an autosomal recessive type of hearing impairment (HI). DFNB77 is associated with disease‐causing variants in LOXHD1, and is genetically and phenotypically highly heterogeneous. Heterozygous deleterious missense variants in LOXHD1 have been associated with late‐onset Fuchs corneal dystrophy (FCD). However, up to now screening for FCD of heterozygous carriers in DFNB77 families has not been reported. This study describes the genotype and audiovestibular phenotype of 9 families with DFNB77. In addition, carriers within the families were screened for FCD. Fifteen pathogenic missense and truncating variants were identified, of which 12 were novel. The hearing phenotype showed high inter‐ and intrafamilial variation in severity and progression. There was no evidence for involvement of the vestibular system. None of the carriers showed (pre‐clinical) symptoms of FCD. Our findings expand the genotypic and phenotypic spectrum of DFNB77, but a clear correlation between the type or location of the variant and the severity or progression of HI could not be established. We hypothesize that environmental factors or genetic modifiers are responsible for phenotypic differences. No association was found between heterozygous LOXHD1 variants and the occurrence of FCD in carriers.  相似文献   

14.
Hearing loss (HL) is the most common birth defect and the most prevalent sensorineural condition worldwide. It is associated with more than 1,000 mutations in at least 90 genes. Mutations of the gap junction beta‐2 protein (GJB2) gene located in the nonsyndromic hearing loss and deafness (DFNB1) locus (chromosome 13q11‐12) are the main causes of autosomal recessive nonsyndromic hearing loss worldwide, but important differences exist between various populations. In the present article, two common mutations of the GJB2 gene are compared for ethnic‐specific allele frequency, their function, and their contribution to genetic HL in different populations. The results indicated that mutations of the GJB2 gene could have arisen during human migration. Updates on the spectrum of mutations clearly show that frequent mutations in the GJB2 gene are consistent with the founder mutation hypothesis.  相似文献   

15.
The routine testing for pathologic mutation(s) in a patient's DNA has become the foundation of modern molecular genetic diagnosis. It is especially valuable when the phenotype shows genetic heterogeneity, and its importance will grow as treatments become genotype specific. However, the technology of mutation detection is imperfect and mutations are often missed. This can be especially troublesome when dealing with a recessive disorder where the combination of genetic heterogeneity and missed mutation creates an imprecision in the genotypic assessment of individuals who do not appear to have the expected complement of two pathologic mutations. This article describes a statistical approach to the estimation of the likelihood of a genetic diagnosis under these conditions. In addition to providing a means of testing for missed mutations, it also provides a method of estimating and testing for the presence of genetic heterogeneity in the absence of linkage data. Gene frequencies as well as estimates of sensitivity and specificity can be obtained as well. The test is applied to GJB2 recessive nonsyndromic deafness, Usher syndrome types Ib and IIa, and Pendred-enlarged vestibular aqueduct syndrome.  相似文献   

16.
Usher syndrome (USH) is a group of autosomal recessive sensory disorders characterized by progressive retinitis pigmentosa (RP) and sensorineural hearing impairment. Usher syndrome type 1 (USH1), with additional vestibular dysfunction, represents the most severe form and shows extensive allelic and non-allelic heterogeneity. At least six USH1 loci exist (USH1A-F), and four of the underlying genes have been identified. Recently, a novel gene, cadherin 23 (CDH23), was shown to be mutated in USH1D. We performed mutation screening by single strand conformation polymorphism (SSCP) analysis and direct sequencing on 33 USH1 patients previously excluded for USH1B and USH1C. On eight disease alleles of four patients, four different mutations were identified, three of them novel (c.6933delT, c.5712G-->A, and IVS45-9G-->A). Exon trapping experiments were performed with two mutations. In the case of a c.5712G-->A transition of the last base of exon 42, that is an apparently synonymous mutation, skipping of exon 42 was observed. By the mutation IVS45-9G-->A, a novel splice acceptor site was created and the insertion of 7 intronic bp was observed. Two mutations, IVS45-9G-->A and the previously described IVS51+5G-->A, were each found in more than one patient. Haplotype analysis by SNPs within CDH23 suggests common ancestors for each of the mutations. Among the total of 52 USH1 cases studied by us, CDH23 mutations account for about 10% of all disease alleles. Our results further suggest that in patients with a typical USH1D phenotype, a significant portion of CDH23 mutations leads to premature termination of translation or loss of numerous amino acid residues, with a high frequency of changes causing aberrant splicing of CDH23 mRNA.  相似文献   

