首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and purpose:

Atrial inotropic responses to 5-HT mediated through 5-HT4 receptors fade, presumably through phosphodiesterase (PDE) activity. We investigated the influence of a selective inhibitor of PDE3 (cilostamide) or of PDE4 (rolipram) on the fade of 5-HT responses in atrial muscle.

Experimental approach:

5-HT responses were compared, ex vivo, on sinoatrial beating rate of newborn piglets, porcine atrial and ventricular force, and human atrial force. cAMP levels were assessed in piglet atrium.

Key results:

5-HT-evoked sinoatrial tachycardia did not fade and was not potentiated by cilostamide (300 nmol·L−1) or rolipram (1 µmol·L−1). Inotropic responses to 5-HT faded in atria from piglets, adolescent pigs and humans. Cilostamide reduced atrial fade of 5-HT responses in adolescent pigs and humans but not in newborn piglets. Cilostamide disclosed 5-HT ventricular responses in newborn, but not adolescent pigs. Rolipram reduced fade of atrial 5-HT responses in newborn and adolescent pigs but not in humans. Concurrent cilostamide + rolipram abolished fade of 5-HT responses in porcine left atria and facilitated ventricular 5-HT responses, but did not reduce residual fade in human atrium in the presence of cilostamide. 5-HT-evoked increases in cAMP faded; fade was abolished by concurrent cilostamide + rolipram.

Conclusions and implications:

PDE3-induced control of porcine 5-HT responses differed in atrium and ventricle and changed with age. PDE3 and PDE4 jointly prevented fade of inotropic and cAMP responses to 5-HT in porcine atrium. Unlike porcine atria, only PDE3 induced fade of 5-HT responses in human atria.  相似文献   

2.
1. We investigated the affinity of SB 207710 for sinoatrial 5-HT4 receptors and the density of right atrial 5-HT4 receptors with [125I]-SB 207710 in right atria of new-born piglets. 2. SB 207710 (1-100 nM) antagonized the 5-HT-evoked tachycardia surmountably with a pKB of 9.8. 3. [125I]-SB 207710 (5-1500 pM) labelled a small population of saturable binding sites with a pKD of 10.1 and with 5-HT4 receptor characteristics. The density of atrial binding sites with 5-HT4 receptor characteristics was 174 and 22 times lower respectively than those of atrial beta 1- and beta 2-adrenoceptors, labelled with (-)-[125I]-cyanopindolol. 4. We suggest that the small 5-HT4 receptor population may in part explain why the maximal tachycardia caused by 5-HT is smaller than that caused by catecholamines.  相似文献   

3.
Summary The effects of agonists and antagonists of 5-hydroxytryptamine (5-HT) receptors on the release of endogenous 5-HT from enterochromaffin cells were studied in the vascularly perfused isolated guinea-pig small intestine. The experiments were done in the presence of tetrodotoxin in order to exclude a neuronally mediated influence on 5-HT release.The 5-HT3 receptor agonist 2-methyl-5-HT increased 5-HT release, and this effect was antagonized by 1 nmol/l tropisetron. Nanomolar concentrations of tropisetron, MDL 72 222 and granisetron decreased 5-HT release. Ondansetron (0.1 and 1 mol/1) did not modify 5-HT release.5-Methoxytryptamine, BIMU8 and cisapride concentration-dependently inhibited 5-HT release. BIMU8 was more potent than 5-methoxytryptamine. Micromolar concentrations of tropisetron (1 and 10 mol/1) enhanced the release, whilst methiothepine (0.1 mol/l) did not affect the release of 5-HT.The results suggest that enterochromaffin cells of the guinea-pig ileum do not contain 5-HT1 and 5-HT2 receptors, but are endowed with 5-HT3 and 5-HT4 autoreceptors. Activation of the 5-HT3 receptors triggers a positive feedback mechanism leading to an increase of 5-HT release. The 5-HT3 receptors on the enterochromaffin cell differ from neuronal 5-HT3 receptors on guinea-pig myenteric plexus by their high affinity for tropisetron and MDL 72 222, and their very low affinity for ondansetron. Stimulation of 5-HT4 receptors causes inhibition of release; the inhibitory 5-HT4 receptor mechanism appears to predominate.Correspondence to H. Kilbinger at the above address  相似文献   

