首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated 966 consecutive pediatric patients with various developmental disorders by high-resolution microarray-based comparative genomic hybridization and found 10 individuals with pathogenic copy number variants (CNVs) on the short arm of chromosome 8 (8p), representing approximately 1% of the patients analyzed. Two patients with 8p terminal deletion associated with interstitial inverted duplication (inv dup del(8p)) had different mechanisms leading to the formation of a dicentric intermediate during meiosis. Three probands carried an identical ∼5.0 Mb interstitial duplication of chromosome 8p23.1. Four possible hotspots within 8p were observed at nucleotide coordinates of ∼10.45, 24.32–24.82, 32.19–32.77, and 38.94–39.72 Mb involving the formation of recurrent genomic rearrangements. Other CNVs with deletion- or duplication-specific start or stop coordinates on the 8p provide useful information for exploring the basic mechanisms of complex structural rearrangements in the human genome.  相似文献   

2.
Precise characterization of nonallelic homologous recombination (NAHR) breakpoints is key to identifying those features that influence NAHR frequency. Until now, analysis of NAHR‐mediated rearrangements has generally been performed by comparison of the breakpoint‐spanning sequences with the human genome reference sequence. We show here that the haplotype diversity of NAHR hotspots may interfere with breakpoint‐mapping. We studied the transmitting parents of individuals with germline type‐1 NF1 deletions mediated by NAHR within the paralogous recombination site 1 (PRS1) or paralogous recombination site 2 (PRS2) hotspots. Several parental wild‐type PRS1 and PRS2 haplotypes were identified that exhibited considerable sequence differences with respect to the reference sequence, which also affected the number of predicted PRDM9‐binding sites. Sequence comparisons between the parental wild‐type PRS1 or PRS2 haplotypes and the deletion breakpoint‐spanning sequences from the patients (method #2) turned out to be an accurate means to assign NF1 deletion breakpoints and proved superior to crude reference sequence comparisons that neglect to consider haplotype diversity (method #1). The mean length of the deletion breakpoint regions assigned by method #2 was 269‐bp in contrast to 502‐bp by method #1. Our findings imply that paralog‐specific haplotype diversity of NAHR hotspots (such as PRS2) and population‐specific haplotype diversity must be taken into account in order to accurately ascertain NAHR‐mediated rearrangement breakpoints.  相似文献   

3.
In this study, we aimed to explore the utility of chromosomal microarray analysis (CMA) in groups of pregnancies with a priori low risk for detection of submicroscopic chromosome abnormalities, usually not considered an indication for testing, in order to assess whether CMA improves the detection rate of prenatal chromosomal aberrations. A total of 3000 prenatal samples were processed in parallel using both whole-genome CMA and conventional karyotyping. The indications for prenatal testing included: advanced maternal age, maternal serum screening test abnormality, abnormal ultrasound findings, known abnormal fetal karyotype, parental anxiety, family history of a genetic condition and cell culture failure. The use of CMA resulted in an increased detection rate regardless of the indication for analysis. This was evident in high risk groups (abnormal ultrasound findings and abnormal fetal karyotype), in which the percentage of detection was 5.8% (7/120), and also in low risk groups, such as advanced maternal age (6/1118, 0.5%), and parental anxiety (11/1674, 0.7%). A total of 24 (0.8%) fetal conditions would have remained undiagnosed if only a standard karyotype had been performed. Importantly, 17 (0.6%) of such findings would have otherwise been overlooked if CMA was offered only to high risk pregnancies.The results of this study suggest that more widespread CMA testing of fetuses would result in a higher detection of clinically relevant chromosome abnormalities, even in low risk pregnancies. Our findings provide substantial evidence for the introduction of CMA as a first-line diagnostic test for all pregnant women undergoing invasive prenatal testing, regardless of risk factors.  相似文献   

