首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Systemic lupus erythematosus is an autoimmune disease in which complex interactions between genes and environmental factors determine the disease phenotype. We have shown that genes from the non-autoimmune strains 129 and C57BL/6 (B6), commonly used for generating gene-targeted animals, can induce a lupus-like disease. Here, we conducted a genome-wide scan analysis of a cohort of (129 x B6)F2 C1q-deficient mice to identify loci outside the C1qa locus contributing to the autoimmune phenotype described in these mice. The results were then confirmed in a larger dataset obtained by combining the data from the C1q-deficient mice with data from previously reported wild-type mice. Both analyses showed that a 129-derived interval on distal chromosome 1 is strongly linked to autoantibody production. The B6 genome contributed to anti-nuclear autoantibody production with an interval on chromosome 3. Two regions were linked to glomerulonephritis: a 129 interval on proximal chromosome 7 and a B6 interval on chromosome 13. These findings demonstrate that interacting loci between 129 and B6 mice can cause the expression of an autoimmune phenotype in gene-targeted animals in the absence of any disrupted gene. They also indicate that some susceptibility genes can be inherited from the genome of non-autoimmune parental strains.  相似文献   

2.
The inhibitory receptor FcgammaRIIb regulates B-cell functions. Genetic studies have associated Fcgr2b polymorphisms and lupus susceptibility in both humans and murine models, in which B cells express reduced FcgammaRIIb levels. Furthermore, FcgammaRIIb absence results in lupus on the appropriate genetic background, and lentiviral-mediated FcgammaRIIb overexpression prevents disease in the NZM2410 lupus mouse. The NZM2410/NZW allele Fcgr2b is, however, located in-between Sle1a and Sle1b, two potent susceptibility loci, making it difficult to evaluate Fcr2b(NZW) independent contribution. By using two congenic strains that each carries only Sle1a (B6.Sle1a(15-353)), or Fcr2b(NZW) in the absence of Sle1a or Sle1b (B6.Sle1(111-148)), we show that the Fcr2b(NZW) allele does not upregulate its expression on germinal center B cells and plasma cells, as does the C57BL/6 allele on B6.Sle1a(15-353) B cells. Furthermore, in the absence of the flanking Sle1a and Sle1b, Fcr2b(NZW) does not produce an autoimmune phenotype, but is associated with an increased number of class-switched plasma cells. These results show that while a lower level of FcgammaRIIb does not by itself induce the development of autoreactive B cells, it has the potential to amplify the contribution of autoreactive B cells induced by other lupus-susceptibility loci by enhancing the production of class-switched plasma cells.  相似文献   

3.
Genetic analyses of the lupus-prone NZM2410 mouse have identified multiple susceptibility loci on chromosome 7, termed Sle3 and Sle5. Both of these loci were contained within a large congenic interval, originally termed as Sle3 that strongly impacts a variety of myeloid and T-cell phenotypes and mediates fatal lupus nephritis when combined with Sle1. We have now produced two subcongenic strains, B6.Sle3 and B6.Sle5, carrying the Sle3 and Sle5 intervals separately and characterized their phenotypes as monocongenic strains and individually in combination with Sle1. Neither B6.Sle3 nor B6.Sle5 monocongenic strain develop severe autoimmunity; however, both of these intervals cause the development of severe glomerulonephritis when combined with Sle1. Thus, B6.Sle1Sle3 and B6.Sle1Sle5 exhibit splenomegaly, expansion of activated B and CD4+ T-cell populations and high levels of IgG and IgM autoantibodies targeting multiple nuclear antigens, intact glomeruli and various other autoantigens. In addition, B6.Sle1Sle3 mice also produced higher levels of IgA antinuclear autoantibodies, which were implicated in the development of IgA nephropathy. Our results indicate that Sle3 and Sle5 can independently complement with Sle1, through shared and unique mechanisms, to mediate the development of severe autoimmunity.  相似文献   