4.
Summary 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT) and the gastrointestinal kinetic benzamides renzapride and cisapride caused tachycardia in spontaneously beating right atria of piglet in the presence of 400 nmol/l(±)-propranolol and 6 mol/l cocaine. The maximum tachycardia caused by agonists, compared to that evoked by 200 mol/l(–)-isoprenaline, was 63% for 5-HT, 50% for 5-CT, 50% for renzapride and 28% for cisapride. The rank order of potency was 5-HT > renzapride > cisapride > 5-CT. The effects of the agonists, but not those of (–)-isoprenaline, were antagonised by 3-tropanyl-1H-indole-3-carboxylic acid (ICS 205930); the pKB of ICS 205930 (vs 5-HT) was 6.9. These characteristics suggest that piglet sinoatrial 5-HT receptors are similar to so-called 5-HT4 receptors previously described in mouse colliculi neurons. Piglet sinoatrial 5-HT4-like receptors resemble the human atrial 5-HT receptors that mediate positive isotropic effects of 5-HT.Send of fprint requests to A. J. Kaumann at the above address  相似文献   

5.
Summary Although 5-hydroxytryptamine (5-HT) increases porcine atrial force and rate via 5-HT4 receptors, its effect on left ventricular contractility is not known. Therefore, using the maximum rate of rise of left ventricular pressure (LVdP/dtmax) as an index of cardiac contractility, we have attempted to analyze the possible role of ventricular 5-HT4 receptors in the anaesthetized pig. The full agonists at 5-HT4 receptors, 5-HT and 5-methoxytryptamine (each 3, 10 and 30 g · kg–1), and the -adrenoceptor agonist, isoprenaline (0.01, 0.03 and 0.1 g · kg–1), increased heart rate, LVdP/dtmax and cardiac output. For a given degree of tachycardia, the increase in LVdP/dtmax by isoprenaline was substantially more than that observed with either 5-HT or 5-methoxytryptamine. The 5-HT4 receptor partial agonist, renzapride (3, 10, 30, 100 and 300 g · kg–1), also increased heart rate and LVdP/dtmax dose-dependently. When the heart was paced at 150 beats · min–1, increases in LVdP/dtmax as well as cardiac output (except with the highest doses) by 5-HT, 5-methoxytryptamine and isoprenaline were clearly attenuated. However, the magnitude of attenuation of LVdP/dtmax responses by cardiac pacing was more marked in the case of 5-HT and 5-methoxytryptamine than with isoprenaline.The effects of renzapride (300 g · kg–1) and tropisetron (0.3 and 3 mg · kg–1) on increases in heart rate and LVdP/dtmax by 5-HT, 5-methoxytryptamine and isoprenaline were also studied. In the absence of atrial pacing, both renzapride and tropisetron (3 mg · kg–1) effectively antagonized the responses to 5-HT and 5-methoxytryptamine; except for some decrease in the LVdP/dtmax response by tropisetron, the effect of isoprenaline remained essentially unchanged after the antagonists. During atrial pacing, renzapride significantly antagonized the responses to the first two doses of 5-HT, but the responses to the highest 5-HT dose and to 5-methoxytryptamine remained unaffected. Though, particularly after its higher dose, tropisetron reduced the responses to 5-HT and 5-methoxytryptamine, isoprenaline responses were also affected.The above results show that a significant part of the increase in LVdP/dtmax by 5-HT receptor agonists in the anaesthetized pig is a consequence of tachycardia elicited by these compounds via 5-HT4 receptors. Since the increase in LVdP/dtmax, compared to tachycardia, was much less with 5-HT and 5-methoxytryptamine than with isoprenaline, and since the antagonism by renzapride and tropisetron against 5-HT and 5-methoxytryptamine during atrial pacing was relatively weaker and/or unspecific, it appears unlikely that the increase in LVdP/dtmax, during atria] pacing is mediated by ventricular 5-HT4 receptors. This view is substantiated by our recent in vitro experiments where 5-HT (0.01 to 100 mol/l) failed to significantly increase contractions of porcine left ventricular trabeculae.Correspondence to P. R. Saxena at the above address  相似文献   