4.
Large microdeletions encompassing the neurofibromatosis type‐1 (NF1) gene and its flanking regions at 17q11.2 belong to the group of genomic disorders caused by aberrant recombination between segmental duplications. The most common NF1 microdeletions (type‐1) span 1.4‐Mb and have breakpoints located within NF1‐REPs A and C, low‐copy repeats (LCRs) containing LRRC37‐core duplicons. We have identified a novel type of recurrent NF1 deletion mediated by nonallelic homologous recombination (NAHR) between the highly homologous NF1‐REPs B and C. The breakpoints of these ~1.0‐Mb (“type‐3”) NF1 deletions were characterized at the DNA sequence level in three unrelated patients. Recombination regions, spanning 275, 180, and 109‐bp, respectively, were identified within the LRRC37B‐P paralogues of NF1‐REPs B and C, and were found to contain sequences capable of non‐B DNA formation. Both LCRs contain LRRC37‐core duplicons, abundant and highly dynamic sequences in the human genome. NAHR between LRRC37‐containing LCRs at 17q21.31 is known to have mediated the 970‐kb polymorphic inversions of the MAPT‐locus that occurred independently in different primate species, but also underlies the syndromes associated with recurrent 17q21.31 microdeletions and reciprocal microduplications. The novel NF1 microdeletions reported here provide further evidence for the unusually high recombinogenic potential of LRRC37‐containing LCRs in the human genome. Hum Mutat 31:742–751, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Deletions and duplications of genomic DNA contribute to evolution, phenotypic diversity, and human disease. The underlying mechanisms are incompletely understood. We identified deletions of exon 10 of the SPAST gene in two unrelated families with hereditary spastic paraplegia. We excluded a founder event, but observed that the breakpoints map to identical repeat regions. These regions likely represent an intragenic “doublet,” that is, an enigmatic class of local duplications. The fusion sequences for both deletions are compatible with recombination‐based as well as with replication‐based mechanisms. Searching the literature, we identified a partial SLC24A4 deletion that involved two copies of another doublet, and was likely formed in an analogous way. Comparing the SPAST and the SLC24A4 doublets with doublets identified previously suggested that many additional doublets have a high potential for triggering rearrangements. Considering that doublets are still being formed in the human genome, and that they likely create high local instability, we suggest that a two‐step mechanism consisting of doublet generation and subsequent doublet‐mediated deletion/duplication may underlie certain copy‐number changes for which other mechanisms are currently assumed. Further studies are necessary to delineate the significance of the thus‐far understudied doublets for the formation of copy‐number variation.  相似文献   

6.
Congenital heart disease (CHD) is the common birth defect worldwide. Despite its recognized burden on public health, the etiology in the vast majority of individuals remains unknown. Chromosomal abnormality plays an important role, frequently observed as large cytogenetically visible rearrangement or small submicroscopic structural variation in the genome. Several genomic disorders are now recognized that are increasingly responsible for CHD with variable penetrance. Single gene disorders, epigenetic alterations, and environmental etiologies are also significant contributors. Our understanding of the genetic basis of CHD has increased exponentially with the escalating use of next generation sequencing to identify ever so small submicroscopic genomic imbalances at the level of coding exons in CHD. This review focuses on genomic disorders other than 22q11.2 deletion, that are major players in the etiology of human cardiac malformations.  相似文献   

7.
Holoprosencephaly (HPE), a common developmental forebrain malformation, is characterized by failure of the cerebrum to completely divide into left and right hemispheres. The etiology of HPE is heterogeneous and a number of environmental and genetic factors have been identified. Cytogenetically visible alterations occur in 25% to 45% of HPE patients and cytogenetic techniques have long been used to study copy number variants (CNVs) in this disorder. The karyotype approach initially demonstrated several recurrent chromosomal anomalies, which led to the identification of HPE-specific loci and, eventually, several major HPE genes. More recently, higher-resolution cytogenetic techniques such as subtelomeric multiplex ligation-dependent probe amplification and chromosomal microarray have been used to analyze chromosomal anomalies. By using chromosomal microarray, we sought to identify submicroscopic chromosomal deletions and duplications in patients with HPE. In an analysis of 222 individuals with HPE, a deletion or duplication was detected in 107 individuals. Of these 107 individuals, 23 (21%) had variants that were classified as pathogenic or likely pathogenic by board-certified medical geneticists. We identified multiple patients with deletions in established HPE loci as well as three patients with deletions encompassed by 6q12-q14.3, a CNV previously reported by Bendavid et al. In addition, we identified a new locus, 16p13.2 that warrants further investigation for HPE association. Incidentally, we also found a case of Potocki-Lupski syndrome, a case of Phelan-McDermid syndrome, and multiple cases of 22q11.2 deletion syndrome within our cohort. These data confirm the genetically heterogeneous nature of HPE, and also demonstrate clinical utility of chromosomal microarray in diagnosing patients affected by HPE.  相似文献   

