首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth factors promote cell growth and survival and protect the brain from developing injury after ischemia. In this article, the authors examined whether transforming growth factor-alpha (TGF-alpha) was protective in transient focal ischemia and whether alteration of cerebral circulation was involved. Rats received intraventricular TGF-alpha (50 ng, either split into 2 doses given 30 minutes before and 30 minutes after middle cerebral artery occlusion (MCAO), or 1 dose given 30 minutes after MCAO) or vehicle. Rats were subjected to 1-hour intraluminal MCAO and cerebral blood flow was recorded continuously by laser-Doppler flowmetry. Infarct volume was measured 1 and 4 days later. The effects of TGF-alpha on arterial tone were assessed in isolated rabbit basilar and common carotid arteries. Transforming growth factor-alpha before and after ischemia reduced infarct volume by 70% at 1 day and 50% at 4 days. Transforming growth factor-alpha given only after ischemia also did reduce infarct volume by 70% at 1 day and 80% at 4 days. The protective effect was more marked in cortex than in striatum. Transforming growth factor-alpha did not change cortical microvascular perfusion and did not modify arterial passive tone nor agonist-induced active tone. It can be concluded that TGF-alpha reduces infarct volume, even when the factor is exclusively administered at reperfusion, and that this effect is not mediated by changes in microvascular perfusion or cerebral arteries. It is therefore suggested that TGF-alpha has a protective effect against neuronal cell death after transient focal ischemia.  相似文献   

2.
Transforming growth factor-alpha (TGF-alpha), previously identified as a major member of the epidermal growth factor (EGF) family of growth factors, plays a role in proliferation, differentiation, and survival of neuronal and glial precursors and is implicated in development of the nervous system. However, its roles in nerve injury-induced responses remain obscure. The current study examined roles of endogenous TGF-alpha in peripheral nerve regeneration using sciatic nerve injury models with TGF-alpha knockout mice. Three weeks after a sciatic nerve crush, no significant differences were found between TGF-alpha wild-type and mutant mice in the number of retrogradely labeled L5 dorsal root ganglion (DRG) sensory neurons and L5 spinal cord motor neurons and in the morphology of myelinated regenerating nerve fibers, indicating that TGF-alpha is not essential for sensory and motor nerve regeneration. To assess a possible functional redundancy among TGF-alpha-related ligands in response to a nerve injury, mRNA expression of the EGF family was analyzed by RT-PCR in L4/L5 DRG pools and distal degenerating sciatic nerve segments after sciatic nerve ligation. Prior to and 1 day after ligation, there was a higher level of EGF-R mRNA in DRGs and in nerve in TGF-alpha null mice compared to wild types, and there was an induction of ligand amphiregulin mRNA in DRGs in mutant mice in place of the TGF-alpha upregulation present in wild types. These results indicate that TGF-alpha gene knockout does not affect peripheral nerve regeneration, probably due to a functional redundancy within the EGF family through a compensatory expression mechanism at both the receptor and ligand levels in TGF-alpha knockout mice.  相似文献   