6.
5-HT receptors were studied in human occipital arteries, obtained from patients during neurosurgery. We detected mRNA for the following receptors (incidence): 5-HT1B (14/18), 5-HT1D (15/18), 5-HT2A (16/18), 5-HT2B (8/8), 5-HT4(a) (13/18), 5-HT4(b) (5/18), 5-HT4(g) (7/18), 5-HT4(i) (1/18), 5-HT7(a/b) (10/18) and 5-HT7(d) (12/18). 5-HT contracted and relaxed arterial rings at low (–logEC50 M=7.0) and high (–logEC50 M=4.2) concentrations, respectively. 5-HT-evoked contractions were antagonized partially by both 5-HT1B-selective SB224289 (200 nM) and 5-HT2A-selective ketanserin (1 M) but not by 5-HT1D-selective BRL15572 (500 nM) or prazosin (1 M). Sumatriptan caused contractions (–logEC50 M=6.8, intrinsic activity with respect to 5-HT=0.3). Sumatriptan-evoked contractions were antagonized by SB224289 with high potency (pKB=9.4) but not by BRL15572. 5-HT-induced relaxations were resistant to blockade by 5-HT1B-selective SB224289 (1 M), 5-HT1D-selective BRL15572, 5-HT2B-selective SB204741 (1 M), 5-HT4-selective GR113808 (100 nM) and 5-HT7-selective SB269970 (1 M), and a combination of SB204741 and SB269970, inconsistent with an involvement of 5-HT1B, 5-HT1D, 5-HT2B, 5-HT4 and 5-HT7 receptors. Triton X-100 treatment of the arteries abolished acetylcholine-induced relaxations of rings precontracted by prostaglandin F2, but a reduction of the relaxant effects of 5-HT did not reach significance. Nitro-L-arginine (1 mM) reduced 5-HT-induced relaxations, suggesting a contribution of nitric oxide released from endothelial cells. Ketanserin (1 M) prevented the relaxant effects of 5-HT. We conclude that 5-HT contracts human occipital artery through 5-HT1B receptors at low concentrations and through 5-HT2A receptors at high concentrations. Sumatriptan contracts mostly through 5-HT1B receptors. These results are consistent with the 5-HT1B and 5-HT2A mRNA data. 5-HT-induced relaxation is mediated, in part, through ketanserin-sensitive receptors, but 5-HT1B, 5-HT1D, 5-HT2B, 5-HT4 and 5-HT7 receptors appear not to be involved.  相似文献   

7.
We have investigated the ability of 5-hydroxytryptamine (5-HT) to elicit arrhythmic contractions in isolated human atrial strips as a function of pacing rate (0.1–2 Hz) using a method recently introduced by us (Kaumann and Sanders, this journal, 1993b) and examined the nature of the 5-HT receptors involved. Right atrial appendage tissue was obtained from 14 patients undergoing cardiac surgery. None of the patients had advanced heart failure. 5-HT (0.6–20 mol/l) induced arrhythmic contractions during pacing in 4/11 atrial strips from 3/4 patients who had not received blockers and in 21/27 atrial strips from 9/10 patients who had been chronically treated with blockers (primarily 1-selective). The incidence of arrhythmic contractions evoked by 5-HT did not reach statistical significance in the atrial tissue from the non- blocked patients but was highly significant in the atrial tissue from the chronically blocked patients. The arrhythmic contractions usually occurred more frequently at low than at high pacing rates and were observed at the physiological frequency of 1 Hz in 1/4 atrial strips from 1/4 of the non- blocked patients and 6/11 strips from 5/10 of the blocked patients. The 5-HT-evoked arrhythmic contractions were observed during blockade of 1-adrenoceptors, 2-adrenoceptors and 5-HT3 receptors, ruling out the participation of these receptors. The 5-HT-evoked arrhythmic contractions were totally inhibited within 30 min by the selective 5-HT4 receptor antagonist SB 203186 ((1-piperidinyl)ethyl 1H-indole 3-carboxylate) 100 nmol/l whereas they persisted in time-matched controls. The blockade of 5-HT-evoked arrhythmic contractions by SB 203186 was surmounted by high concentrations (400–1800 mol/l) of 5-HT. Our results demonstrate that 5-HT elicits rate-dependent arrhythmic contractions in isolated human atrium through the 5-HT4 receptor and that they are facilitated in atrial tissue from patients treated with blockers. Our results suggest that endogenous, platelet-derived 5-HT may cause atrial arrhythmias and that exogenous 5-HT4 agonists/partial agonists may be arrhythmogenic. Correspondence to: A. J. Kaumann at the above address  相似文献   

8.
The mode of antagonism of 5-hydroxytryptamine-induced positive inotropic effects by the highly selective 5-HT4 receptor antagonist SB 207710 (1-butyl4-piperidinyl) methyl 8-amino-7-iodo-1,4-benzodioxan-5-carboxylate was investigated on isolated preparations of human right atrial appendage. SB 207 710 caused concentration-dependent (0.1–10 nmol/l) surmountable antagonism of the effects of 5-hydroxytryptamine with a pKB (mol/l) of 10.1. Due to its high selectivity and affinity, SB 207710 could be a powerful tool for the comparison of human atrial 5-HT4 receptors with 5-HT4 receptors of other organs of man and other species.  相似文献   

9.

