首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[(3R)-4-(4-Chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopentaindol-3-yl]acetic acid (MK-0524) is a potent orally active human prostaglandin D(2) receptor 1 antagonist that is currently under development for the prevention of niacin-induced flushing. The metabolism and excretion of [(14)C]MK-0524 in humans were investigated in six healthy human volunteers following a single p.o. dose of 40 mg (202 microCi). [(14)C]MK-0524 was absorbed rapidly, with plasma C(max) achieved 1 to 1.5 h postdose. The major route of excretion of radioactivity was via the feces, with 68% of the administered dose recovered in feces. Urinary excretion averaged 22% of the administered dose, for a total excretion recovery of approximately 90%. The majority of the dose was excreted within 96 h following dosing. Parent compound was the primary radioactive component circulating in plasma, comprising 42 to 72% of the total radioactivity in plasma for up to 12 h. The only other radioactive component detected in plasma was M2, the acyl glucuronic acid conjugate of the parent compound. The major radioactive component in urine was M2, representing 64% of the total radioactivity. Minor metabolites included hydroxylated epimers (M1/M4) and their glucuronic acid conjugates, which occurred in the urine as urea adducts, formed presumably during storage of samples. Fecal radioactivity profiles mainly comprised the parent compound, originating from unabsorbed parent and/or hydrolyzed glucuronic acid conjugate of the parent compound. Therefore, in humans, MK-0524 was eliminated primarily via metabolism to the acyl glucuronic acid conjugate, followed by excretion of the conjugate into bile and eventually into feces.  相似文献   

2.
Abstract

1. Gemigliptin (formerly known as LC15-0444) is a newly developed dipeptidyl peptidase 4 inhibitor for the treatment of type 2 diabetes. Following oral administration of 50?mg (5.4?MBq) [14C]gemigliptin to healthy male subjects, absorption, metabolism and excretion were investigated.

2. A total of 90.5% of administered dose was recovered over 192?hr postdose, with 63.4% from urine and 27.1% from feces. Based on urinary recovery of radioactivity, a minimum 63.4% absorption from gastrointestinal tract could be confirmed.

3. Twenty-three metabolites were identified in plasma, urine and feces. In plasma, gemigliptin was the most abundant component accounting for 67.2%?~?100% of plasma radioactivity. LC15-0636, a hydroxylated metabolite of gemigliptin, was the only human metabolite with systemic exposure more than 10% of total drug-related exposure. Unchanged gemigliptin accounted for 44.8%?~?67.2% of urinary radioactivity and 27.7%?~?51.8% of fecal radioactivity. The elimination of gemigliptin was balanced between metabolism and excretion through urine and feces. CYP3A4 was identified as the dominant CYP isozyme converting gemigliptin to LC15-0636 in recombinant CYP/FMO enzymes.  相似文献   

3.
The metabolic disposition of recainam, an antiarrhythmic drug, was compared in mice, rats, dogs, rhesus monkeys, and humans. Following oral administration of [14C]recainam-HCl, radioactivity was excreted predominantly in the urine of all species except the rat. Metabolite profiles were determined in excreta by HPLC comparisons with synthetic standards. In rodents and rhesus monkeys, urinary excretion of unchanged recainam accounted for 23-36% of the iv dose and 3-7% of the oral dose. Aside from quantitative differences attributable to presystemic biotransformation, metabolite profiles were qualitatively similar following oral or iv administration to rodents and rhesus monkeys. Recainam was extensively metabolized in all species except humans. In human subjects, 84% of the urinary radioactivity corresponded to parent drug. The major metabolites in mouse and rat urine and rat feces were m- and p-hydroxyrecainam. Desisopropylrecainam and dimethylphenylaminocarboxylamino propionic acid were the predominant metabolites in dog and rhesus monkey urine. Small amounts of desisopropylrecainam and p-hydroxyrecainam were excreted in human urine. Selective enzymatic hydrolysis revealed that the hydroxylated metabolites were conjugated to varying degrees among species. Conjugated metabolites were not present in rat urine or feces, while conjugates were detected in mouse, dog, and monkey urine. Structural confirmation of the dog urinary metabolites was accomplished by mass spectral analysis. The low extent of metabolism of recainam in humans suggests that there will not be wide variations between dose and plasma concentrations.  相似文献   

4.
The disposition and metabolism of 14C-labeled fluconazole (100 microCi) was determined in three healthy male subjects after administration of a single oral capsule containing 50 mg of drug. Blood samples, total voided urine, and feces were collected at intervals after dosing for up to 12 days post-dose. Pharmacokinetic analysis of fluconazole concentrations showed a mean plasma half-life of 24.5 hr. Mean apparent plasma clearance and apparent volume of distribution were 0.23 ml/min/kg and 0.5 liter/kg, respectively. There was no evidence of any significant concentrations of metabolites circulating either in plasma or blood cells. Mean total radioactivity excreted in urine and feces represented 91.0 and 2.3%, respectively, of the administered dose. Mean excretion of unchanged drug in urine represented 80% of the administered dose; thus, only 11% was excreted in urine as metabolites. Only two metabolites were present in detectable quantities, a glucuronide conjugate of unchanged fluconazole and a fluconazole N-oxide, which accounted for 6.5 and 2.0% of urinary radioactivity, respectively. No metabolic cleavage products of fluconazole were detected.  相似文献   

