首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Cortical dysplasia (CD) is intrinsically epileptogenic. We hypothesize that CDs clinically emerging in the early developing brain tend to extend into multifocal or larger epileptic networks to pronounce intractability in contrast to CDs which clinically emerge at a later age.

Methods

We evaluated the spatial and temporal profiles of ictal-onset EEG patterns in children with histopathologically confirmed CD. We designated Group A as children with changing ictal-onset EEG patterns over time, and Group B without change. We compared seizure profiles, consecutive scalp video-EEGs (VEEGs), MRI, MEG, and surgical outcomes.

Results

We found 14 children consisting of 10 Group A patients (7 girls) and 4 Group B patients (all boys). Eight (80%) Group A patients had their seizure onset < 5 years while all Group B patients had seizure onset ? 5 years (p < .05). Changes of ictal onset EEG pattern in Group A consisted of bilateral (4 patients), extending (2); extending and bilateral (2); and generalized (2). We saw MRI lesions (6) and single clustered MEG spike sources (MEGSSs) in (5). Six patients underwent surgery before 15 years of age, and 4 of them attained seizure freedom. All 4 Group B patients had MRI lesions and single clustered MEGSSs. Three patients underwent surgery after 15 years of age. All 4 patients attained seizure freedom.

Conclusion

Ictal-onset EEG patterns change over time in children with early seizure onset and intractable epilepsy caused by CD. Younger epileptic children with CD more frequently have multifocal epileptogenic foci or larger epileptogenic foci. Early resection of CD, guided by MRI, MEG, and intracranial video EEG, resulted in seizure freedom despite changes in ictal-onset EEG patterns.  相似文献   

2.
PURPOSE: Tuberous sclerosis complex (TSC) often causes medically intractable seizures. Magnetoencephalography (MEG) localizes epileptiform discharges. To evaluate the use of MEG spike sources (MEGSSs) for localizing epileptic zones in TSC patients, we characterized MEGSSs and correlated them to EEG and magnetic resonance imaging (MRI) results. METHODS: We analyzed data from seven children who underwent prolonged video-EEG, MEG, and MRI. We classified MEGSSs as clusters (six or more spike sources, 1 cm between sources regardless of number of sources). RESULTS: A single, unilateral cluster with additional scatters occurred in two patients; these predominantly lateralized dipoles correlated to prominent tubers on MRI and ictal/interictal EEG zones. Bilateral clusters with scatters existed in two patients; cluster locations partly overlapped multiple prominent tubers. These patients also had bilateral or diffuse interictal discharges, bilateral or generalized seizures, and changing seizure types and EEG findings. Only bilateral scatters occurred in three patients; scatters partly overlapped EEG interictal/ictal-onset regions; one patient had coexisting generalized seizures. In one patient with equally bilateral scatters, scatters overlapped a prominent tuber and interictal/ictal-onset zones in the right frontal region. CONCLUSIONS: MEG contributes to information from EEG and MRI for localizing epileptogenic zones in children with TSC. A single cluster with scatters in a unilateral hemisphere predicts a primary epileptogenic zone or hemisphere; bilateral or multiple clusters indicate bilateral primary or potential epileptogenic zones; and bilateral scatters without clusters may indicate epileptogenic zones that are hidden within extensive areas of scattered MEGSSs.  相似文献   

