首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strip test for the dual detection of white spot syndrome virus (WSSV) and yellow head virus (YHV) was developed using monoclonal antibodies (MAbs) specific to the WSSV major envelope protein VP28 (W1 and W30) and the YHV nucleocapsid protein p20 (Y19 and Y21). The MAbs W30 and Y19 were conjugated with colloidal gold and sprayed onto a glass fiber pad that was placed adjacent to a sample chamber. The MAbs W1 and Y21 and the goat anti-mouse immunoglobulin G (GAM) antibody were sprayed onto a nitrocellulose membrane in strips at positions designated W, Y and C, respectively. These test strips were placed in plastic cases and stored desiccated in a plastic bag. The test strips were assessed for their ability to detect WSSV and YHV simultaneously using pleopods sampled from shrimp. A pleopod homogenate in application buffer 100 μl was applied to the sample chamber to flow through the nitrocellulose membrane strip, and antibody-protein complexes could be observed within 15 min. In sample from shrimp infected with WSSV and/or YHV, viral protein bound to the colloidal gold-conjugated MAbs. These complexes were captured by the MAbs at the W and/or Y test lines, resulting in the appearance of reddish-purple coloured bands. Any unbound colloidal gold-conjugated MAbs migrated pass the W and Y lines would be captured by the GAM antibody, forming a band at position C. When samples not containing WSSV and YHV proteins or containing viral proteins at below the detection limit of the test, only the band at position C was observed. The sensitivity of the test was comparable to dot blot tests using single MAbs, and ∼500-fold less sensitive than a 1-step PCR test for WSSV and 1000-fold less sensitive than an RT-PCR test for YHV. Despite this lower sensitivity, the dual strip test has advantages in speed and simplicity in not requiring sophisticated equipment or specialized skills. The ability to co-detect WSSV and YHV provides simultaneously cost savings.  相似文献   

2.
3.
4.
5.
Liu D  Si B  Li C  Mi Z  An X  Qin C  Liu W  Tong Y 《Journal of virological methods》2011,178(1-2):16-21
A multiplex real-time PCR and high-resolution melting (HRM) analysis was developed to detect simultaneously three of the major viruses of penaeid shrimp including white spot syndrome virus (WSSV), yellow-head virus (YHV), and Penaeus monodon densovirus (PmDNV). Plasmids containing DNA/cDNA fragments of WSSV and YHV, and genomic DNAs of PmDNV and normal shrimp were used to test sensitivity of the procedure. Without the need of any probe, the products were identified by HRM analysis after real-time PCR amplification using three sets of viral specific primers. The results showed DNA melting curves that were specific for individual virus. No positive result was detected with nucleic acids from shrimp, Penaeus monodon nucleopolyhedrovirus (PemoNPV), Penaeus stylirostris densovirus (PstDNV), or Taura syndrome virus (TSV). The detection limit for PmDNV, YHV and WSSV DNAs were 40fg, 50fg, and 500fg, respectively, which was 10 times more sensitive than multiplex real-time PCR analyzed by agarose gel electrophoresis. In viral nucleic acid mixtures, HRM analysis clearly identified each virus in dual and triple infection. To test the capability to use this method in field, forty-one of field samples were examined by HRM analysis in comparison with agarose gel electrophoresis. For HRM analysis, 11 (26.83%), 9 (21.95%), and 4 (9.76%) were infected with WSSV, PmDNV, and YHV, respectively. Agarose gel electrophoresis detected lesser number of PmDNV infection which may due to the limit of sensitivity. No multiple infection was found in these samples. This method provides a rapid, sensitive, specific, and simultaneous detection of three major viruses making it as a useful tool for diagnosis and epidemiological studies of these viruses in shrimp and carriers.  相似文献   

6.
Yellow head virus (YHV) is an invertebrate nidovirus that can cause mass mortality of the cultured Penaeus monodon shrimp. A single-chain variable fragment (scFv) antibody directed against the gp116 envelop glycoprotein of YHV was constructed from hybridomas. Variable heavy (V(H)) and light (V(L)) chain genes were amplified from cDNA using antibody-specific primers, linked to generate a full-length gene via a standard peptide linker, ligated into the pET28a expression vector and transformed into E. coli. The expressed insoluble scFv antibody was solubilized, purified using immobilized metal affinity chromatography and rapid refolded; final yield 1-1.5 mg/l. Solid-phase non-competitive enzyme-linked immunosorbent assay (non-competitive ELISA) determined the affinity constant (K(A)) to be 3.34+/-0.38 x 10(8)l/mol. The sensitivity and specificity of scFv antibody was demonstrated by ELISA, dot blot and Western blot analysis. The detection limit determined by dot blot and indirect ELISA was 9 ng and 45 ng of purified YHV, respectively. Dot-blot assays revealed that the scFv antibody could detect YHV-infected shrimp at 24h post-infection and did not cross-react with White spot syndrome virus (WSSV) and Taura syndrome virus (TSV) proteins. The scFv antibody therefore might find application in rapid, simple and sensitive diagnostic tests to detect YHV in farmed shrimp.  相似文献   