3.
Transforming growth factor-alpha (TGF-alpha) is a candidate output signal of the hypothalamic circadian pacemaker. TGF-alpha is expressed in the suprachiasmatic nucleus (SCN) of rats, hamsters, and rhesus macaques [A. Kramer, F.C. Yang, P. Snodgrass, X. Li, T.E. Scammell, F.C. Davis and C.J. Weitz, Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling, Science, 294 (2001) 2511-5., X. Li, N. Sankrithi and F.C. Davis, Transforming growth factor-alpha is expressed in astrocytes of the suprachiasmatic nucleus in hamster: role of glial cells in circadian clocks, Neuroreport, 13 (2002) 2143-7., Y.J. Ma, M.E. Costa and S.R. Ojeda, Developmental expression of the genes encoding transforming growth factor alpha and its receptor in the hypothalamus of female rhesus macaques, Neuroendocrinology, 60 (1994) 346-59., Y.J. Ma, M.P. Junier, M.E. Costa and S.R. Ojeda, Transforming growth factor-alpha gene expression in the hypothalamus is developmentally regulated and linked to sexual maturation, Neuron, 9 (1992) 657-70.]. TGF-alpha reversibly inhibits wheel-running activity during long-term infusions into the third ventricle of hamsters (2 weeks, intracerebroventricular or ICV) [A. Kramer, F.C. Yang, P. Snodgrass, X. Li, T.E. Scammell, F.C. Davis and C.J. Weitz, Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling, Science, 294 (2001) 2511-5.], and this effect appears to be mediated by the epidermal growth factor receptor (EGFR or ErbB-1) [A. Kramer, F.C. Yang, P. Snodgrass, X. Li, T.E. Scammell, F.C. Davis and C.J. Weitz, Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling, Science, 294 (2001) 2511-5.]. Here, we demonstrate that this inhibitory effect is not restricted to wheel-running behavior or to mediation by the EGFR. Using direct observation, we found the effects of long-term TGF-alpha infusion (ICV, 12 microl/day, 3.3 microM) to be more general than previously reported. Other active behaviors such as grooming and feeding were reversibly inhibited and hamsters showed dramatic weight loss as a result of reduced feeding (34% of body weight over 19 days). TGF-alpha did not disrupt a non-behavioral rhythm, the rhythm in pineal melatonin. Wheel-running activity was also inhibited by another epidermal growth factor-like (EGF-like) peptide, neuregulin (NRG-1), that binds to different ErbB receptors. Like TGF-alpha, NRG-1 caused a significant weight loss. We also show that an acute injection of TGF-alpha inhibits activity (ICV, 5 microl, 3.3 microM over 2 min), with inhibition and recovery occurring over a few hours. Although the results are consistent with the proposed [A. Kramer, F.C. Yang, P. Snodgrass, X. Li, T.E. Scammell, F.C. Davis and C.J. Weitz, Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling, Science, 294 (2001) 2511-5.] role for EGF-like peptides in the daily regulation of activity, the actions of these peptides might also contribute to the behavioral etiology of diseases in which EGF-like peptides are expressed.  相似文献   

4.
The authors investigated the role of the prostaglandin-synthesizing enzyme cyclooxygenase-2 (COX-2) in the mechanisms of focal cerebral ischemia and its interaction with inducible nitric oxide synthase (iNOS). Focal cerebral ischemia was produced by permanent occlusion of the middle cerebral artery (MCA) in mice. Infarct volume was measured 96 hours later by computer-assisted planimetry in thionin-stained brain sections. The highly selective COX-2 inhibitor NS398 (20 mg/kg; intraperitoneally), administered twice a day starting 6 hours after MCA occlusion, reduced total infarct volume in C57BL/6 (-23%) and 129/SVeV mice (-21%), and ameliorated the motor deficits produced by MCA occlusion (P < .05). However, NS398 did not influence infarct volume in mice with deletion of the iNOS gene (P > .05). In contrast, the neuronal NOS inhibitor 7-NI (50 mg/kg; intraperitoneally), administered once 5 minutes after MCA occlusion, reduced neocortical infarct volume by 20% in iNOS -/- mice (P < .05). NS398 did not affect arterial pressure, resting CBF or the CBF reactivity to hypercapnia in anesthetized iNOS null mice (P > .05). The data suggest that COX-2 reaction products, in mouse as in rat, contribute to ischemic brain injury. However, the failure of NS398 to reduce infarct volume in iNOS null mice suggests that iNOS-derived NO is required for the deleterious effects of COX-2 to occur. Thus, COX-2 reaction products may be another mechanism by which iNOS-derived NO contributes to ischemic brain injury.  相似文献   