4.
The NZM2410 and NZM TAN (TAN) are two of 27 inbred strains derived from an intercross between the NZW and NZB strains. NZM2410 mice develop a highly penetrant lupus nephritis mediated by three susceptibility loci, Sle1, Sle2 and Sle3. These three loci have been combined on a C57BL/6 background in a triple congenic strain that reconstitutes the NZM2410 autoimmune phenotype. Remarkably, inspite of the presence of Sle1, Sle2 and Sle3, TAN mice display a mild autoimmune phenotype reminiscent of NZW. Contrary to the lupus-prone strains, the majority of TAN CD4(+) T cells are in a na?ve-inactivated stage. TAN mice show B-cell developmental abnormalities similar to lupus-prone mice, such an accumulation of transitional T1 cells and peritoneal B-1a cells. TAN mice show, however, a unique expansion of the splenic marginal zone, in which B cells express high levels of CD5 and CD9, fail to migrate to the follicles in response to LPS, and show sub-optimal binding of T-independent type 2 antigens. Therefore, TAN mice present a functional silencing of marginal zone B cells, which have been previously implicated with autoimmune process. The TAN strain thus provides a novel model for the analysis of the genetic determinants of B-cell autoreactivity.  相似文献   

5.
B6.Sle1 mice, congenic for the NZM2410-derived lupus susceptibility locus, Sle1 on chromosome 1 exhibit many of the features seen in human lupus including activated lymphocytes and high titers of antinuclear autoantibodies. Among the different surface molecules that were aberrantly expressed on the B6.Sle1 lymphocytes was Ly-6A/E. Splenic B- and T-lymphocytes but not myeloid cells from B6.Sle1 mice exhibited enhanced levels of Ly-6A/E compared to B6 controls. In particular, MZ B cells, GC B cells and B-cell blasts expressed the highest levels of Ly-6A/E in both strains, with the levels being even higher on B6.Sle1 derived cells. Following stimulation with LPS or anti-IgM, there was a profound up-regulation in Ly-6A/E, particularly on MZ B cells and B-cell blasts. CD4 and CD8 T cells also up-regulated Ly-6A/E after stimulation with anti-CD3 and anti-CD28. These studies were extended to additional autoimmune strains including B6.Sle3, B6.Sle1.lpr and BXSB. Importantly, Ly-6A/E levels on lymphocytes were commensurate with the degree of disease exhibited by these lupus strains. Finally, it appears that increased interferon levels, in addition to antigen receptor stimulation, may also be a factor accounting for elevated Ly-6A/E in lupus. Given these observations it is important to elucidate the functional role of Ly-6A/E in lupus in future studies.  相似文献   

6.
The CD4(+)CD25(+)Foxp3(+) cells are essential for regulation of the immune response, and the integrin, CD103 (α(E)β(7)), identifies a potent subset of these cells. Defects in CD4(+)CD25(+)Foxp3(+) cells are thought to contribute to susceptibility to autoimmune disease in predisposed individuals. Studies evaluating the quality and quantity of CD4(+)CD25(+)Foxp3(+) regulatory cell populations in the context of autoimmune disease susceptibility have been inconclusive, and few if any, have analyzed the CD103 subset. In this study, we analyzed regulatory T cells (Tregs) from different strains of mice with varying degrees of susceptibility to autoimmune disease. We found no differences in the ability of CD4(+)CD25(+) or the CD103(+) subset of Tregs from young female (NZB?×?NZW)F1 (BWF1), SJL, C57BL/6, or BALB/c mice to suppress CD4(+)CD25(-?) responders in vitro. Analysis of CD4(+)Foxp3(+) and CD4(+)CD25(+)CD103(+) cell frequencies in lymphoid organs revealed that BWF1 mice had dramatically lower percentages of both populations in the lymph node (LN) than the other strains, and lower percentages in the spleen in all but the C57BL/6 strain. We next determined whether these findings extended to another autoimmune-prone strain. Similar to BWF1 mice, percentages of CD4(+)Foxp3(+) and CD4(+)CD25(+)CD103(+) cells were significantly lower in predisease NOD mice. The low frequencies of CD4(+)Foxp3(+) and CD4(+)CD25(+)CD103(+) cells in BWF1 and NOD mice were not due to deficiencies in either thymic production or homeostatic proliferation. These data indicate that decreased percentages of CD4(+)Foxp3(+) cells and particularly, CD4(+)CD25(+)CD103(+) cells in LN correlate with the predisposition to spontaneous development of autoimmune disease.  相似文献   