BACKGROUND AND PURPOSE

Morphine is an antagonist at 5-HT3A receptors. 5-HT3 and opioid receptors are expressed in many of the same neuronal pathways where they modulate gut motility, pain and reinforcement. There is increasing interest in the 5-HT3B subunit, which confers altered pharmacology to 5-HT3 receptors. We investigated the mechanisms of inhibition by morphine of 5-HT3 receptors and the influence of the 5-HT3B subunit.

EXPERIMENTAL APPROACH

5-HT-evoked currents were recorded from voltage-clamped HEK293 cells expressing human 5-HT3A subunits alone or in combination with 5-HT3B subunits. The affinity of morphine for the orthosteric site of 5-HT3A or 5-HT3AB receptors was assessed using radioligand binding with the antagonist [3H]GR65630.

KEY RESULTS

When pre-applied, morphine potently inhibited 5-HT-evoked currents mediated by 5-HT3A receptors. The 5-HT3B subunit reduced the potency of morphine fourfold and increased the rates of inhibition and recovery. Inhibition by pre-applied morphine was insurmountable by 5-HT, was voltage-independent and occurred through a site outside the second membrane-spanning domain. When applied simultaneously with 5-HT, morphine caused a lower potency, surmountable inhibition of 5-HT3A and 5-HT3AB receptors. Morphine also fully displaced [3H]GR65630 from 5-HT3A and 5-HT3AB receptors with similar potency.

CONCLUSIONS AND IMPLICATIONS

These findings suggest that morphine has two sites of action, a low-affinity, competitive site and a high-affinity, non-competitive site that is not available when the channel is activated. The affinity of morphine for the latter is reduced by the 5-HT3B subunit. Our results reveal that morphine causes a high-affinity, insurmountable and subunit-dependent inhibition of human 5-HT3 receptors.  相似文献   

10.
Summary Three chemical classes of serotonin 5-HT4 receptor agonists have been identified so far: 5-substituted indoles (e.g. 5-HT), benzamides (e.g. renzapride) and benzimidazolones (e.g. BIMU 8). In a search for 5-HT4 receptor antagonists, we have discovered that the benzimidazolone derivative DAU 6285 (for structure see text), is 3–5 times more potent than tropisetron in blocking 5-HT, renzapride and BIMU 8 induced stimulation of adenylate cyclase activity in mouse embryo colliculi neurons. Schild plot analysis yielded Ki values of 220, 181 and 255 nmol/l, respectively. In addition, DAU 6285 showed poor activity as a 5-HT3 receptor ligand with respect to tropisetron, as demonstrated by in vitro binding studies (Ki, 322 vs 2.8 nmol/l) and by its antagonistic activity in the Bezold-Jarisch reflex test (ID50, 231 vs 0.5 g/kg, i.v.). No significant binding (Ki>10 mol/l) of DAU 6285 to serotonergic 5-HT1A, 5-HT1B, 5-HT1C, 5-HT1D, and 5-HT2 receptors as well as to adrenergic 1, 2, dopaminergic D1, D2 or muscarinic M1–M3 receptor subtypes was found. The data indicate that DAU 6285 has a somewhat higher affinity than tropisetron for 5-HT4 receptors, a property confirmed in functional tests, and much lower affinity than tropisetron for 5-HT3 receptors. The compound represents a new interesting tool for investigating the pharmacological and physiological properties of 5-HT4 receptors. Send offprint requests to A. Dumuis at the above address  相似文献   

11.
Serotonin (5-hydroxytryptamine, 5-HT) increases contractile force and elicits arrhythmias through 5-HT4 receptors in porcine and human atrium, but its ventricular effects are unknown. We now report functional 5-HT4 receptors in porcine and human ventricle. 5-HT4 mRNA levels were determined in porcine and human ventricles and contractility studied in ventricular trabeculae. Cyclic AMP-dependent protein kinase (PKA) activity was measured in porcine ventricle. Porcine and human ventricles expressed 5-HT4 receptor mRNA. Ventricular 5-HT4(b) mRNA was increased by four times in 20 failing human hearts compared with five donor hearts. 5-HT increased contractile force maximally by 16% (EC50=890 nM) and PKA activity by 20% of the effects of (–)-isoproterenol (200 M) in ventricular trabeculae from new-born piglets in the presence of the phosphodiesterase-inhibitor 3-isobutyl-1-methylxanthine. In ventricular trabeculae from adult pigs (3-isobutyl-1-methylxanthine present) 5-HT increased force by 32% (EC50=60 nM) and PKA activity by 39% of (–)-isoproterenol. In right and left ventricular trabeculae from failing hearts, exposed to modified Krebs solution, 5-HT produced variable increases in contractile force in right ventricular trabeculae from 4 out of 6 hearts and in left ventricular trabeculae from 3 out of 3 hearts— range 1–39% of (–)-isoproterenol, average 8%. In 11 left ventricular trabeculae from the failing hearts of four -blocker-treated patients, pre-exposed to a relaxant solution with 0.5 mM Ca2+ and 1.2 mM Mg2+ followed by a switch to 2.5 mM Ca2+ and 1 mM Mg2+, 5-HT (1–100 M, 3-isobutyl-1-methylxanthine present) consistently increased contractile force and hastened relaxation by 46% and 25% of (–)-isoproterenol respectively. 5-HT caused arrhythmias in three trabeculae from 3 out of 11 patients. In the absence of phosphodiesterase inhibitor, 5-HT increased force in two trabeculae, but not in another six trabeculae from 4 patients. All 5-HT responses were blocked by 5-HT4 receptor antagonists. We conclude that phosphodiesterase inhibition uncovers functional ventricular 5-HT4 receptors, coupled to a PKA pathway, through which 5-HT enhances contractility, hastens relaxation and can potentially cause arrhythmias.The first two authors contributed equally to the present work  相似文献   