5.
Examination of adult rat brain regions by specific radioimmunoassays revealed a widespread distribution of transforming growth factor-alpha (TGF-alpha), but not epidermal growth factor (EGF), the peptide that had previously been reported to be present in rodent brain. Polyadenylated RNA samples from the different regions of rat brain were analyzed by Northern blot to identify mRNA species encoding precursor proteins for EGF (preproEGF), TGF-alpha (preproTGF-alpha), and the EGF/TGF-alpha receptor. The results indicate that TGF-alpha is the most abundant ligand for the EGF/TGF-alpha receptor in most parts of the brain analyzed. Message for preproEGF was only detectable after prolonged autoradiographic exposure; levels of preproEGF mRNA were between two and three orders of magnitude lower in brain than those expressed in control tissue (kidney), and one to two orders of magnitude lower than preproTGF-alpha mRNA levels in all brain regions. These results were confirmed by analysis of mRNA by RT/PCR, and support the hypothesis that expression of preproEGF mRNA in the brain is limited to smaller discrete areas, whereas preproTGF-alpha gene expression is almost ubiquitous.  相似文献   

6.
Tacrolimus (FK506), an immunosuppressive drug, has been shown to exert a potent neuroprotective activity when administered immediately after occlusion of the middle cerebral artery (MCA) in a nonhuman primate model of stroke. Here, we assessed the neuroprotective efficacy of tacrolimus with delayed treatment using the same model and compared with that of recombinant tissue plasminogen activator (rt-PA). Ischemic insult was induced by photochemically induced thrombotic occlusion of MCA in cynomolgus monkeys, and tacrolimus (0.2 mg/kg) and/or rt-PA (1.0 mg/kg) was intravenously administered 2 h after MCA occlusion. In another experiment, tacrolimus (0.1 mg/kg) was administered 4 h after MCA occlusion. Neurological deficits were monitored for 28 days after the ischemic insult and cerebral infarct volumes were measured with brain slices. With drug administration 2 h after the ischemic insult, tacrolimus significantly reduced neurological deficits and infarct volumes in the cerebral cortex without affecting the recanalization pattern in the MCA, however, rt-PA did not significantly improve neurological deficits or infarct volumes, even though it increased the recanalization rate of the occluded MCA. Combined treatment with tacrolimus and rt-PA exerted additional protection. Administration of tacrolimus 4 h after the ischemic insult still showed significant amelioration of neurological deficits. These results suggested that tacrolimus had a wider therapeutic time window than rt-PA in the nonhuman primate stroke model.  相似文献   

7.
It has been established that thyroid hormone and neurotrophic factors both orchestrate developmental events in the brain. However, it is not clear how these two influences are related. In this study, we investigated the effects of thyroid hormone on cerebellar development and the coincident expression of transforming growth factor-alpha (TGF-alpha), a ligand in the epidermal growth factor (EGF) family, and the epidermal growth factor receptor (EGFR). Profiles of thyroid hormone expression were measured in postnatal animals and were found to peak at postnatal day 15 (P15). These levels dropped below detectable levels when mice were made hypothyroid with propylthiouracil (PTU). TGF-alpha and EGFR expression, as determined by RNAse protection assay, was maximal at P6 in normal animals, but remained low in hypothyroid animals, suggesting that thyroid hormone was responsible for their induction. In situ hybridization and immunohistochemical analysis of EGFR expression revealed that this receptor was present on granule cells within the inner zone of the external granule cell layer (EGL), suggesting that EGFR-ligands were not inducing granule cell proliferation. The persistence of EGFR expression on migrating granule cells and subsequent down-regulation of expression in the internal granule cell layer (IGL) implicates a role for EGFR-ligands in differentiation and/or migration. In hypothyroid animals, we observed a delayed progression of granule cell migration, consistent with the persistence of EGFR labeling in the EGL, and in the 'pile-up' of labeled cells at the interface between the molecular layer and the Purkinje cell layer. Taken together, these results implicate thyroid hormone in the coordinated expression of TGF-alpha and EGFR, which are positioned to play a role in post-mitotic developmental events in the cerebellum.  相似文献   