7.
Systemic lupus erythematosus (SLE) is a chronic, systemic autoimmune disease characterized by the loss of tolerance to self-antigen. Because it is currently not known if regulatory T (T(reg)) cells are involved in the pathogenesis, we determined the frequency of CD4(+)CD25(+) T cells and assayed the related gene expression levels in CD4(+)CD25(+) T cells isolated from both lupus mice (NZB/NZW F(1)) and normal control mice (DBA2/NZW F(1)). The results showed that the frequency of CD4(+)CD25(+) T cells in lupus mice was lower than that of normal mice. Except for the high expression level of interleukin (IL)-10 mRNA, CD4(+)CD25(+) T cells from lupus mice expressed normal forkhead box P3 (Foxp3) and transforming growth factor (TGF)-beta mRNA, and exerted suppressive functions. Furthermore, we depleted CD25(+) T(reg) cells of non-autoimmune mice with anti-CD25 antibody and broke their tolerance with apoptotic cell-pulsed dendritic cells for the follow-up of autoantibody levels. The mice in the CD25(+) cell-depleted group had higher titres of anti-double-strand/single-strand DNA antibodies than those of the isotype control antibody-treated group. These findings indicated that CD4(+)CD25(+) T cells might be involved in the regulatory mechanism of autoantibody production.  相似文献   

8.
The NZM2410-derived Sle2 lupus susceptibility locus induces an abnormal B-cell differentiation, which most prominently leads to the expansion of autoreactive B1a cells. We have mapped the expansion of B1a cells to three Sle2 sub-loci, Sle2a, Sle2b and Sle2c. Sle2 also enhances the breach of B-cell tolerance to nuclear antigens in the 56R anti-DNA immunoglobulin transgenic (Tg) model. This study used the Sle2 sub-congenic strains to map the activation of 56R Tg B cells. Sle2c strongly sustained the breach of tolerance and the activation of anti-DNA B cells. The production of Tg-encoded anti-DNA antibodies was more modest in Sle2a-expressing mice, but Sle2a was responsible for the recruitment for Tg B cells to the marginal zone, a phenotype that has been found for 56R Tg B cells in mice expressing the whole Sle2 interval. In addition, Sle2a promoted the production of endogenously encoded anti-DNA antibodies. Overall, this study showed that at least two Sle2 genes are involved in the activation of anti-DNA B cells, and excluded more than two-thirds of the Sle2 interval from contributing to this phenotype. This constitutes an important step toward the identification of novel genes that have a critical role in B-cell tolerance.  相似文献   