12.
Rationale Though 5-HT plays an important role in the modulation of motor function, which is perturbed in depressive states, little is known concerning the influence of serotonin reuptake inhibitors (SSRIs) on locomotor activity (LA). Recently, we demonstrated that SSRIs, such as citalopram, enhance LA in mice exposed to a novel environment. Objectives This study examined the role of multiple classes of 5-HT receptor in citalopram-induced LA. Methods The most selective antagonists currently available were used. Results Citalopram-induced LA was dose-dependently attenuated by the 5-HT1B/1D receptor antagonists, S18127, GR125,743 and GR127,935, and by the selective 5-HT1B antagonist, SB224,289, but unaffected by the selective 5-HT1A antagonist, WAY100,635. The selective antagonists at 5-HT2A receptors, MDL100,907 and SR46,349 also dose-dependently attenuated induction of locomotion by citalopram, whereas the 5-HT2B antagonist, SB204,741, and the 5-HT2B/2C antagonist, SB206,553 were ineffective. Further, the selective 5-HT2C antagonist, SB242,084, potentiated the response to citalopram. Selective antagonists at 5-HT3 (ondansetron), 5-HT4 (GR125,487), 5-HT6 (SB271,046) and 5-HT7 (SB269,970) receptors did not significantly modify the action of citalopram. Underpinning these findings, SB224,289, GR125,743, MDL100,907 and SR46,349 likewise attenuated induction of locomotion by a further SSRI, fluvoxamine. Conclusions The locomotor response to SSRIs of mice exposed to a novel environment is mediated via 5-HT1B and 5-HT2A receptors. In view of the importance of motor function to the etiology and treatment of depression, the significance of these observations to the clinical actions of SSRIs will be of interest to elucidate.  相似文献   

13.

BACKGROUND AND PURPOSE

5-HT is known to be a potent vasospasmogenic agonist in various arteries. However, in veins the vasomodulating actions of 5-HT, and the underlying mechanisms, remain to be fully clarified. Here, we characterized the actions by which 5-HT affects electrical and mechanical activities in the rabbit jugular vein.

EXPERIMENTAL APPROACH

Membrane potential and isometric tension were measured in endothelium-intact and -denuded preparations. Localization of 5-HT receptor subtypes was examined immunohistochemically.

KEY RESULTS

5-HT induced a transient then a small, sustained smooth muscle cell hyperpolarization in endothelium-intact strips. In endothelium-denuded strips, 5-HT induced only a sustained hyperpolarization, and this was changed to a depolarization by the selective 5-HT7 receptor inhibitor SB269970. This depolarization was inhibited by the 5-HT2A receptor blocker sarpogrelate. 5-HT induced a relaxation of PGF-induced contracted strips that was similar in endothelium-intact and -denuded preparations. The latter relaxation was changed to contraction by SB269970 and this contraction was inhibited by sarpogrelate. Immunoreactive responses against endothelial and smooth muscle 5-HT2A receptors and smooth muscle 5-HT7 receptors were identified in the vein. The 5-HT-induced relaxation of the PGF contraction was inhibited by the cAMP-dependent protein kinase inhibitor Rp-cAMPS and by the AC inhibitor SQ22536.