8.
Previous studies using steroids for experimental focal stroke have demonstrated conflicting results, possibly related to dose used or ischemic models employed. In this study we examined high-dose methylprednisolone treatment following permanent and temporary focal cerebral ischemia in the rat. Focal stroke was induced in spontaneously hypertensive rats by permanent right common carotid and either permanent or 3 h of temporary middle cerebral artery (MCA) occlusion. Methylprednisolone (105 mg/kg) was administered intra-arterially. Infarct volume was measured at 24 h after permanent and temporary MCA occlusion. Cerebral edema was determined by measuring right and left hemispheric volumes and water content 24 h after permanent MCA occlusion in one experiment. Methylprednisolone, whether administered in divided doses over 12 h (n = 15 in each group) or a single bolus (n = 9 per group), had no effect on infarct volume after permanent MCA occlusion. Methylprednisolone treatment also had no influence on cerebral edema (n = 9 per group). In two different experiments, methylprednisolone given in divided doses over 12 h (n = 11, n = 25) after temporary MCA occlusion decreased infarct volume (P < 0.05) by 20% compared with saline controls (n = 10, n = 25). High dose methylprednisolone decreased infarct volume following temporary, but not permanent, focal ischemia. The benefit suggests that high dose methylprednisolone may prove useful clinically if reperfusion can be established with thrombolytic agents. Furthermore, the differential treatment effect in the setting of comparable ischemic insults implies that different modifiable biochemical processes may be present during temporary but not permanent focal ischemia, thus providing indirect evidence for reperfusion injury.  相似文献   

9.
In a process called ischemic preconditioning, a brief, sublethal ischemic insult protects tissue from subsequent, more severe injury. There have been no reports of rapidly induced ischemic preconditioning. The authors sought to develop a model of cerebral ischemic preconditioning in the mouse that can be applied to transgenic and knockout animals. They found that brief middle cerebral artery (MCA) occlusion only minutes before a severe ischemic insult can induce protection from that insult. Here the investigators describe a mouse model of preconditioning using intraluminal MCA occlusion as both the conditioning and the test stimulus. One or three 5-minute episodes of ischemia given 30 minutes before MCA occlusion for 1 or 24 hours (permanent occlusion) confer significant protection as assessed by infarct volume measurements 24 hours later.  相似文献   

10.
Lipopolysaccharide (LPS), administered 72 hours before middle cerebral artery (MCA) occlusion, confers significant protection against ischemic injury. For example, in the present study, LPS (0.9 mg/kg intravenously) induced a 31% reduction in infarct volume (compared with saline control) assessed 24 hours after permanent MCA occlusion. To determine whether LPS induces true tolerance to ischemia, or merely attenuates initial ischemic severity by augmenting collateral blood flow, local CBF was measured autoradiographically 15 minutes after MCA occlusion. Local CBF did not differ significantly between LPS- and saline-pretreated rats (e.g., 34 +/- 10 and 29 +/- 15 mL x 100 g(-1) x min(-1) for saline and LPS pretreatment in a representative region of ischemic cortex), indicating that the neuroprotective action of LPS is not attributable to an immediate reduction in the degree of ischemia induced by MCA occlusion, and that LPS does indeed induce a state of ischemic tolerance. In contrast to the similarity of the initial ischemic insult between tolerant (LPS-pretreated) and nontolerant (saline-pretreated) rats, microvascular perfusion assessed either 4 hours or 24 hours after MCA occlusion was preserved at significantly higher levels in the LPS-pretreated rats than in controls. Furthermore, the regions of preserved perfusion in tolerant animals were associated with regions of tissue sparing. These results suggest that LPS-induced tolerance to focal ischemia is at least partly dependent on the active maintenance of microvascular patency and hence the prevention of secondary ischemic injury.  相似文献   