9.
IL-10 regulation of lupus in the NZM2410 murine model   总被引:3,自引:0,他引:3  
Multiple studies have reported high levels of IL-10 in SLE patients and in murine models of lupus. IL-10 is a regulatory cytokine mainly produced by B cells, which use this cytokine to support their proliferation, and by myeloid cells, which use IL-10 to reduce proinflammatory responses. IL-10 is also produced by a subset of CD4+ T regulatory cells. Various manipulations of IL-10 levels with repeated administrations of anti-IL-10 neutralizing antibodies, genetic ablation or injections of recombinant cytokine have shown contradictory results, which is likely to reflect the opposite effects of this cytokine on the two major effector arms of lupus pathologenesis, namely B cells and inflammation. We have investigated the role of IL-10 in a novel congenic model of lupus, B6.Sle1.Sle2.Sle3 (B6.TC), which consists of the three NZM2410-derived SLE susceptibility loci combined on a C57BL/6 background. We first investigated in this model the source of elevated IL-10 and shown that it results from a larger number of CD4+ T cells producing the cytokine, and from a greatly increased B1-a cell pool, which is the main IL-10 producing compartment. We have then used AAV-mediated skeletal muscle gene delivery to overexpress IL-10 in young B6.TC mice and follow disease marker expression up to 7 months of age. We show here that continuous overexpression of low levels of IL-10 significantly delayed antinuclear auto-antibody production and decreased clinical nephritis. B cell phenotypes were largely unaffected, while T-cell activation was significantly reduced. This highlighted the pivotal role played by T-cell activation in this model, and suggested that this pathway could be effectively targeted for therapeutic interventions. These results also reinforce the notion that IL-10 exerts multiple functions and commend caution in equating high levels of IL-10 and increased pathogenesis in systemic autoimmunity.  相似文献   

10.
Several genes in an interval of human and mouse chromosome 1 are associated with a predisposition for systemic lupus erythematosus. Congenic mouse strains that contain a 129-derived genomic segment, which is embedded in the B6 genome, develop lupus because of epistatic interactions between the 129-derived and B6 genes, e.g. in B6.129chr1b mice. If a gene that is located on chromosome 1 is altered through homologous recombination in 129-derived embryonic stem cells (ES cells) and if the resultant knockout mouse is backcrossed with B6, interpretation of the phenotype of the mutant mouse may be affected by epistatic interactions between the 129 and B6 genomes. Here, we report that knockout mice of two adjacent chromosome 1 genes, Slamf1(-/-) and Slamf2(-/-), which were generated with the same 129-derived ES cell line, develop features of lupus, if backcrossed on to the B6 genetic background. By contrast, Slamf1(-/-) [BALB/c.129] and Slamf2(-/-) [BALB/c.129] do not develop disease. Surprisingly, Slamf1(-/-) [B6.129] mice develop both auto-antibodies and glomerulonephritis between 3 and 6 months of age, while disease fully develops in Slamf1(-/-) [B6.129] mice after 9-14 months. Functional analyses of CD4(+) T cells reveals that Slamf2(-/-) T cells are resistant to tolerance induction in vivo. We conclude that the Slamf2(-/-) mutation may have a unique influence on T-cell tolerance and lupus.  相似文献   

11.
Interactions between Sle1 and other susceptibility loci were required for disease development in the NZM2410 model of lupus. Sle1 corresponds to at least three subloci, Sle1a, Sle1b, and Sle1c, each of which independently causes loss of tolerance to chromatin, but displays a distinctive immune profile. We have used congenic strains to analyze the interactions between the Sle1 subloci and other lupus susceptibility loci using Y autoimmunity accelerator (Yaa) and Faslpr as sensitizing mutations. Sle1 coexpressed with either one of these single susceptibility alleles resulted in a highly penetrant nephritis, splenomegaly, production of nephrophilic antibodies, and increased expression of B- and T-cell activation markers. Here, we show that only Sle1b interacted with Yaa to produce these phenotypes, suggesting that Sle1b and Yaa belong to the same functional pathway. Interactions between the three Sle1 loci and lpr resulted in lymphocyte activation and lupus nephritis, but a significant mortality was observed only for the Sle1a.lpr combination. This suggests a major role for the FAS pathway in keeping in check the loss of tolerance mediated by the Sle1 loci, especially for Sle1a. Our results illustrate the complexity of interactions between susceptibility loci in polygenic diseases such as lupus and may explain the clinical heterogeneity of the disease.  相似文献   