3.
Rationale: Atypical benign partial epilepsy (ABPE) is characterized by centro-temporal electroencephalography (EEG) spikes, continuous spike and waves during sleep (CSWS), and multiple seizure types including epileptic negative myoclonus (ENM), but not tonic seizures. This study evaluated the localization of magnetoencephalography (MEG) spike sources (MEGSSs) to investigate the clinical features and mechanism underlying ABPE. Methods: We retrospectively analyzed seizure profiles, scalp video EEG (VEEG) and MEG in ABPE patients. Results: Eighteen ABPE patients were identified (nine girls and nine boys). Seizure onset ranged from 1.3 to 8.8 years (median, 2.9 years). Initial seizures consisted of focal motor seizures (15 patients) and absences/atypical absences (3). Seventeen patients had multiple seizure types including drop attacks (16), focal motor seizures (16), ENM (14), absences/atypical absences (11) and focal myoclonic seizures (10). VEEG showed centro-temporal spikes and CSWS in all patients. Magnetic resonance imaging (MRI) was reported as normal in all patients. MEGSSs were localized over the following regions: both Rolandic and sylvian (8), peri-sylvian (5), peri-Rolandic (4), parieto-occipital (1), bilateral (10) and unilateral (8). All patients were on more than two antiepileptic medications. ENM and absences/atypical absences were controlled in 14 patients treated with adjunctive ethosuximide. Conclusion: MEG localized the source of centro-temporal spikes and CSWS in the Rolandic-sylvian regions. Centro-temporal spikes, Rolandic-sylvian spike sources and focal motor seizures are evidence that ABPE presents with Rolandic-sylvian onset seizures. ABPE is therefore a unique, age-related and localization-related epilepsy with a Rolandic-sylvian epileptic focus plus possible thalamo-cortical epileptic networks in the developing brain of children.  相似文献   

4.
《Clinical neurophysiology》2021,132(8):1785-1789
ObjectiveTo determine whether magnetoencephalography (MEG) can identify epileptiform discharges mimicking small sharp spikes (SSSs) on scalp electroencephalography (EEG) in patients with temporal lobe epilepsy (TLE).MethodsWe retrospectively reviewed simultaneous scalp EEG and MEG recordings of 83 consecutive patients with TLE and 49 with extra-TLE (ETLE).ResultsSSSs in scalp EEG were detected in 15 (18.1%) of 83 TLE patients compared to only two (4.1%) of 49 ETLE patients (p = 0.029). Five of the 15 TLE patients had MEG spikes with concurrent SSSs in EEG, but neither of the 2 ETLE patients. Three of these 5 TLE patients had additional interictal epileptiform discharges (IEDs) in EEG and MEG. Equivalent current dipoles (ECDs) of MEG spikes with concurrent SSSs and IEDs showed no difference in temporal lobe localization and horizontal orientation, whereas ECD moments were smaller in MEG spikes with concurrent SSSs than those with IEDs.ConclusionsSSSs were more common in TLE than in ETLE. At least some morphologically diagnosed SSSs are true but low-amplitude epileptiform discharges in TLE which can be identified with simultaneous MEG.SignificanceSimultaneous MEG is useful to identify epileptiform discharges mimicking SSSs in patients with TLE.  相似文献   

5.
《Clinical neurophysiology》2010,121(3):325-331
ObjectiveTo evaluate the ability of MEG to detect medial temporal spikes in patients with known medial temporal lobe epilepsy (MTLE) and to use magnetic source imaging (MSI) with equivalent current dipoles to examine localization and orientation of spikes and their relation to surgical outcome.MethodsWe prospectively obtained MSI on a total of 25 patients previously diagnosed with intractable MTLE. MEG was recorded with a 275 channel whole-head system with simultaneous 21-channel scalp EEG during inpatient admission one day prior to surgical resection. The patients’ surgical outcomes were classified based on one-year follow-up after surgery.ResultsNineteen of the 22 patients (86.4%) had interictal spikes during the EEG and MEG recordings. Thirteen of 19 patients (68.4%) demonstrated unilateral temporal dipoles ipsilateral to the site of surgery. Among these patients, five (38.5%) patients had horizontal dipoles, one (7.7%) patient had vertical dipoles, and seven (53.8%) patients had both horizontal and vertical dipoles. Sixty percent of patients with non-localizing ictal scalp EEG had well-localized spikes on MSI ipsilateral to the side of surgery and 66.7% of patients with non-localizing MRI had well-localized spikes on MSI ipsilateral to the side of surgery. Concordance between MSI localization and the side of lobectomy was not associated with a likelihood of an excellent postsurgical outcome.ConclusionsMSI can detect medial temporal spikes. It may provide important localizing information in patients with MTLE, especially when MRI and/or ictal scalp EEG are not localizing.SignificanceThis study demonstrates that MSI has a good ability to detect interictal spikes from mesial temporal structures.  相似文献   

6.

Purpose

To investigate whether interictal magnetoencephalography (MEG) concordant with other techniques can predict surgical outcome in patients with lesional and nonlesional refractory neocortical epilepsy (NE).