11.
BACKGROUND AND PURPOSE: To simulate human stroke, we developed a model of focal cerebral embolic ischemia in the unanesthetized rat. Using this model, we tested the hypothesis that intra-arterial administration of TNK-tPA, a fibrin specific second generation thrombolytic agent, is effective in reducing ischemic volume without increasing intra-cerebral hemorrhage. METHODS: Under anesthesia, a catheter was inserted to the origin of the MCA of male Wistar rats. Forty-five minutes after recovery from anesthesia, the MCA was occluded in the awake rat by a single fibrin rich clot placed via the catheter. TNK-tPA (1.5 mg/kg) was administered intraarterially via the catheter at either 2 h or 4 h after stroke. All rats were sacrificed at 48 h after ischemia. Neurological deficits, gross hemorrhage and ischemic lesion volume were measured. RESULTS: A clot was detected at the origin of the MCA 4 h after MCA occlusion in the awake rats (n=4). Rats (n=12) subjected to MCA occlusion showed immediate neurological deficits which persisted for 48 h of ischemia. Ischemic rats had a lesion volume of 38.2+/-3.8% and 25% of rats exhibited gross hemorrhage. Ischemic rats (n=10) treated with TNK-tPA at 2 h showed a significant (P<0.05) reduction of neurological deficits, body weight loss and infarct volume (22.8+/-2.1%) without an increase in gross hemorrhage (10%) compared with the non treated ischemic rats (25%). Although treatment with TNK-tPA of ischemic rats (n=12) at 4 h did not significantly (P=0.06) reduce infarct volume (28.6+/-3.0%), it also did not increase gross hemorrhage (25%) compared with the control group (25%). CONCLUSIONS: This study demonstrates that intraarterial administration of TNK-tPA at 2 h of ischemia in the unanesthesthetized rat is effective in reducing neurological deficits and ischemic lesion volume without increasing hemorrhagic transformation and that administration of TNK-tPA at 4 h of ischemia does not increase the incidence of hemorrhagic transformation.  相似文献   

12.
Cerebral ischemia activates ERK and Akt pathways. We studied whether these activations were affected by treatment with the protective growth factor transforming growth factor-alpha (TGF-alpha), and whether they were mediated through N-methyl D-aspartate (NMDA) receptors. The middle cerebral artery was occluded in rats and signaling was studied 1 h later. Noncompetitive NMDA receptor antagonist MK-801 was injected i.p. before the occlusion, whereas in other rats TGF-alpha was given intraventricularly before and after occlusion. Ischemia caused ERK phosphorylation in the nucleus, localized in the endothelium and neurons. Phosphorylation of ERK was prevented by TGF-alpha, but it was enhanced in the nucleus and cytoplasm by MK-801. Also, MK-801 but not TGF-alpha increased p-Akt. Results suggest that preventing ERK activation is related to the protective effect of TGF-alpha, whereas the protective effect of MK-801 is associated with activation of pro-survival Akt. While results support that NMDA receptor signaling precludes Akt activation, we did not find evidence to support that it underlies ischemia-induced ERK phosphorylation. This study illustrates that neuroprotection results from a fine balance between death and survival signaling pathways.  相似文献   

13.
Li X  Sankrithi N  Davis FC 《Neuroreport》2002,13(16):2143-2147
Transforming growth factor-alpha (TGF-alpha) is abundantly expressed in the suprachiasmatic nucleus of several rodent species. It was recently suggested to be a clock output signal regulating the activity/rest rhythm. In this study we further characterized the cellular identity of TGF-alpha-expressing cells in the suprachiasmatic nucleus of the Syrian hamster (Mesocricetus auratus). Using confocal laser scanning fluorescence imaging on brain sections immuno-histologically processed for TGF-alpha and GFAP double staining, we observed that in the suprachiasmatic nucleus, TGF-alpha staining is located mainly in GFAP-positive cells, indicating suprachiasmatic nucleus astrocytes produce TGF-alpha. Glial expression of TGF-alpha was also observed in the 3rd ventricle tanycytes of the retrochiasmatic area. In other brain regions where the TGF-alpha message is abundant, such as in the piriform cortex, we observed that TGF-alpha staining is mainly located in neurons. Our results provide the first evidence that glial cells are involved in the regulation of output from the suprachiasmatic nucleus circadian clock through a diffusible mechanism.  相似文献   