7.
A simple yellow head virus (YHV) “strip test” was developed using monoclonal antibody Y19 (against the p20 structural protein) conjugated with colloidal gold as the detector antibody. Rabbit anti-recombinant p20 (rp20) protein antibody was used as a capture antibody at the test line (T) and goat anti-mouse IgG antibody (GAM) was used as the capture antibody at the control line (C). The ready-to-use strip was housed in a plastic case for convenient application and stored in the desiccated plastic bag. A sample volume of 100 μl of either haemolymph or gill or appendage homogenates in application buffer was applied to the sample chamber at one end of the strip and allowed to flow by chromatography through the nitrocellulose membrane to the other end. In test samples containing YHV, the virus would bind to colloidal gold conjugated monoclonal antibody and the resulting complex would be captured by the rabbit anti-rp20 antibody at the test line to give a reddish-purple band. Any unbound monoclonal antibody conjugated with colloidal gold moved across the test line to be captured by the GAM to form a band at the control line (C). In the sample without YHV or below the limit of detection for the kit, only the control line was demonstrated. This method was about 500 times less sensitive than that of one-step RT-PCR, but slightly more sensitive than dot blotting. Therefore, it could be used for primary screening of individual shrimp or pooled shrimp samples to confirm high levels of YHV infection or YHV disease outbreaks. This kit can be used to detect gill associated virus (GAV) infection as well since the monoclonal antibody used in this kit cross-reacted well with GAV. The beneficial features of this kit are that simple, convenient, and rapid results that can be obtained without the requirement of sophisticated tools or special skills.  相似文献   

8.
Polymerase chain reaction (PCR) primers were designed based on the sequence of a cloned fragment of the white spot virus (WSV) genome and were used to detect at least four geographic isolates of WSV from both experimentally- and naturally-infected shrimp. In addition to high specificity, the one-step and two-step PCR protocols were determined to have sensitivities of 10-100 pg and 100 femtograms respectively. The two-step PCR protocol is recommended as a very sensitive and specific alternative protocol to Western blot assay for the detection of WSV.  相似文献   

9.
Summary.  To isolate novel cellular factors that are activated or repressed upon WSV infection, the RNA fingerprints of healthy and WSV infected blue shrimp (Penaeus stylirostris) were compared using the mRNA differential display technique. Thirty-two unique differentially expressed, and one constitutively expressed, cDNA sequences were retrieved. Six of 32 cDNAs showed similarities with the database entries: cDNA 10G32-142 to a shrimp arginine kinase, 22C48-201 to shrimp mitochondrial ATPase gene; 22C47-197, 21G49-203 and 20A55-268 to shrimp ESTs and 20G50-206 to a WSV gene, ORF 116. The constitutively expressed gene showed significant similarity to a yeast elongation factor 1-alpha gene. The expression of a subset of differentially expressed genes (13 of 32) was further evaluated by real-time RT-PCR. Ten of 13 genes showed statistically significant changes in expression between healthy and WSV infected animals suggesting that these genes may play an important role in WSV pathogenesis. Received December 13, 2001; accepted May 8, 2002 Published online July 19, 2002  相似文献   

10.
A multiplex RT-nested PCR has been developed to detect and differentiate the closely related prawn viruses, gill-associated virus (GAV) from Australia and yellow head virus (YHV) from Thailand. RT-PCR using primers to conserved sequences in the ORF1b gene amplified a 794 bp region of either GAV or YHV. Nested PCR using a conserved sense primer and either a GAV- or YHV-specific antisense primer to a divergent sequence differentially amplified a 277 bp region of the primary PCR amplicon. Multiplexing the YHV antisense primer with a GAV antisense primer to another divergent sequence allowed the viruses to be distinguished in a single nested PCR. Nested PCR enhanced detection sensitivity between 100- and 1000-fold and GAV or YHV RNA was detectable in approximately 10 fg lymphoid organ total RNA. The multiplex RT-nested PCR was also able to co-detect GAV and YHV RNA mixed over a wide range of concentrations to simulate potential dual-infection states. The robustness of the test was examined using RNA samples from Penaeus monodon prawns infected either chronically or acutely with GAV or YHV and collected at different locations in Eastern Australia and Thailand between 1994 and 1998. GAV- (406 bp) or YHV-specific (277 bp) amplicons were differentially generated in all cases, including five YHV RNA samples in which no primary RT-PCR amplicon was detected. Sequence analysis of GAV and YHV PCR amplicons identified minor variations in the regions targeted by the virus-specific antisense primers. However, none occurred at positions that critically affected the PCR.  相似文献   