CONCLUSIONS AND IMPLICATIONS

These results indicate that 5-HT activates both smooth muscle 5-HT7 receptors (to produce relaxation) and smooth muscle 5-HT2A receptors (to produce contraction) in rabbit jugular vein. We suggest that in this particular vein, the 5-HT2A receptor-induced depolarization and contraction are masked by the 5-HT7 receptor-induced responses, possibly via actions mediated by cAMP.  相似文献   

14.
Rationale Global serotonin (5-HT) depletion increases the number of premature responses made on the five-choice serial reaction time task (5CSRT) in rats. In contrast, the 5-HT2A receptor antagonist M100907 decreases this measure of impulsivity. Mounting evidence suggests that 5-HT2A and 5-HT2C receptors have opposing effects on behaviour, and that the 5-HT2C receptor antagonist SB 242084 produces a pattern of behaviour similar to 5-HT depletion.Objectives To assess the effects of 5-HT2A and 5-HT2C receptor antagonists on performance of the 5CSRT, to directly compare the effects of these drugs with those of ICV 5,7-dihydroxytryptamine (5,7-DHT) lesions and to investigate whether 5-HT depletion affects the action of these agents.Methods The effects of M100907 (0, 0.01, 0.03, 0.1 mg/kg IP) and SB 242084 (0, 0.1, 0.25, 0.5 mg/kg IP) were investigated on performance of the 5CSRT in both ICV 5,7-DHT-lesioned and sham-operated rats.Results ICV 5,7-DHT lesions, which significantly decreased forebrain levels of 5-HT by around 90%, increased levels of premature responding, decreased omissions and the latency to respond correctly, yet did not affect performance accuracy. M100907 decreased premature responding in sham-operated controls but not in 5-HT-depleted rats. In contrast, SB 242084 increased premature responding in all animals, and also decreased the latency to make a correct response in sham-operated controls.Conclusions These data support the view that serotonergic regulation of impulsive behaviour through different members of the 5-HT2 receptor family is functionally heterogeneous. Although both 5-HT2A and 5-HT2C receptors participate in controlling this form of impulsive action, their relative contribution may depend on the endogenous state of the 5-HT system.  相似文献   

15.
  1. Although conscious dogs have often been used for colonic motility studies with 5-hydroxytryptamine (5-HT), the effects of 5-HT on the isolated colon have not been thoroughly characterized yet. The current study was undertaken to characterize the response to 5-HT of the canine isolated colon longitudinal muscle.
  2. Longitudinal strips of canine midcolon deprived of (sub)mucosa were prepared for isotonic measurement. 5-HT induced contractions from 3 nM onwards, which were not affected by selective inhibition of 5-HT re-uptake, monoamine oxidase or blockade of α-adrenoceptors. Tetrodotoxin (0.3 μM) did not affect the responses to 5-HT, suggesting that smooth muscle 5-HT receptors are involved. The selective 5-HT4 receptor antagonist SB 204070 (10 nM) slightly enhanced contractions to 5-HT and therefore it was included in the organ bath solution in all further experiments. The 5-HT1 and 5-HT2 receptor antagonist methysergide (0.1 μM) depressed the curve to 5-HT, but the selective 5-HT3 receptor antagonist granisetron (0.3 μM) had no effect.
  3. Besides 5-HT, α-methyl-5-HT (α-Me-5-HT), 5-methoxytryptamine (5-MeOT), 2-methyl-5-HT (2-Me-5-HT) and 5-carboxamidotryptamine (5-CT) also induced contractions, with the following rank order of potency (pEC50 values in parentheses): 5-HT (6.9)=α-methyl-5-HT (6.9)>2-Me-5-HT (5.8)=5-MeOT (5.7)=5-CT (5.6), indicative of 5-HT2 receptor involvement. α-Me-5-HT produced a bell-shaped curve, which was not affected by α-adrenoceptor blockade. 5-HT, 5-MeOT, 2-Me-5-HT and 5-CT produced a monophasic concentration-response curve, consistent with an interaction with a single receptor site. 8-Hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and tryptamine only induced contractions at a concentration exceeding 1 μM.
  4. The selective 5-HT2B receptor antagonist SB 204741 (0.3 μM) did not affect the curve to 5-HT. Ketanserin, cisapride and spiroxatrine behaved as competitive antagonists with pKb values of, respectively, 8.4, 8.1 and 6.7. Spiroxatrine (1 μM) shifted the curve to 5-MeOT rightward yielding an apparent pA2 of 7.1. Other antagonists at 5-HT2A receptors also surmountably inhibited the contractions to 5-HT (apparent pA2 value in parentheses): mesulergine (8.2), cinanserin (8.2), yohimbine (6.2) and mianserin (8.6). However, as well as a rightward shift, methiothepin (8.3), pizotifen (8.6) and spiperone (8.8) also caused a depression of the curve, indicative of ‘pseudo-irreversible'' antagonism. Taken together, the above mentioned affinity estimates most closely corresponded to literature affinity values for 5-HT2A receptors.
  5. It was concluded that 5-HT induces contractions of the canine midcolon longitudinal muscle primarily by stimulation of smooth muscle 5-HT2A receptors. The presence of inhibitory 5-HT4 receptors cannot be ruled out.
  相似文献   