14.
The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat   总被引:22,自引:0,他引:22  
Excessive activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor has been implicated in the sequence of neurochemical events that results in irreversible neuronal damage in cerebral ischemia. The effects of the NMDA antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) upon the amount of ischemic brain damage has been assessed quantitatively in the lightly anesthetized rat. Focal cerebral ischemia was produced by the permanent occlusion of one middle cerebral artery (MCA), and the animals were killed 3 hours after the arterial occlusion. MK-801 (0.5 mg/kg) was administered intravenously either 30 minutes prior to MCA occlusion or 30 minutes after the induction of ischemia. Pretreatment with MK-801 reduced the volume of ischemic damage both in the cerebral cortex (by 38% compared with untreated rats with MCA occlusion; p less than 0.01) and in the caudate nucleus (by 18% compared with controls; p less than 0.05). Treatment with MK-801, initiated 30 minutes after MCA occlusion, reduced the volume of ischemic damage in the cerebral cortex (by 52% compared with controls; p less than 0.01). The volume of ischemic damage in the caudate nucleus was minimally influenced by MK-801 treatment initiated after MCA occlusion. The antiischemic effects of MK-801 were readily demonstrable despite the hypotension that MK-801 induced in rats anesthetized with halothane (0.5%), nitrous oxide (70%), and oxygen (30%). The potency of MK-801 in reducing ischemic brain damage, even when administered after the induction of ischemia, highlights the potential use of NMDA receptor antagonists for the treatment of focal cerebral ischemia in humans.  相似文献   

15.
Stroke is the major cause of adult brain dysfunction. In an experimental approach to evaluate the possible beneficial effects of administration of neurotrophic factors in stroke, we have used a model of distal middle cerebral artery (MCA) occlusion in adult rats. In this model, we found: (1) a permanent reduction of brain-derived neurotrophic factor (BDNF) and its full-length receptor, TrkB, in the infarcted core; (2) a transient increase in BDNF immunoreactivity in the internal region of the border of the infarct (penumbra area) at 12 h after MCA occlusion; (3) increased truncated TrkB immunoreactivity in astrocytes surrounding the area of the infarction; and (4) increased full-length TrkB immunoreactivity in scattered neurons, distant from the infarct, in ipsilateral and contralateral cortices at 24 and 48 h after MCA occlusion. We next studied the regulation of TrkB expression by BDNF, after ischemia, and its neuroprotective effects in vivo. In control non-ischemic rats, grafting of mock- or BDNF-transfected fibroblasts (F3A-MT or F3N-BDNF cell lines, respectively) in the medial part of the somatosensory cortex increased truncated TrkB immunoreactivity in neighboring astrocytes. Grafting alone also increased full-length TrkB in the vicinity of the mock graft (at 24 and 48 h) and the BDNF-grafted graft (at 4 days). Interestingly, ischemic animals grafted with the mock-transfected cell line did not show any further regulation of TrkB receptors. However, ischemic animals grafted with the BDNF cell line showed an up-regulation of full-length TrkB expression in neurons located in the internal border of the infarct. Analysis of nuclear DNA fragmentation in situ, combined with microtubule-associated protein 2 immunohistochemistry, revealed that most cells dying in the borders of the infarct (penumbra area) at 48 h following MCA occlusion were neurons. No differences in the infarct size were found between MCA occluded, mock-transfected MCA-occluded, and BDNF-transfected MCA-occluded rats. Moreover, cell death was similar in nongrafted and mock-grafted rats subjected to MCA occlusion. However, the number of cells with nuclear DNA breaks was significantly reduced in the penumbra area close to the BDNF graft in ischemic rats. Thus, our results show that BDNF specifically up-regulates its full-length TrkB receptor in cortical neurons of the penumbra area and prevents their death in an in vivo model of focal ischemia.  相似文献   