Methods

23 Patients with lesional NE and 20 patients with nonlesional NE were studied. MEG was recorded for all patients with a 275 channel whole-head system. Synthetic aperture magnetometry (SAM) with excess kurtosis (g2) and conventional Equivalent Current Dipole (ECD) were used for MEG data analysis. 27 Patients underwent long-term extraoperative intracranial video electroencephalography (iVEEG) monitoring. Surgical outcomes were assessed based on more than 1-year of post-surgical follow-up using Engel classification system.

Results

As we expected, both favorable outcomes (Engel class I or II) and seizure freedom outcomes (Engel class IA) were higher for the concordance condition (MEG findings are concordant with MRI or iVEEG findings) versus the discordance condition. Also the seizure free rate was significantly higher (χ2 = 5.24, P < 0.05) for the patients with lesional NE than for the patients with nonlesional NE. In 30% of the patients with nonlesional NE, the MEG findings proved to be valuable for intracranial electrode implantation.

Conclusions

This study demonstrates that a favorable post-surgical outcome can be obtained in most patients with concordant MEG and MRI results even without extraoperative iVEEG monitoring, which indicates that the concordance among different modalities could indicate a likelihood of better postsurgical outcomes. However, extraoperative iVEEG monitoring remains prerequisite to the patients with discordant MEG and MRI findings. For nonlesional cases, our results showed that MEG could provide critical information in the placement of intracranial electrodes.  相似文献   

7.
We retrospectively compared electroencephalographic (EEG) dipoles of interictal spikes from prolonged video-EEG monitoring with magnetoencephalographic dipoles from short-term recording in four children with extratemporal lobe epilepsy. We analyzed both sets of dipoles using individual interictal spikes and single moving dipole modeling and evaluated the profiles of spike appearance, dipole position, and orientation in EEG and magnetoencephalography. We obtained more than 100 magnetoencephalographic spikes in two patients who manifested frequent interictal EEG spikes throughout both day and night but fewer than 40 magnetoencephalographic spikes in two patients who had interictal EEG spikes mainly during sleep. The dipole positions of EEG and magnetoencephalography were in close proximity and included in the surgical resection area. Most of the dipoles between EEG and magnetoencephalography were oriented perpendicularly. A combination of EEG dipole analysis from prolonged video-EEG monitoring and magnetoencephalographic dipole analysis provides complementary information for presurgical evaluation in children with intractable extratemporal lobe epilepsy.  相似文献   

8.
Epilepsy surgery is an established therapy for pharmacoresistant focal epilepsy. This study investigated the contribution of routinely used magnetoencepahlography (MEG) in addition to long term video-EEG-monitoring in presurgical evaluation. The distribution of localization results to anatomical lobes was compared with special focus to MEG spike localization results in cases without or with ambiguous EEG findings. A total of 105 consecutive patients with intractable focal epilepsy and epilepsy surgery after investigation by video-EEG-monitoring and MEG were included. The percentages of monolobar results were analysed and compared, especially with respect to the resection lobe. Postoperative outcome was used for further validation. No spikes were recorded on MEG in 30% (32 of 105). In cases with a diagnostic finding by the respective method, MEG localized in 82% (60 of 73 patients) within one anatomical lobe. Ictal EEG localized within one lobe in 72% (66 of 92 patients), interictal EEG in 60% (59 of 98 patients). In 25 of 105 patients (24%) no clear localization within one lobe was found either in interictal or in ictal EEG. In 11 of these cases MEG localized within the resection lobe. Six patients of these became seizure free, the other five had at least 50% reduction of their seizure rate 1 year after surgery. In summary MEG is a useful tool in the routine workup for epilepsy surgery contributing information to focus hypothesis in addition to video-EEG.  相似文献   