12.
Epistatic modifiers of autoimmunity in a murine model of lupus nephritis.   总被引:11,自引:0,他引:11  
Sle1 and Sle3 are NZW-derived loci that mediate lupus nephritis on a C57BL/6 background. The absence of severe autoimmunity in NZW suggests that the NZW genome suppresses these genes. (B6.NZMc1[Sle1] x NZW)F1 hybrids develop severe humoral autoimmunity and fatal lupus nephritis, indicating that suppression of Sle1 from NZW is recessive. Linkage analysis identified four epistatic modifiers, Sles1-4, whose cumulative effect accounted for the benign autoimmunity in NZW. The specific suppression of Sle1 but not Sle2 or Sle3 by Sles1 was directly demonstrated via the production and analysis of bicongenic strains. Moreover, Sles1 was sufficient to completely suppress autoimmunity initiated by Sle1 in B6.NZMc1 x NZW hybrids. These results demonstrate the complex epistatic interactions of loci augmenting and suppressing systemic autoimmunity.  相似文献   

13.
B6.Sle1b mice, which contain the Sle1b gene interval derived from lupus prone NZM2410 mice on a C57BL/6 background, present with gender-biased, highly penetrant anti-nuclear antibody (ANA) production. To obtain some insight into the possible induction mechanism of autoantibodies in these mice we compared antigen-specific T dependent (TD) and T independent (TI-II) responses between B6.Sle1b and B6 mice before the development of high ANA titers. Our results show that B6.Sle1b mice mount enhanced responses to a TI-II antigen. Additionally, the memory T cell response generated by a TD antigen also increased. This enhancement correlates with the greater ability of B cells from B6.Sle1b mice to present antigen to T cells. The SLAM Associated Protein (SAP) is critical for signaling of many of the molecules encoded by the SLAM/CD2 gene cluster, candidates for mediating the Sle1b phenotype; therefore, we also investigated the effect of sap deletion in these strains on the TD and TI-II responses as well as on ANA production. The results of these studies of responses to non-self-antigens provide further insight into the mechanism by which responses to self-antigens might be initiated in the context of specific genetic alterations.  相似文献   

14.
Polymorphisms in the SLAM family of leukocyte cell surface regulatory molecules have been associated with lupus-like phenotypes in both humans and mice. The murine Slamf gene cluster lies within the lupus-associated Sle1b region of mouse chromosome 1. Non-autoreactive C57BL/6 (B6) mice that have had this region replaced by syntenic segments from other mouse strains (i.e. 129, NZB and NZW) are B6 congenic strains that spontaneously produce non-nephritogenic lupus-like autoantibodies. We have recently reported that genetic ablation of the SLAM family member CD48 (Slamf2) drives full-blown autoimmune disease with severe proliferative glomerulonephritis (CD48GN) in B6 mice carrying 129 sequences of the Sle1b region (B6.129CD48−/−). We also discovered that BALB/c mice with the same 129-derived CD48-null allele (BALB.129CD48−/−) have neither nephritis nor anti-DNA autoantibodies, indicating that strain specific background genes modulate the effects of CD48 deficiency. Here we further examine this novel model of lupus nephritis in which CD48 deficiency transforms benign autoreactivity into fatal nephritis. CD48GN is characterized by glomerular hypertrophy with mesangial expansion, proliferation and leukocytic infiltration. Immune complexes deposit in mesangium and in sub-endothelial, sub-epithelial and intramembranous sites along the glomerular basement membrane. Afflicted mice have low-grade proteinuria, intermittent hematuria and their progressive renal injury manifests with elevated urine NGAL levels and with uremia. In contrast to the lupus-like B6.129CD48−/− animals, neither BALB.129CD48−/− mice nor B6 × BALB/c F1.129CD48−/− progeny have autoimmune traits, indicating that B6-specific background genes modulate the effect of CD48 on lupus nephritis in a recessive manner.  相似文献   