16.
Delayed administration of vascular endothelial growth factor (VEGF) promotes functional recovery after focal cerebral ischemia. However, early intravenous injection of VEGF increases blood-brain barrier (BBB) leakage, hemorrhagic transformation and infarct volume whereas its application to cortical surface is neuroprotective. We have investigated whether or not early intracerebroventricular administration of VEGF could replicate the neuroprotective effect observed with topical application and the mechanism of action of this protection. Mice were subjected to 90 mins middle cerebral artery (MCA) occlusion and 24 h of reperfusion. Vascular endothelial growth factor (8 ng, intracerebroventricular) was administered 1 or 3 h after reperfusion. Compared with the vehicle-treated (intracerebroventricular) group, VEGF decreased the infarct volume along with BBB leakage in both treatment groups. Neurologic disability scores improved in parallel to the changes in infarct volume. Independently of the decrease in infarct size, VEGF also reduced the number of TUNEL-positive apoptotic neurons. Phospo-Akt levels were significantly higher in ischemic hemispheres of the VEGF-treated mice. Contrary to intracerebroventricular route, intravenous administration of VEGF (15 microg/kg) enhanced the infarct volume as previously reported for the rat. In conclusion, single intracerebroventricular injection of VEGF protects brain against ischemia without adversely affecting BBB permeability, and has a relatively long therapeutic time window. This early neuroprotective action, observed well before recovery-promoting actions such as angiogenesis, possibly involves activation of the PI-3-Akt pathway.  相似文献   

17.
Basic fibroblast growth factor is a polypeptide with potent multipotential trophic effects on central nervous system cells, including neurons, glia, and endothelial cells. In particular, it promotes the survival of a wide variety of brain neuron in vitro, and protects these neurons against the effects of several neurotoxins, including excitatory amino acids, hypoglycemia, and calcium ionophore. Since lack of substrate delivery, excitatory amino acid toxicity, and calcium entry into cells appear to be important processes in neuronal death after ischemia, we tested the hypothesis that pretreatment with basic fibroblast growth factor limits infarct size in a model of focal cerebral ischemia in vivo. Mature male Long-Evans rats received either continuous intraventricular infusion of basic fibroblast growth factor (1.2μ/day; with or without heparin, added to stabilize the growth factor) or vehicle alone for 3 days before focal ischemic infarcts were made in the right lateral cerebral cortex by permanent distal middle cerebral artery occlusion and temporary (45-minute) bilateral carotid occlusion. Intraoperative measurements of core temperarure, arterial blood pressure and blood gases, blood glucose concentration, and hematocrit, and postoperative measurements of temperature revealed no differences among vehicle- versus basic fibroblast growth factor–treated animals. Twenty-four hours later, animals were killed, brains were removed and stained to visualize cortical infarcts, and infarct volume was determined by image analysis. Overall, we found a 25% reduction in infarct volume in basic fibroblast growth factor– (N = 25) versus vehicle-treated (N = 23) animals (p < 0.01). This reduction was not enhanced by the addition of heparin. These data show that pretreatment with intraventricular basic fibroblast growth factor limits infarct size following focal cerebral ischemia in rats.  相似文献   

18.
Occlusion of the middle cerebral artery (MCA) causes a reduction of cerebral blood flow (CBF), which shows a progressive decrease from the periphery to the core of the MCA territory. The severity of ischemia is dependent on the duration of the ischemic episode and degree of CBF reduction. Fixing the ischemic episode to 1 h, we have examined whether or not cortical infarct size was related to the degree of CBF reduction in a perifocal cortical area in rats. One-hour intraluminal MCA occlusion accompanied with bilateral common carotid artery (CCA) occlusion (three-vessel occlusion/reperfusion model) was carried out in Sprague-Dawley rats and CBF was monitored with laser-Doppler flowmetry in the fronto-parietal cortex, an area which is perifocal to the core of the MCA territory. Finally, infarct size was measured 7 days later and was related to the corresponding CBF decrease. Sequential ipsilateral CCA, MCA and contralateral CCA occlusions produced reductions of CBF to 96%, 52% and 33% of baseline, respectively. Cortical infarct volume was found to be dependent on the corresponding reduction of perifocal cortical CBF during the ischemic episode. These results show that the reduction of CBF in the periphery of the MCA territory during 1-h focal ischemia determines infarct size in a three-vessel occlusion/reperfusion model.  相似文献   