16.
Summary Peripheral 5-HT receptor-mediated responses were examined in pithed spontaneously hypertensive rats and normotensive wistar rats. Responses examined were: Pressor and depressor responses, tachycardia and inhibition of stimulation-evoked tachycardia. In pithed spontaneously hypertensive rats, 5-HT, but not the 5-HT1-selective agonist 5-carboxamidotryptamine, produced pressor responses, and these were potently antagonised by the 5-HT2-selective antagonists ketanserin and LY 53857. In pithed spontaneously hypertensive rats, the tachycardia to 5-HT was abolished by a combination of the 5-HT2 receptor antagonist LY 53857 and propranolol, suggesting that the tachycardia is mediated by 5-HT2 receptors and by release of noradrenaline. In pithed spontaneously hypertensive rats, 5-carboxamidotryptamine, 5-HT, and to a lesser extent the 5-HT1 receptor agonist RU 24969, but not the 5-HT1A receptor agonist 8-OH-DPAT, produced depressor responses which were antagonised by methysergide and metitepin, but which do not clearly fit with any of the 5-HT, ligand binding sites. In pithed normotensive wistar rat, 5-carboxamidotryptamine was approximately 100 times more potent than 5-HT and 8-OH-DPAT at inhibiting the cardio-acceleration produced by single pulse electrical stimulation and this inhibition was antagonised by metitepin, so that the response is mediated by 5-HT1 receptors.  相似文献   

17.

Background and purpose:

Central 5-hydroxytryptamine (5-HT)-containing pathways utilizing 5-HT7 receptors are known to be critical for the mediation of cardiovascular reflexes. The nucleus tractus solitarius (NTS) is a site involved in the integration of cardiovascular afferent information. The present experiments examined the involvement of the 5-HT7 receptor in the processing of cardiovascular reflexes in the NTS.

Experimental approach:

In anaesthetized rats extracellular recordings were made from 104 NTS neurones that were excited by electrical stimulation of the vagus nerve and/or activation of cardiopulmonary afferents. Drugs were applied ionophoretically in the vicinity of these neurones.

Key results:

The non-selective 5-HT7 receptor agonist 5-carboxamidotryptamine maleate (5-CT) applied to 78 neurones increased the firing rate in 18 by 59% and decreased it in 38 neurones by 47%. Similarly, the 5-HT1A agonist 8-OH-DPAT applied to 20 neurones had an excitatory (8), inhibitory (7) or no effect (5) on the 20 neurones tested. In the presence of the 5-HT7 antagonist SB 258719 the 5-CT excitation was attenuated. Furthermore, the excitatory response of NTS neurones evoked by electrical stimulation of the vagus nerve or activation of cardiopulmonary afferents with intra atrial phenylbiguanide was attenuated by SB 258719. The inhibitory action of 5-CT was unaffected by SB 258719 and the 5-HT1A antagonist WAY-100635. WAY-100635 failed to have any effect on 5-CT and vagal afferent-evoked excitations.

Conclusions and implications:

Vagal afferent-evoked excitation of NTS neurones can be blocked by SB 258719, a selective 5-HT7 antagonist. This observation further supports the involvement of 5-HT neurotransmission in NTS afferent processing.  相似文献   

18.

Background and purpose:

Recent experiments using non-selective 5-hydroxytryptamine (5-HT)2C receptor agonists including WAY 161503 suggested that midbrain 5-HT neurones are under the inhibitory control of 5-HT2C receptors, acting via neighbouring gamma-aminobutyric acid (GABA) neurones. The present study extended this pharmacological characterization by comparing the actions of WAY 161503 with the 5-HT2C receptor agonists, Ro 60-0275 and 1-(3-chlorophenyl) piperazine (mCPP), as well as the non-selective 5-HT agonist lysergic acid diethylamide (LSD) and the 5-HT releasing agent 3,4-methylenedioxymethamphetamine (MDMA).

Experimental approach:

5-HT neuronal activity was measured in the dorsal raphe nucleus (DRN) using extracellular recordings in anaesthetized rats. The activity of DRN GABA neurones was assessed using double-label immunohistochemical measurements of Fos and glutamate decarboxylase (GAD).