15.
Autoimmune gastritis is a CD4+ T cell-mediated disease induced in genetically susceptible mice by thymectomy on the third day after birth. Previous linkage analysis indicated that Gasa1 and Gasa2, the major susceptibility loci for gastritis, are located on mouse chromosome 4. Here we verified these linkage data by showing that BALB.B6 congenic mice, in which the distal approximately 40 Mb of chromosome 4 was replaced by C57BL/6 DNA, were resistant to autoimmune gastritis. Analysis of further BALB.B6 congenic strains demonstrated that Gasa1 and Gasa2 can act independently to cause full expression of susceptibility to autoimmune disease. Gasa1 and Gasa2 are located between D4Mit352-D4Mit204 and D4Mit343-telomere, respectively. Numerical differences in Foxp3+ regulatory T cells were apparent between the BALB/c and congenic strains, but it is unlikely that this phenotype accounted for differences in autoimmune susceptibility. The positions of Gasa1 and Gasa2 correspond closely to the positions of Idd11 and Idd9, two autoimmune diabetes susceptibility loci in nonobese diabetic (NOD), mice and this prompted us to examine autoimmune gastritis in NOD mice. After neonatal thymectomy, NOD mice developed autoimmune gastritis, albeit at a slightly lower incidence and severity of disease than in BALB/c mice. Diabetes-resistant congenic NOD.B6 mice, harbouring a B6-derived interval encompassing the Gasa1/2-Idd9/11 loci, demonstrated a slight reduction in the incidence of autoimmune gastritis. This reduction was not significant compared with the reduction observed in BALB.B6 congenic mice, suggesting a difference in the genetic aetiology of autoimmune gastritis in NOD and BALB mice.  相似文献   

16.
《Journal of autoimmunity》2009,32(4):345-353
B6.Sle1b mice, which contain the Sle1b gene interval derived from lupus prone NZM2410 mice on a C57BL/6 background, present with gender-biased, highly penetrant anti-nuclear antibody (ANA) production. To obtain some insight into the possible induction mechanism of autoantibodies in these mice we compared antigen-specific T dependent (TD) and T independent (TI-II) responses between B6.Sle1b and B6 mice before the development of high ANA titers. Our results show that B6.Sle1b mice mount enhanced responses to a TI-II antigen. Additionally, the memory T cell response generated by a TD antigen also increased. This enhancement correlates with the greater ability of B cells from B6.Sle1b mice to present antigen to T cells. The SLAM Associated Protein (SAP) is critical for signaling of many of the molecules encoded by the SLAM/CD2 gene cluster, candidates for mediating the Sle1b phenotype; therefore, we also investigated the effect of sap deletion in these strains on the TD and TI-II responses as well as on ANA production. The results of these studies of responses to non-self-antigens provide further insight into the mechanism by which responses to self-antigens might be initiated in the context of specific genetic alterations.  相似文献   

17.
The major murine systemic lupus erythematosus (SLE) susceptibility locus, Sle1, corresponds to three loci independently affecting loss of tolerance to chromatin in the NZM2410 mouse. The congenic interval corresponding to Sle1c contains Cr2, which encodes complement receptors 1 and 2 (CR1/CR2, CD35/CD21). NZM2410/NZW Cr2 exhibits a single nucleotide polymorphism that introduces a novel glycosylation site, resulting in higher molecular weight proteins. This polymorphism, located in the C3d binding domain, reduces ligand binding and receptor-mediated cell signaling. Molecular modeling based on the recently solved CR2 structure in complex with C3d reveals that this glycosylation interferes with receptor dimerization. These data demonstrate a functionally significant phenotype for the NZM2410 Cr2 allele and strongly support its role as a lupus susceptibility gene.  相似文献   