19.
Nitric oxide synthase-containing neurons are presumed to be resistant to neurodegeneration and neurotoxicity, however this resistance has not been demonstrated after focal cerebral ischemia. We therefore measured the temporal profile of neuronal nitric oxide synthase (NOS-I) mRNA and immunoreactivity and NADPH-diaphorase reactivity over a one week period after permanent middle cerebral artery (MCA) occlusion in 48 male Wistar rats and compared these data to ischemic cell damage as evaluated on hematoxylin and eosin (H & E) stained sections by light microscopy. NOS-I mRNA increased as early as 15 min after MCA occlusion in the ipsilateral striatum and maximal expression of NOS-I was found in the ipsilateral cortex and striatum 1 h after MCA occlusion. The numbers of NOS-I-containing neurons in the ipsilateral cortex and striatum were significantly greater (P < 0.05) than NOS-I-containing neurons in the contralateral hemisphere at 2–48 h after the onset of ischemia. The number of NOS-I-containing neurons peaked at 4 h after MCA occlusion. Neurons exhibited shrinkage or were swollen at 1 to 4 h after MCA occlusion. At 24–48 h after ischemia, neurons in the ischemia lesion appeared to be eosinophilic or ghost like on H & E stained sections. However, some of these neurons retained morphological integrity on the NOS-I immunohistochemical sections. At 168 h after ischemia, all neurons within the lesion appeared necrotic on H & E stained sections; however, scatterred neurons expressed NOS-I and NADPH-diaphorase. The rapid upregulation of NOS-I and mRNA in the ischemic lesion suggests that NOS-I is involved in focal cerebral ischemic injury; the expression of NOS-I by neurons that retain their morphological structure in the area of the infarct suggests that NOS-I-containing neurons are more resistant to the ischemic insult. Our data also indicate a close association of NOS-I immunoreactivity and NADPH-diaphorase reactivity in ischemic brain.  相似文献   

20.
This study investigated the spatial and temporal expressions of mRNA encoding neuropilin (Npn)-1, Npn-2 and semaphorin3A (Sema3A) in the rat brain after occlusion of the middle cerebral artery (MAC) distal to the striate branches. The expression of Npn-1 mRNA was transiently upregulated in layers V and VI of the parietal cortex not entering infarction on the lesion side from 3 to 6 h after MCA occlusion. The transient up-regulation of Npn-1 mRNA expression was presumably accompanied by an increase in Npn-1 protein as shown by immunohistochemistry in combination with in situ hybridization histochemistry. Intense Npn-2 mRNA expression was noted temporarily in layer II of the parietal cortex on the lesion side from 1 to 6 h after MCA occlusion. The expression of Sema3A mRNA was upregulated in layer VI of the non-infarcted parietal cortex on the lesion side at 6 h after MCA occlusion. The above increases in mRNA expression were no longer observed at 12 h after MCA occlusion. The expressions of Npn-1, -2 and Sema3A mRNA were not detected in the ventroposterior thalamic nucleus undergoing secondary degeneration after MCA occlusion. In the infarct lesion or ischemic core, neuronal expressions of Npn-1, -2 and Sema3A disappeared by 3 days after MCA occlusion as the neurons in situ entered apoptosis or necrosis. In contrast, ED-1-positive microglia/macrophages with Npn-1 and Npn-2 mRNA were observed in the infarct lesion at 1 week after MCA occlusion. These findings suggest that the temporal up-regulation of Npn-1 and Sema 3A mRNA expressions in the non-infarcted parietal cortex on the lesion side is insufficient to induce neuronal cell death possibly because the up-regulated mRNA molecules are not fully translated and that the overexpression of Npn-1 and/or Npn-2 in the ischemic core with degenerating neurons enables activated microglial cells to contact the damaged neurons in situ for phagocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号