9.
PURPOSE: To determine whether magnetoencephalography (MEG) has any clinical value for the analysis of seizure discharges in patients with medial frontal lobe epilepsy (FLE). METHODS: Four patients were studied with 74-channel MEG. Interictal and ictal electroencephalographic (EEG) and MEG recordings were obtained. The equivalent current dipoles (ECDs) of the MEG spikes were calculated. RESULTS: In two patients with postural seizures, interictal EEG spikes occurred at Cz or Fz. The ECDs of interictal MEG spikes were localized around the supplementary motor area. In the other two patients with focal motor or oculomotor seizures, interictal EEG spikes occurred at Fz or Cz. The ECDs of interictal MEG spikes were localized at the top of the medial frontal region. The ECDs detected at MEG ictal onset were also localized in the same area as those of the interictal discharges. CONCLUSIONS: In medial FLE patients, interictal and ictal MEG indicated consistent ECD localization that corresponded to the semiology of clinical seizures. Our findings demonstrate that MEG is a useful tool for detecting epileptogenic focus.  相似文献   

10.
PURPOSE: Excisional surgery achieves seizure freedom in a large proportion of children with intractable lesional epilepsy, but the outcome for children without a focal lesion on MRI is less clear. We report the outcome of a cohort predominantly of children with nonlesional intractable partial epilepsy undergoing resective surgery. METHODS: We studied 102 patients with nonlesional intractable partial epilepsy who underwent excisional surgery. The epileptogenic region was identified by integrating clinical exam and video-EEG data complemented by ictal SPECT (n = 40), PET (n = 10), extraoperative subdural monitoring (n = 80), and electrocorticography (n = 22). All patients had follow-up greater than 2 years, 76 patients had 5-year follow-up, and 43 patients had 10-year follow-up. RESULTS: A total of 66 resections were unilobar; 36 were multilobar. One patient died of causes unrelated to seizures or surgery. At 2-year follow-up, 44 of 101 patients were seizure-free, 15 experienced >90% reduction, 17 had >50% reduction, and 25 were unchanged. At 5-year follow-up, 35 of 76 patients were seizure-free, 12 experienced >90% reduction, 12 had >50% reduction, and 17 were unchanged. At 10-year follow-up, 16 of 43 patients were seizure-free, 13 experienced >90% reduction, 7 had >50% reduction, and 7 were unchanged. Outcomes correlated with the presence of convergent focal interictal spikes (p < 0.005) on the scalp EEG and completeness of resection (p < 0.0005). CONCLUSIONS: Our findings demonstrate that excisional surgery is successful in the majority of children with nonlesional partial epilepsy. A multimodal integrative approach can minimize the size of resection and alleviate the need for invasive EEG monitoring. Focal interictal spikes and completeness of resection predict good outcome. The benefits of surgery are long-lasting.  相似文献   

11.
PURPOSE: To study the role of magnetoencephalography (MEG) in the surgical evaluation of children with recurrent seizures after epilepsy surgery. METHODS: We studied 17 children with recurrent seizures after epilepsy surgery using interictal and ictal scalp EEG, intracranial video EEG (IVEEG), MRI, and MEG. We analyzed the location and distribution of MEG spike sources (MEGSSs) and the relationship of MEGSSs to the margins of previous resections and surgical outcome. RESULTS: Clustered MEGSSs occurred at the margins of previous resections within two contiguous gyri in 10 patients (group A), extended spatially from a margin by < or =3 cm in three patients (group B), and were remote from a resection margin by >3 cm in six patients (group C). Two patients had concomitant group A and C clusters. Thirteen patients underwent second surgeries. IVEEG was used in four patients. Six of seven patients with group A MEGSS clusters did not require IVEEG for second surgeries. Follow-up periods ranged from 0.6 to 4.3 years (mean: 2.6 years). Eleven children, including eight who became seizure-free, achieved Engel class I or II. CONCLUSION: Our data demonstrate the utility of MEG for evaluating patients with recurrent seizures after epilepsy surgery. Specific MEGSS cluster patterns delineate epileptogenic zones. Removing cluster regions adjacent to the margins of previous resections, in addition to removing recurrent lesions, achieves favorable surgical outcome. Cluster location and extent identify which patients require IVEEG, potentially eliminating IVEEG for some. Patients with remotely located clusters require IVEEG for accurate assessment and localization of the entire epileptogenic zone.  相似文献   