17.
18.
Ellis‐van Creveld syndrome (EvC) is a chondral and ectodermal dysplasia caused by biallelic mutations in the EVC, EVC2 and WDR35 genes. A proportion of cases with clinical diagnosis of EvC, however, do not carry mutations in these genes. To identify the genetic cause of EvC in a cohort of mutation‐negative patients, exome sequencing was undertaken in a family with 3 affected members, and mutation scanning of a panel of clinically and functionally relevant genes was performed in 24 additional subjects with features fitting/overlapping EvC. Compound heterozygosity for the c.2T>C (p.Met1?) and c.662C>T (p.Thr221Ile) variants in DYNC2LI1, which encodes a component of the intraflagellar transport‐related dynein‐2 complex previously found mutated in other short‐rib thoracic dysplasias, was identified in the 3 affected members of the first family. Targeted resequencing detected compound heterozygosity for the same missense variant and a truncating change (p.Val141*) in 2 siblings with EvC from a second family, while a newborn with a more severe phenotype carried 2 DYNC2LI1 truncating variants. Our findings indicate that DYNC2LI1 mutations are associated with a wider clinical spectrum than previously appreciated, including EvC, with the severity of the phenotype likely depending on the extent of defective DYNC2LI1 function.  相似文献   

19.
Hearing loss (HL) is the most common sensory disorder worldwide and genetic factors contribute to approximately half of congenital HL cases. HL is subject to extensive genetic heterogeneity, rendering molecular diagnosis difficult. Mutations of the transmembrane channel‐like 1 (TMC1) gene cause hearing defects in humans and mice. The precise function of TMC1 protein in the inner ear is unknown, although it is predicted to be involved in functional maturation of cochlear hair cells. TMC1 mutations result in autosomal recessive (DFNB7/11) and sometimes dominant (DFNA36) nonsyndromic HL. Mutations in TMC1 are responsible for a significant portion of HL, particularly in consanguineous populations. To evaluate the importance of TMC1 mutations in the Saudi population, we used a combination of autozygome‐guided candidate gene mutation analysis and targeted next generation sequencing in 366 families with HL previously shown to lack mutations in GJB2. We identified 12 families that carried five causative TMC1 mutations; including three novel (c.362+3A > G; c.758C > T [p.Ser253Phe]; c.1396_1398delACC [p.Asn466del]) and two reported mutations (c.100C > T [p.Arg34Ter]; c.1714G > A [p.Asp572Asn]). Each of the identified recessive mutation was classified as severe, by both age of onset and severity of HL. Similarly, consistent with the previously reported dominant variant p.Asp572Asn, the HL phenotype was progressive. Eight families in our cohort were found to share the pathogenic p.Arg34Ter mutation and linkage disequilibrium was observed between p.Arg34Ter and SNPs investigated. Our results indicate that TMC1 mutations account for about 3.3% (12/366) of Saudi HL cases and that the recurrent TMC1 mutation p.Arg34Ter is likely to be a founder mutation.  相似文献   

20.
Mutations in the GJB2 gene encoding the gap-junction protein connexin 26 have been identified in many patients with childhood hearing impairment (HI). One single mutation, 35delG (30delG), accounts for up to 70% of all analyzed European patients with autosomal recessive inherited HI and 10% of patients with HI of unknown origin, respectively. We screened 188 control individuals and 342 German patients with non-syndromic sporadic HI for the 35delG, compound heterozygosity and other GJB2 mutations by PCR, restriction enzyme based screening, SSCP and sequencing. In all patients, non-progressive hearing impairment varied from moderate to profound involving all frequencies. This study revealed one novel silent mutation (438C/T), three novel gene variants resulting in amino acid substitutions (K112E, T123S, K223R) and two novel HI-related mutations (I82M, 313del14).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号