Key results:

Ro 60-0175, like WAY 161503, inhibited 5-HT neurone firing, and the 5-HT2C antagonist SB 242084 reversed this effect. mCPP also inhibited 5-HT neurone firing (∼60% neurones) in a SB 242084-reversible manner. LSD inhibited 5-HT neurone firing; however, this effect was not altered by either SB 242084 or the 5-HT2A/C receptor antagonist ritanserin but was reversed by the 5-HT1A receptor antagonist WAY 100635. Similarly, MDMA inhibited 5-HT neurone firing in a manner reversible by WAY 100635, but not SB 242084 or ritanserin. Finally, both Ro 60-0275 and mCPP, like WAY 161503, increased Fos expression in GAD-positive DRN neurones.

Conclusions and implications:

These data strengthen the hypothesis that midbrain 5-HT neurones are under the inhibitory control of 5-HT2C receptors, and suggest that the 5-HT2C agonists Ro 60-0175, mCPP and WAY 161503, but not LSD or MDMA, are useful probes of the mechanism(s) involved.  相似文献   

19.
The effects of 5-hydroxytryptamine (5-HT) receptor agonists and antagonists were studied on the release of 5-HT from enterochromaffin cells of incubated strips of porcine and human small intestine. Tetrodotoxin (1 μmol/l) was present in the incubation medium to block neuronally mediated inputs to the enterochromaffin cells. The 5-HT1A receptor agonist (+)-8-hydroxy-dipropylaminotetralin (8-OH-DPAT, 1 μmol/l) and the 5-HT2 receptor agonist α-methyl-5-HT (1 μmol/l) increased 5-HT release by 40% in about 60% of the human preparations.These agonists showed no effect on 5-HT release in porcine intestinal mucosa. The 5-HT3 receptor agonist 2-methyl-5-HT (3–100 μmol/l) increased 5-HT release in both species by 60% (pig) and 90% (man), respectively. These stimulatory effects were antagonized by tropisetron (10 nmol/l). The 5-HT4 receptor agonist 5-methoxytryptamine (0.3–30 μmol/l) reduced 5-HT release by about 50% in both species. These inhibitory effects were antagonized by tropisetron (3 μmol/l). The basal outflow of 5-HT from the intestinal mucosa was not significantly affected by tropisetron (10 nmol/l; 3 μmol/l). The specific 5-HT4 receptor antagonist GR 113808 ((1-[2-methylsulphonyl)amino]ethyl]-4-piperidinyl]methyl-1-methyl-1H-indole-3-carboxylate) (0.1 μmol/l) which by itself did not significantly affect 5-HT release from human duodenal specimens blocked the inhibitory effect of 5-methoxytryptamine (30 μmol/l). These findings indicate that stimulatory 5-HT3 and inhibitory 5-HT4 receptors are present on enterochromaffin cells of the porcine and human intestinal mucosa. Under the present experimental conditions endogenous 5-HT does not significantly activate these receptors. Stimulatory 5-HT1A and 5-HT2 receptors may additionally be present on human enterochromaffin cells. Received: 19 September 1997/ Accepted: 29 January 1998  相似文献   

20.
Summary This study describes a component of 5-HT-evoked depolarization of the rat isolated vagus nerve which was unaffected by the 5-HT3 receptor antagonist ondansetron. A grease-gap extracellular recording technique was used. Ondansetron (10–100 nmol/1) displaced the 5-HT concentration-response curve to the right yielding a pA2 value of 8.6 (8.5–8.8), consistent with 5-HT3 receptor antagonism, and revealing a component of the 5-HT response which was resistant to ondansetron blockade. In the presence of ondansetron (100 nmol/1) the maximum depolarization in the resistant phase was 15.5 (12.6–19.2)% of the initial maximum response to 5-HT and the pEC50 value was 7.0 (6.7–7.3). The mechanism of the ondansetron-resistant component of the 5-HT response resembled a 5-HT4 -receptor-effect in being absent in preparations equilibrated with 5-methoxytryptamine (10 mol/1) and antagonised by ICS 205930 (tropisetron, pA2 6.4). 5-Methoxytryptamine alone was an agonist in the vagus nerve with a maximum response similar to that of the ondansetron resistant phase of the 5-HT response. similarly renzapride alone evoked small depolarizations of this preparation but antagonized the ondansetron resistant phase of the 5-HT response (pA2 7.3–7.4). These effects of 5-methoxytryptamine and renzapride are also consistent with a 5-HT4 receptor mechanism. Ketanserin (1 mol/1) and methysergide (1 mol/1) had little effect on responses to 5-HT. The depolarization evoked by this putative 5-HT4 receptor mechanism was small but prolonged and appears to mask and after-hyperpolarizing phase of the 5-HT response in this tissue. Correspondence to: K. F. Rhodes at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号