8.
A genetic etiology is identifiable in 20%–30% of patients with congenital heart defects (CHD). Chromosomal microarray analysis (CMA) can detect copy number variants (CNV) associated with CHD. In previous studies, the diagnostic yield of postnatal CMA testing ranged from 4% to 28% in CHD patients. However, incidental pathogenic CNV and variants of unknown significance are often discovered without any known association with CHD. The study objective was to describe the rate of pathogenic CNV associated with neurodevelopmental impairment (NDI) and compare clinical findings in CHD neonates with genetic results. A single-center retrospective review was performed on all consecutive newborns with CHD admitted to a tertiary neonatal intensive care unit from January 2013 to March 2019 (n = 525). CHD phenotypes were classified as per the National Birth Defect Prevention Study. CMA detected pathogenic CNV in 21.3% (61/287) of neonates, and karyotype or fluorescence in situ hybridization detected aneuploidies in an additional 11% of the overall cohort (58/525). Atrioventricular septal defects and conotruncal defects showed the highest diagnostic yield by CMA (28.6% and 27.2%, respectively). Among neonates with pathogenic CNV on CMA, 78.7% (48/61) were associated with NDI. Neonates with pathogenic CNV were smaller in length at birth compared to those with benign CNV or variants of unknown significance (p = 0.005) and were more likely to be discharged with an enteral feeding tube (p = 0.027). CMA can discover genetic variants associated with NDI and are common in neonates with CHD. Genetic testing in the neonatal period can heighten awareness of genetic risk for NDI.  相似文献   

9.
Chromosomal microarray analysis (CMA) has now replaced karyotyping in the analysis of prenatal cases with a fetal structural anomaly, whereas in those pregnancies undergoing invasive prenatal diagnosis with a normal fetal ultrasound, conventional karyotyping is still performed. The aims of this study were to establish the diagnostic yield of CMA in prenatal diagnosis, and to provide new data that might contribute to reconsider current practices. We reviewed 2905 prenatal samples with a normal rapid aneuploidy detection test referred for evaluation by CMA testing. Our study revealed pathogenic and reported susceptibility copy number variants associated with syndromic disorders in 4.8% (n = 138/2905) of cases, being 2.8% (n = 81/2905) the estimated added diagnostic value of CMA over karyotyping. Clinically significant CMA abnormality was detected in 5.4% (107/1975) of the fetuses with ultrasound anomalies and in 1.4% (5/345) of those considered as low-risk pregnancies. Our series shows that in prenatal samples, CMA increases 2-fold the diagnostic yield achieved by conventional karyotyping.  相似文献   

10.
Copy number variations (CNVs) play a crucial role in the intricate genetics of autism spectrum disorders. A region on chromosome 15q24 vulnerable to both deletions and duplications has been previously implicated in a range of phenotypes including autism, Asperger's syndrome, delayed development, and mild to severe mental retardation. Prior studies have delineated a minimal critical region of approximately 1.33 Mb. In this study, a multiplex autism family was evaluated for CNVs using genotyping data from the Illumina 1 M BeadChip and analyzed with the PennCNV algorithm. Variants were then identified that co‐segregate with autism features in this family. Here, we report autistic first cousins who carry two microduplications concordant with disease. Both duplications were inherited maternally and found to be identical by descent. The first is an approximately 10,000 base pair microduplication within the minimal region on 15q24 that falls across a single gene, ubiquitin‐like 7. This is the smallest duplication in the region to result in a neuropsychiatric disorder, potentially narrowing the critical region for susceptibility to developmental and autism spectrum disorders. The second is a novel, 352 kb tandem duplication on 7p21 that replicates part of the neurexophilin 1 and islet cell autoantigen 1 genes. The breakpoint junction falls within the intronic regions of these genes and demonstrates a microhomology of four base pairs. Each of these microduplications may contribute to the complex etiology of autism spectrum disorders. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
Copy number variation (CNV) is a common form of structural variation detected in human genomes, occurring as both constitutional and somatic events. Cytogenetic techniques like chromosomal microarray (CMA) are widely used in analyzing CNVs. However, CMA techniques cannot resolve the full nature of these structural variations (i.e. the orientation and location of associated breakpoint junctions) and must be combined with other cytogenetic techniques, such as karyotyping or FISH, to do so. This makes the development of a next‐generation sequencing (NGS) approach capable of resolving both CNVs and breakpoint junctions desirable. Mate‐pair sequencing (MPseq) is a NGS technology designed to find large structural rearrangements across the entire genome. Here we present an algorithm capable of performing copy number analysis from mate‐pair sequencing data. The algorithm uses a step‐wise procedure involving normalization, segmentation, and classification of the sequencing data. The segmentation technique combines both read depth and discordant mate‐pair reads to increase the sensitivity and resolution of CNV calls. The method is particularly suited to MPseq, which is designed to detect breakpoint junctions at high resolution. This allows for the classification step to accurately calculate copy number levels at the relatively low read depth of MPseq. Here we compare results for a series of hematological cancer samples that were tested with CMA and MPseq. We demonstrate comparable sensitivity to the state‐of‐the‐art CMA technology, with the benefit of improved breakpoint resolution. The algorithm provides a powerful analytical tool for the analysis of MPseq results in cancer.  相似文献   