12.
Magnetic source imaging is claimed to have a high accuracy in epileptic focus localization and may be a guide for epilepsy surgery. Non-lesional mesiotemporal lobe epilepsy (MTLE), the most common form of epilepsy operated on, has different etiologies, which may affect the choice of surgical approach. The authors compared whole-head magnetoencephalography (MEG) with high-resolution EEG for source identification in MTLE. Nineteen patients with unilateral, nonlesional MTLE underwent a simultaneous 151-channel CTF MEG (CTF Systems, Inc., Port Coquitlam, British Columbia, Canada) and 64-channel EEG recordings with sleep induction. Three independent observers selected spikes from the EEG and MEG recordings separately. Only when there was interobserver agreement (kappa>0.4) on the presence of spikes in recordings were consensus spikes averaged. EEG and MEG equivalent current dipoles (ECD) were then integrated in the head model of the patient reconstructed from MRI. The results were compared with intraoperative electrocorticography findings. Spikes were detected in 32% of MEGs and 42% of EEGs. No patient showed MEG spikes only. Equivalent current dipole modeling correctly localized the source to the temporal lobe in four out of five MEG and three out of eight EEG recordings. MEG localized sources were more superficial and EEG localized sources were deeper. Unfortunately, basal temporal lobe areas were only partially covered by the sensor helmet of the MEG setup. Best correlation between EEG or MEG findings and electrocorticography findings was between horizontal EEG dipole orientation and prominent neocortical spiking; these patients also had a less favorable prognosis. Magnetic source imaging is currently unlikely to alter the surgical management of MTLE. The yield of spikes is too low, and ECD modeling shows only partial correlation with electrocorticography findings. Moreover, the whole-head MEG helmet provides insufficient coverage of the temporal lobe.  相似文献   

13.
PurposeThe aim of this study was to compare magnetoencephalography (MEG) and video-electroencephalography (VEEG) source localization in frontal lobe epilepsy (FLE) and determine if these methods can be complementary to each other in clinical practice.MethodThirty patients with pharmaco-resistant FLE who underwent epilepsy surgery were retrospectively enrolled. Video EEG was recorded using an IT-med system using 10/20 system. Regional localization of spikes in VEEG was defined as spikes discharged from adjacent electrodes and no further propagation to a large and/or contralateral area. Magnetoencephalography was recorded for the purpose of focus assessment. Magnetoencephalography spikes were detected for dipole localization of the epileptogenic cortex and the epileptogenic area was classified as mono- or multi-focal.ResultsRegional spike discharges were identified in the interictal VEEG of 20 patients and in the ictal VEEG of 17 patients. Thirteen patients had regional spikes in both interictal and ictal VEEG. Mono-focal localization was identified in the MEG of 20 patients. Fourteen of these patients had regional spike discharges in VEEG. In the remaining six patients, sources localization was only identified by MEG and there were no regional spike discharges either interictal or ictal VEEG.ConclusionIn clinical practice, VEEG is the routine procedure in the presurgical evaluation of FLE. However, we found six cases in which VEEG failed to locate the epileptogenic area that was identified by MEG. We therefore propose that combining VEEG and MEG will optimize the noninvasive presurgical evaluation of epileptiform activities in FLE.  相似文献   

14.
PURPOSE: The diagnosis of frontal lobe epilepsy may be compounded by poor electroclinical localization, due to distributed or rapidly propagating epileptiform activity. This study aimed at developing optimal procedures for localizing interictal epileptiform discharges (IEDs) of patients with localization related epilepsy in the frontal lobe. To this end the localization results obtained for magnetoencephalography (MEG) and electroencephalography (EEG) were compared systematically using automated analysis procedures. METHODS: Simultaneous recording of interictal EEG and MEG was successful for 18 out of the 24 patients studied. Visual inspection of these recordings revealed IEDs with varying morphology and topography. Cluster analysis was used to classify these discharges on the basis of their spatial distribution followed by equivalent dipole analysis of the cluster averages. The locations of the equivalent dipoles were compared with the location of the epileptogenic lesions of the patient or, if these were not visible at MRI with the location of the interictal onset zones identified by subdural electroencephalography. RESULTS: Generally IEDs were more abundantly in MEG than in the EEG recordings. Furthermore, the duration of the MEG spikes, measured from the onset till the spike maximum, was in most patients shorter than the EEG spikes. In most patients, distinct spike subpopulations were found with clearly different topographical field maps. Cluster analysis of MEG spikes followed by dipole localization was successful (n = 14) for twice as many patients as for EEG source analysis (n = 7), indicating that the localizability of interictal MEG is much better than of interictal EEG. CONCLUSIONS: The automated procedures developed in this study provide a fast screening method for identifying the distinct categories of spikes and the brain areas responsible for these spikes. The results show that MEG spike yield and localization is superior compared with EEG. This finding is of importance for the diagnosis and preoperative evaluation of patients with frontal lobe epilepsy.  相似文献   