18.
Chronic activity of hepatitis B is thought to involve aberrant immune tolerance of unknown mechanism. In this study, we examined the role of CD4(+)CD25(+)Foxp3(+) regulatory T cells in disease activity and viral clearance in hepatitis B. Patients with chronic active hepatitis B (CAH) and asymptomatic HBV carriers (AsC) exhibited a significantly high frequency of CD4(+)CD25(+)Foxp3(+) T cells as opposed to that of controls and resolved HBV infection. These CD4(+)CD25(+) T cells expressed an elevated level of Foxp3 and displayed increased inhibitory activity towards both CD4(+)CD25(-) and CD8(+) effector cells. They were found to accumulate in liver biopsy tissue of CAH patients as opposed to controls. The frequency of CD4(+)CD25(+)Foxp3(+) T cells correlated positively with hepatitis B envelope (HBe) antigen status and serum HBV DNA copy numbers and had a converse relationship with HBe antibody status in patients with CAH and AsC. It was evident that in these patients, the increased frequency of CD4(+)CD25(+)Foxp3(+) T cells was associated with serum levels of transforming growth factor-beta known to promote peripheral conversion of CD4(+)CD25(-) T cells to CD4(+)CD25(+)Foxp3(+) regulatory T cells. The findings provide new insights into the role of CD4(+)CD25(+)Foxp3(+) regulatory T cells in chronic activity and viral clearance in chronic hepatitis B.  相似文献   

19.
Systemic lupus erythematosus (SLE) is a prototype of autoimmune disease which arises from interactions between susceptibility genes and environmental factors. Despite the heterogeneous manifestations in this disease, all SLE patients present plasma autoantibodies recognizing nuclear components. Thus, auto reactive B cells represent key effectors to be investigated. Human linkage analysis is providing the localization of susceptibility loci distributed in chromosomes contributing to elucidate the manner in which interactions between these loci mediate SLE pathogenesis. We associate the cDNA microarray technology to investigate the differential gene expression of CD19(+) B cells with genetic linkage data. Bioinformatics programs served to evidentiate the differentially expressed sequences and the design of the microarray allowed hierarchical clustering of patients and controls. Sequencing allowed the identification of 8 new gene products differentially expressed (ESTs) that were co-localized in SLE or other autoimmune diseases susceptibility loci on chromosome 1p21, 2q21, 13q33, 16p12.1 and 16q12.1. These findings strongly suggest that chromosomal regions previously identified as SLE susceptibility loci are in fact transcribed in CD19(+) B cells of patients. In this review, we delineate a new possibility for the use of cDNA microarrays in studies focusing the control of gene expression of disease susceptibility loci identified by genetic linkage.  相似文献   

20.
Spotted fever group rickettsioses are emerging and reemerging infectious diseases, some of which are life-threatening. In order to understand how dendritic cells (DCs) contribute to the host resistance or susceptibility to rickettsial diseases, we first characterized the in vitro interaction of rickettsiae with bone marrow-derived DCs (BMDCs) from resistant C57BL/6 (B6) and susceptible C3H/HeN (C3H) mice. In contrast to the exclusively cytosolic localization within endothelial cells, rickettsiae efficiently entered and localized in both phagosomes and cytosol of BMDCs from both mouse strains. Rickettsia conorii-infected BMDCs from resistant mice harbored higher bacterial loads compared to C3H mice. R. conorii infection induced maturation of BMDCs from both mouse strains as judged by upregulated expression of classical major histocompatibility complex (MHC) and costimulatory molecules. Compared to C3H counterparts, B6 BMDCs exhibited higher expression levels of MHC class II and higher interleukin-12 (IL-12) p40 production upon rickettsial infection and were more potent in priming na?ve CD4(+) T cells to produce gamma interferon. In vitro DC infection and T-cell priming studies suggested a delayed CD4(+) T-cell activation and suppressed Th1/Th2 cell development in C3H mice. The suppressive CD4(+) T-cell responses seen in C3H mice were associated with a high frequency of Foxp3(+) T regulatory cells promoted by syngeneic R. conorii-infected BMDCs in the presence of IL-2. These data suggest that rickettsiae can target DCs to stimulate a protective type 1 response in resistant hosts but suppressive adaptive immunity in susceptible hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号