12.
We describe a new type of rearrangement consisting of the duplication of 8p23.1 and the triplication of 8p23.2 [dup trp(8p)] in two patients affected by mental retardation and minor facial dysmorphisms. Array-comparative genomic hybridization (CGH), fluorescence in situ hybridization (FISH), and genotyping of polymorphic loci allowed us to demonstrate that this rearrangement is mediated by the combined effects of two unrelated low-copy repeats (LCRs). The first set of LCRs consists of the two clusters of olfactory receptor genes (OR-REPs) lying at 8p23.1. The second type of LCRs consists of a 15-kb segmental duplication, lying in inverted orientation at 8p23.2 and enclosing a nonrepeated sequence of approximately 130 kb, named MYOM2-REP because of its proximity to the MYOM2 gene. The molecular characterization of a third case with a dicentric chromosome 8 demonstrated that the rearrangement had been generated by nonallelic homologous recombination between the two MYOM2-REPs. Based on our findings, we propose a model showing that a second recombination event at the level of the OR-REPs leads to the formation of the dup trp(8p) chromosome. This rearrangement can only arise during meiosis in heterozygous carriers of the polymorphic 8p23.1 inversion, whereas in subjects with noninverted chromosomes 8 or homozygous for the inversion only the dicentric chromosome can be formed. Our study demonstrates that nonallelic homologous recombination involving multiple LCRs can generate more complex rearrangements and cause a greater variety of genomic diseases.  相似文献   

13.
Chromosomal microarray analysis (CMA) has been used routinely in pediatric and prenatal genetic diagnosis in clinical practice, but it has rarely been applied to miscarriage analysis. In this study, we conducted a prospective study to evaluate the feasibility of CMA for genetic diagnosis of first‐trimester miscarriage specimens. We successfully analyzed 551 fresh miscarriage specimens using single‐nucleotide polymorphism (SNP) array. Among the specimens, 2.9% (16/551) had significant maternal cell contamination and were excluded from the study. Clinically significant chromosomal abnormalities were identified in 295 (55.1%) cases, including 214 (40%) with aneuploidy, 40 (7.5%) with polyploidy, 19 (3.6%) with partial aneuploidy, 12 (2.2%) with pathogenic microdeletion/microduplication, and 10 (1.9%) with uniparental isodisomy (isoUPD). Variants of uncertain significance were obtained in 15 cases (2.8%). Notably, isoUPD involving a single chromosome (chromosome 22) and two recurrent copy number variations, 22q11.2 microdeletion and 7q11.23 microdeletion, were identified as probably to be associated with miscarriage. The frequency and distribution of genetic aberrations in the spontaneous abortion group was not significantly different from those in the recurrent miscarriage group. Our study suggests SNP array is a reliable, robust, and high‐resolution technology for genetic diagnosis of miscarriage in clinical practice.  相似文献   

14.
Genomic disorders result from heterozygous copy number variants (CNVs). Homozygous deletions spanning numerous genes are rare, despite the potential contribution of consanguinity to such instances. CNVs in the 22q11.2 region are mediated by nonallelic homologous recombination between pairs of low copy repeats (LCRs), from amongst eight LCRs designated A-H. Heterozygous distal type II deletions (LCR-E to LCR-F) have incomplete penetrance and variable expressivity, and can lead to neurodevelopmental issues, minor craniofacial anomalies, and congenital abnormalities. We report siblings with global developmental delay, hypotonia, minor craniofacial anomalies, ocular abnormalities, and minor skeletal issues, in whom chromosomal microarray identified a homozygous distal type II deletion. The deletion was brought to homozygosity as a result of a consanguineous marriage between two heterozygous carriers of the deletion. The phenotype of the children was strikingly more severe and complex than that of the parents. This report suggests that the distal type II deletion harbors a dosage-sensitive gene or regulatory element, which leads to a more severe phenotype when deleted on both chromosomes.  相似文献   