11.
12.
13.
A rapid and highly sensitive real-time PCR detection and quantification method for infectious hypodermal and hematopoietic necrosis virus (IHHNV), a single-stranded DNA virus, and white spot virus (WSV), a double-stranded DNA (dsDNA) virus infecting penaeid shrimp (Penaeus sp.), was developed using the GeneAmp 5700 sequence detection system coupled with SYBR Green chemistry. The PCR mixture contains a fluorescence dye, SYBR Green, which upon binding to dsDNA exhibits fluorescence enhancement. The enhancement of fluorescence was proportional to the initial concentration of the template DNA. A linear relationship was observed between the amount of input plasmid DNA and cycle threshold (C(T)) values over a range of 1 to 10(5) copies of the viral genome. To control the variation in sampling and processing among samples, the shrimp beta-actin gene was amplified in parallel with the viral DNA. The C(T) values of IHHNV- and WSV-infected samples were used to determine absolute viral copy numbers from the standard C(T) curves of these viruses. For each virus and its beta-actin control, the specificity of amplification was monitored by using the dissociation curve of the amplified product. Using genomic DNA as a template, SYBR Green PCR was found to be 100- to 2000-fold more sensitive than conventional PCR, depending on the virus, for the samples tested. The results demonstrate that SYBR Green PCR can be used as a rapid and highly sensitive detection and quantification method for shrimp viruses and that it is amenable to high-throughout assay.  相似文献   

14.
Yellow head virus (YHV) is one of the most widespread viruses seriously affecting black tiger shrimp (Penaeus monodon) cultivation. A previous microarray study demonstrated that clathrin coat assembly protein 17 (AP17) was significantly up-regulated after YHV infection (Pongsomboon et al., 2011). Clathrin coat AP17 is a part of the assembly protein σ2 (AP-2) complex which is involved in clathrin-mediated endocytosis. Quantitative RT-PCR (qRT-PCR) revealed that the clathrin coat AP17 gene was up-regulated 3-fold at 12 h post YHV infection. In addition, immunofluorescence microscopy showed that clathrin coat AP17 was highly expressed in the cytoplasm of the YHV-infected hemocytes. Knockdown of the clathrin coat AP17 gene dramatically reduced YHV replicativity by 32-fold. Interestingly, shrimp pre-treated with chlorpromazine, a commercial drug that inhibits clathrin-dependent endocytosis, exhibited significantly low levels of YHV infection. Taken together, these results suggest that clathrin-mediated endocytosis is involved in YHV propagation in P. monodon.  相似文献   

15.
Lu H  Ruan L  Xu X 《Virology》2011,419(2):84-89
WSSV interacts with integrin during infection of shrimps and modulate the focal adhesion kinase which is known as a regulator of several downstream signaling pathways. Viral protein kinases are thought to be important for virus infection by regulating the host signaling pathways. WSV083 is an immediate-early gene of white spot syndrome virus that contains a Ser/Thr protein kinase domain. So, does WSSV modulate FAK phosphorylation via the WSV083 molecule? In this study, co-transfection of WSV083 and MjFAK genes proceeded in insect cells revealed that the MjFAK phosphorylation and cell adhesion activity could be inhibited by the expression of WSV083. Kinase domain mutants of WSV083 lost its ability of inhibiting FAK phosphorylation. Moreover, silencing of FAK gene through RNAi accelerated the shrimp death rate upon WSSV challenge. These results demonstrate for the first time that modulation of FAK phosphorylation by WSV083 plays a critical role in the pathogenesis of WSSV infection.  相似文献   