15.
PURPOSE: To report the rare opportunity to study ictal magnetoencephalography (MEG) in a 26 year old man with simple partial status epilepticus that presented as elementary visual hallucinations (EVHs) in the right upper visual field. METHODS: The patient described his EVHs as "snowing on TV," "flickering lights," and "rotating coloured balls" that continued for several days. MEG and simultaneous EEG were recorded twice: during an episode of EVHs (ictal recordings) and after EVHs were controlled by medications (interictal recordings). RESULTS: During EVHs, MEG showed continuous periodic epileptiform discharges over the left posterior superior temporal region, while simultaneous EEG showed rhythmic theta waves and sporadic spikes over the left temporal region. The MEG discharge consisted of a three phase spike complex. Equivalent current dipoles (ECDs), modelled from spike complexes, localised in the left superior temporal area. After drug treatment controlled the EVHs, interictal MEG and EEG showed rare spikes over the same left temporal region. The average ictal ECD moment (mean (SD)) (128.7 (32.8 nAm)) was significantly weaker than the average interictal ECD moment (233.0 (63.9) nAm) (p<0.05). CONCLUSIONS: The continuous, periodic, and clustered discharges seen on ictal MEG were the sources of EVH. The weaker ictal ECD sources were frequently not detected by scalp EEG, while the stronger interictal sources, presumably originating from an extensive interictal zone, were sufficiently large to be seen as EEG spikes.  相似文献   

16.
IntroductionIn diagnosis of epilepsies electrophysiological findings play a key role. While spontaneous electroencephalography (EEG) and EEG with sleep deprivation (EEGsd) are widely evaluated and used, application of magnetoencephalography (MEG) in this field is primarily limited to presurgical assessment of focal epilepsies.MethodsIn this study we retrospectively compared MEG (M/EEG) and EEGsd in 63 (55) patients with focal and generalized epilepsy with regard to occurrence of epileptic spikes.ResultsMEG could record epileptic spikes in 38 patients (60%), while EEGsd recorded spikes in only 32 patients (51%). In a group of 55 patients simultaneous MEG/EEG (M/EEG) was able to record spikes in 38 patients (71%) compared to epileptic spikes in 28 patients (51%) recorded by EEGsd. In a subgroup of 17 MR-negative patients simultaneous M/EEG could record epileptic spikes in all patients, while EEGsd was successful in only 11 (64%) of them.ConclusionIn this study, MEG showed a tendency to record epileptic spikes in more patients than EEGsd. Furthermore, simultaneous M/EEG has been shown to be especially successful in detection of epileptic spikes in patients with MR-negative epilepsy. This might at least in parts be explained by neocortical predominance of MR-negative epilepsy. Thus, this study motivates prospective studies to evaluate the substitutability of EEGsd by MEG more extensively.  相似文献   

17.
《Clinical neurophysiology》2008,119(3):635-641
ObjectiveThe neurogenesis and functional organization of the interictal spikes in benign rolandic epilepsy of childhood (BREC) still remains controversial.MethodsWe performed a combined neuroelectric and neuromagnetic study in 24 consecutive patients with BREC using a 143-channel whole-head magnetoencephalography (MEG) system simultaneously with electroencephalography (EEG) recorded from 40 closely spaced scalp-EEG electrodes. Isopotential and isofield maps were calculated over the time window from 250 ms before to 250 ms after the maximum of the negative peak of the spike. We then performed principal component analysis (PCA) and spatio-temporal dipole modeling in order to estimate the number, location and temporal activity of sources.ResultsEEG and MEG spikes were characterized by a stereotypical appearance both within and across patients showing a stable dipolar field distribution over the entire time window. The spikes were generated by a single tangential dipolar source located in the precentral gyrus with the positive pole directed frontally and the negative pole directed centro-temporally.ConclusionsOne source located in the precentral gyrus can adequately explain the spike complex in BREC.SignificanceSimultaneous EEG and MEG provide comprehensive information on functional organization of spikes in BREC.  相似文献   