15.
Chromosomal microarray analysis (CMA) is currently considered a first‐tier diagnostic assay for the investigation of autism spectrum disorders (ASD), developmental delay and intellectual disability of unknown etiology. High‐resolution arrays were utilized for the identification of copy number variations (CNVs) in 195 ASD patients of Greek origin (126 males, 69 females). CMA resulted in the detection of 65 CNVs, excluding the known polymorphic copy number polymorphisms also found in the Database of Genomic Variants, for 51/195 patients (26.1%). Parental DNA testing in 20/51 patients revealed that 17 CNVs were de novo, 6 paternal and 3 of maternal origin. The majority of the 65 CNVs were deletions (66.1%), of which 5 on the X‐chromosome while the duplications, of which 7 on the X‐chromosome, were rarer (22/65, 33.8%). Fifty‐one CNVs from a total of 65, reported for our cohort of ASD patients, were of diagnostic significance and well described in the literature while 14 CNVs (8 losses, 6 gains) were characterized as variants of unknown significance and need further investigation. Among the 51 patients, 39 carried one CNV, 10 carried two CNVs and 2 carried three CNVs. The use of CMA, its clinical validity and utility was assessed.  相似文献   

16.
Chromothripsis (CTH) is a phenomenon where multiple localized double‐stranded DNA breaks result in complex genomic rearrangements. Although the DNA‐repair mechanisms involved in CTH have been described, the mechanisms driving the localized “shattering” process remain unclear. High‐throughput sequence analysis of a familial germline CTH revealed an inserted SVAE retrotransposon associated with a 110‐kb deletion displaying hallmarks of L1‐mediated retrotransposition. Our analysis suggests that the SVAE insertion did not occur prior to or after, but concurrent with the CTH event. We also observed L1‐endonuclease potential target sites in other breakpoints. In addition, we found four Alu elements flanking the 110‐kb deletion and associated with an inversion. We suggest that chromatin looping mediated by homologous Alu elements may have brought distal DNA regions into close proximity facilitating DNA cleavage by catalytically active L1‐endonuclease. Our data provide the first evidence that active and inactive human retrotransposons can serve as endogenous mutagens driving CTH in the germline.  相似文献   

17.
Microarray‐based copy number analysis has found its way into routine clinical practice, predominantly for the diagnosis of patients with unexplained mental retardation. However, the clinical interpretation of submicroscopic copy number variants (CNVs) is complicated by the fact that many CNVs are also present in the general population. Here we introduce and discuss a workflow that can be used in routine diagnostics to assess the clinical significance of the CNVs identified. We applied this scheme to our cohort of 386 individuals with unexplained mental retardation tested using a genome‐wide tiling‐resolution DNA microarray and to 978 additional patients with mental retardation reported in 15 genome‐wide microarray studies extracted from the literature. In our cohort of 386 patients we identified 25 clinically significant copy number losses (median size 2.6 Mb), nine copy number gains (median size 2.0 Mb), and one mosaic numerical chromosome aberration. Accordingly, the overall diagnostic yield of clinically significant CNVs was 9.1%. Taken together, our cohort and the patients described in the literature include a total of 1,364 analyses of DNA copy number in which a total of 11.2% (71.9% losses, 19.6% gains, 8.5% complex) could be identified, reflecting the overall diagnostic yield of clinically significant CNVs in individuals with unexplained mental retardation. Hum Mutat 0, 1–10, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
19.
Common fragile sites (CFSs) are specific genomic regions in normal chromosomes that exhibit genomic instability under DNA replication stress. As replication stress is an early feature of cancer development, CFSs are involved in the signature of genomic instability found in malignant tumors. The landscape of CFSs is tissue‐specific and differs under different replication stress inducers. Nevertheless, the features underlying CFS sensitivity to replication stress are shared. Here, we review the events generating replication stress and discuss the unique characteristics of CFS regions and the cellular responses aimed to stabilizing these regions.  相似文献   

20.
Whole genome profiling such as array comparative genomic hybridization has identified novel genomic imbalances. Many of these genomic imbalances have since been shown to associate with developmental delay, intellectual disability and congenital malformation. Here we identified five unrelated individuals who have a recurrent 1.71 Mb deletion/duplication at 2q13 (Human Genome Build 19: 111,392,197-113,102,594). Four of these individuals have developmental issues, four have cranial dysmorphism. Literature review revealed 14 more cases that had similar genomic imbalances at 2q13. Many of them had developmental delay and dysmorphism. Taken together, 93% and 63% of individuals with this genomic imbalance displayed impaired developmental skills and/or abnormal facial features respectively. This copy number variant (CNV) has not been reported in normal control databases. We, therefore, propose that CNV in this region is a risk factor for developmental delay and dysmorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号