16.
Among shrimp viral pathogens, white spot syndrome virus (WSSV) and yellow head virus (YHV) are the most lethal agents, causing serious problems for both the whiteleg shrimp, Penaeus (Litopenaeus) vannamei, and the black tiger shrimp, Penaeus (Penaeus) monodon. Another important virus that infects P. vannamei is infectious myonecrosis virus (IMNV), which induces the white discoloration of affected muscle. In the cases of taura syndrome virus and Penaeus stylirostris densovirus (PstDNV; formerly known as infectious hypodermal and hematopoietic necrosis virus), their impacts were greatly diminished after the introduction of tolerant stocks of P. vannamei. Less important viruses are Penaeus monodon densovirus (PmDNV; formerly called hepatopancreatic parvovirus), and Penaeus monodon nucleopolyhedrovirus (PemoNPV; previously called monodon baculovirus). For freshwater prawn, Macrobrachium rosenbergii nodavirus and extra small virus are considered important viral pathogens. Monoclonal antibodies (MAbs) specific to the shrimp viruses described above have been generated and used as an alternative tool in various immunoassays such as enzyme-linked immunosorbent assay, dot blotting, Western blotting and immunohistochemistry. Some of these MAbs were further developed into immunochromatographic strip tests for the detection of WSSV, YHV, IMNV and PemoNPV and into a dual strip test for the simultaneous detection of WSSV/YHV. The strip test has the advantages of speed, as the result can be obtained within 15 min, and simplicity, as laboratory equipment and specialized skills are not required. Therefore, strip tests can be used by shrimp farmers for the pond-side monitoring of viral infection.  相似文献   

17.
Sample collection and RNA isolation from shrimp haemolymph for RT-PCR diagnosis of yellow head virus (YHV) infections is crucial for disease control programs for cultivated shrimp in Thailand. Problems with RNA degradation arise when field samples must be collected far from the laboratory by relatively inexperienced personnel who do not have ready access to sophisticated reagents. In an attempt to solve this problem, haemolymph samples from shrimp were collected either by mixing with 10% (w/v) sodium citrate or by spotting on ISOCODE filter paper. RNA was extracted subsequently either by a rapid boiling method or by using TRI reagent and the extracts were used in a semi-quantitative, non-stop, semi-nested RT-PCR assay for YHV. Dried haemolymph spots on ISOCODE filter paper extracted with TRI reagent gave the most reliable and reproducible results. It also allowed longer periods of storage at room temperature.  相似文献   

18.
19.
When using mRNA from gills of normal whiteleg shrimp Penaeus (Litopenaeus) vannamei as the tester and mRNA from yellow head virus (YHV)-infected shrimp as the driver, subtractive suppression hybridization (SSH) revealed that a novel EST clone of 198 bp with a putative C-type lectin-like domain (CTLD) was downregulated in YHV-infected shrimp. The clone nucleotide sequence had 99% identity with one contig MGID1052359 (1,380 bp) reported in an EST database of P. vannamei, and the presence of this target in normal shrimp was confirmed by RT-PCR using primers designed from the MGID1052359 sequence. Analysis of the primary structure of the deduced amino acid (a.a.) sequence of the contig revealed a short portion (40 a.a. residues) at its N-terminus with high similarity to a low density lipoprotein receptor (LDLR) class A domain and another 152 a.a. residues at its C-terminus with high similarity to a C-type lectin domain. Thus, the clone was named LvCTLD and three recombinant proteins (LvCTLD, the LDLR domain and the CTLD domain) were synthesized in a bacterial system based on its sequence. An in vitro encapsulation assay revealed that Sepharose 4B beads coated with rLvCTLD were encapsulated by shrimp hemocytes and that melanization followed by 24 h post-encapsulation. The encapsulation activity of rLvCTLD was inhibited by 100 mM galactose, but not mannose or EDTA. In vivo injection of rLvCTLD or rLvCTLD plus YHV resulted in a significant elevation of PO activity in the hemolymph of the challenged shrimp when compared to shrimp injected with buffer, suggesting that rLvCTLD could activate the proPO system. An ELISA test revealed that rLvCTLD could bind to YHV particles in the presence of shrimp hemolymph. Phylogenetic analysis suggested that the LvCTLD sequence was more closely related to an antiviral gene found in Penaeus monodon (PmAV) than to other reported shrimp lectins. Taken together, we conclude that a novel shrimp LvCTLD is a host recognition molecule involved in the shrimp defense mechanism against YHV via recruitment of hemocytes, probably at the site of viral infection, and via activation of the proPO system.  相似文献   

20.
A reversed passive latex agglutination (RPLA) assay was developed for detecting the white spot syndrome virus (WSSV), which was formally named as penaeid rod-shaped DNA virus (PRDV) in Japan, from stomach tissue homogenate of the kuruma shrimp (Penaeus japonicus). Using high-density latex particles and specific polyclonal antibody, WSSV was detectable after 4h incubation. The hemolymph, the stomach, and the gills were extracted from a shrimp that had been infected experimentally with WSSV, the virus contained in each sample was tested by the PRLA and PCR assay. It was possible to detect the WSSV only from stomach tissue homogenates by the RPLA assay. And there was an agreement between RPLA and PCR assays for WSSV detection. Considering that the RPLA assay does not require biochemical expertise and latex reagents and all apparatus can be provided as a kit, this assay can be used for virus detection in the culture pond of shrimps or in the field as a convenient method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号