18.
Magnetoencephalography (MEG) has been applied for more than 20 years to the localization of the epileptic focus in partial epilepsies, but correlation with electroencephalographic (EEG) data in homogeneous groups of patients is scarce. OBJECTIVE: The aim of our work was to use EEG and MEG for the study of a group of adults and children affected by cryptogenetic partial epilepsy. METHODS: We analyzed the traces obtained from electroencephalographic and magnetoencephalographic recordings of 10 patients of ages ranging from 7 to 38 years affected by cryptogenetic partial epilepsy. We evaluated the presence of commonly detected or uniquely detected spikes, and, whenever possible, we used MEG for localization of the epileptic focus. RESULTS: Three patients showed no epileptic activity during the EEG and MEG sessions. Overall agreement between EEG and MEG (presence of concordant spikes with the same localization shown by both techniques) was obtained in five patients. In one patient the spikes detected by EEG and MEG were different, and in another patient interictal activity was demonstrated exclusively by EEG. CONCLUSIONS: EEG in this series was not inferior to MEG in terms of spike detection. Combination of EEG and MEG is feasible, better than each technique alone, and may be useful for non-invasive diagnosis and monitoring of pediatric and adult patients with partial epilepsies.  相似文献   

19.
《Clinical neurophysiology》2019,130(7):1175-1183
ObjectiveWe studied ripples (80–250 Hz) simultaneously recorded in electroencephalography (EEG) and magnetoencephalography (MEG) to evaluate the differences.MethodsSimultaneous EEG and MEG were recorded in 30 patients with drug resistant focal epilepsy. Ripples were automatically detected and visually checked in virtual channels throughout the cortex. The number and location of ripples in EEG and MEG were compared to each other and to a region of interest (ROI) defined by clinically available information.ResultsEleven patients showed ripples in both MEG and EEG, 11 only in EEG and one only in MEG. Twenty-four percent of the ripples occurred simultaneously in EEG and MEG, 71% only in EEG, and 5% only in MEG. Three patients without spikes in EEG showed EEG ripples. Ripple localization was concordant with the ROI in 80% of patients with MEG ripples, as opposed to 62% full or partial concordance for EEG ripples. With the optimal threshold for localizing the ROI, sensitivity and specificity were more than 80%.ConclusionsRipples in MEG are less frequent but more specific and sensitive for the region of interest than ripples in EEG. Ripples in EEG can exist without spikes in the EEG.SignificanceRipples in MEG and EEG provide complementary information.  相似文献   

20.
Summary:  Purpose: Benign partial epilepsy (BPE) in childhood is characterized by the occurrence of interictal stereotyped focal spikes with variable localization in the EEG. Children with BPE often exhibit neuropsychological deficits. It is unclear whether a correlation exists between these deficits and the localization of spikes, several EEG studies giving inconsistent results. Magnetoencephalography (MEG) improves the accuracy of spike localization. Therefore by using combined MEG/EEG, we investigated the topographic relation between focal spikes and neuropsychological findings in children with BPE.
Methods: Twenty-seven children diagnosed consecutively with BPE were enrolled in the study. All were examined by combined MEG/EEG and magnetic resonance imaging (MRI). Location of spikes was determined by dipole source estimation. A standardized neuropsychological assessment was conducted, including Kaufman ABC battery, language tests, and motor performance series. All children with sufficient MEG data were included in the correlation analysis (N = 20).
Results: Focal spikes were located in the perisylvian region in 13 children, in the occipital region in seven, and in the frontal region in one. Five children had bilateral or multiple foci. Children with left perisylvian spikes did not differ from the others in global IQ, but performed significantly lower in language tests (p = 0.01). Children with occipital spikes performed significantly lower in simultaneous information processing (p = 0.01), especially in visual transformation tasks.
Conclusions: Combined MEG/EEG investigation is a useful tool to examine interictal focal spikes. Our results show a correlation between the location of spikes and selective cognitive deficits in children with BPE. These findings indicate that focal interictal spikes may interfere with complex cognitive functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号