5.
Elimination pathways of [14C]losoxantrone in four cancer patients.   总被引:1,自引:0,他引:1  
Losoxantrone is an anthrapyrazole derivative in Phase III development in the U.S. for solid tumors, notably breast cancer. To obtain information on the routes of elimination of the drug, a study was conducted in four patients with advanced solid tumors, which involved intravenous administration of 100 microCi of [14C]losoxantrone for a total dose of 50 mg/m(2) during the first course of losoxantrone therapy. Blood, urine, and feces were collected for up to 2 weeks and were analyzed for total radioactivity and parent drug. In addition, feces were profiled for the presence of metabolites. Plasma concentrations of total radioactivity exhibited a temporal pattern similar to the parent drug. Combined recovery of administered total radioactivity from urine and feces was 70% with the majority (87%) of this radioactivity excreted in the feces, presumably via biliary excretion. Feces extracts were profiled for metabolites using a high-performance liquid chromatography method developed to separate synthetic standards of previously identified human urinary metabolites. Only intact losoxantrone was found in the feces. About 9% of the dose was excreted in the urine, primarily during the first 24 h and mostly in the form of parent compound. Collectively, these data indicate that fecal excretion of unmetabolized drug via biliary and/or intestinal excretion is the primary pathway of intravenously administered losoxantrone elimination in cancer patients with refractory solid tumors.  相似文献   

6.
This mass balance study investigated the metabolism and excretion of eribulin, a nontaxane microtubule dynamics inhibitor with a novel mechanism of action, in patients with advanced solid tumors. A single approximately 2 mg (approximately 80 μCi) dose of [1?C]eribulin acetate was administered as a 2 to 5 min bolus injection to six patients on day 1. Blood, urine, and fecal samples were collected at specified time points on days 1 to 8 or until sample radioactivity was ≤1% of the administered dose. Mean plasma eribulin exposure (627 ng · h/ml) was comparable with that of total radioactivity (568 ng Eq · h/ml). Time-matched concentration ratios of eribulin to total radioactivity approached unity in blood and plasma, indicating that unchanged parent compound constituted almost all of the eribulin-derived radioactivity. Only minor metabolites were detected in plasma samples up to 60 min postdose, pooled across patients, each metabolite representing ≤0.6% of eribulin. Elimination half-lives for eribulin (45.6 h) and total radioactivity (42.3 h) were comparable. Eribulin-derived radioactivity excreted in feces was 81.5%, and that of unchanged eribulin was 61.9%. Renal clearance (0.301 l/h) was a minor component of total eribulin clearance (3.93 l/h). Eribulin-derived radioactivity excreted in urine (8.9%) was comparable with that of unchanged eribulin (8.1%), indicating minimal excretion of metabolite(s) in urine. Total recovery of the radioactive dose was 90.4% in urine and feces. Overall, no major metabolites of eribulin were detected in plasma. Eribulin is eliminated primarily unchanged in feces, whereas urine constitutes a minor route of elimination.  相似文献   

7.
Tropiestron is a potent and selective antagonist of 5-hydroxytryptamine receptors. Tropisetron was developed for the indication of cancer chemotherapy-induced emesis. The pharmacokinetic and metabolic dispositions of tropisetron were studied in 12 healthy male volunteers receiving a single oral dose of 62 or 312 mumol (20 or 100 mg) of [14C]tropisetron. Serial plasma samples and complete urine and feces were collected for 120 hr postdose. Whereas the absorption of oral doses of 62-312 mumol tropisetron was rapid and complete, bioavailability was estimated to be only 66% for the 312 mumol dose and 52% for the 62 mumol dose, apparently because of saturable first-pass metabolism. Maximal concentrations of tropisetron averaged 87 and 608 nM after doses of 62 and 312 mumol, respectively, and the parent drug accounted for 21 and 36% of the radioactivity in AUC0-24 hr pools. Approximately 90% of the drug was metabolized before excretion, and approximately 70% of the dose was recovered in the urine. Following both the 62 and 312 mumol doses, the terminal half-life of tropisetron averaged 6-7 hr and that of total radioactivity was 10-11 hr. Tropisetron and its metabolites in plasma and urine were separated by gradient elution reversed-phase HPLC. Structures of eight metabolites were assigned on the bases of NMR and MS data. Tropisetron was metabolized by oxidative hydroxylation of the indole ring at positions 5, 6, and 7. The hydroxylated derivatives are further conjugated with glucuronic acid and sulfate. N-Oxygenation and oxidative N-demethylation at the tropinyl nitrogen also occur in trace amounts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The metabolism and excretion of a potent and selective substance P receptor antagonist, CP-122,721, have been studied in beagle dogs following oral administration of a single 5 mg kg(-1) dose of [(14)C]CP-122,721. Total recovery of the administered dose was on average 89% for male dogs and 95% for female dogs. Approximately 94% of the radioactivity recovered in urine and feces was excreted in the first 72 h. Male bile duct-cannulated dogs excreted a mean of approximately 56% of the dose in bile, approximately 11% in feces, and approximately 25% in urine. The sum of radioactivity in bile and urine indicates >80% of the [(14)C]CP-122,721-derived radioactivity was absorbed by the gastrointestinal tract. CP-122,721 was extensively metabolized in dogs, and only a small amount of parent CP-122,721 was excreted as unchanged drug. There were no significant gender-related quantitative/qualitative differences in the excretion of metabolites in urine or feces. The major metabolic pathways of CP-122,721 were O-demethylation, aromatic hydroxylation, and indirect glucuronidation. The minor metabolic pathways included: Aliphatic oxidation at the piperidine moiety, O-dealkylation of the trifluoromethoxy group, and N-dealkylation with subsequent sulfation and/or oxidative deamination. In addition, the novel cleaved product 5-trifluoromethoxy salicylic acid (TFMSA) was identified in plasma. These results suggest that dog is the most relevant animal species in which the metabolism of CP-122,721 can be studied for extrapolating the results to humans.  相似文献   

9.
The metabolism and excretion of a potent and selective substance P receptor antagonist, CP-122,721, have been studied in beagle dogs following oral administration of a single 5?mg?kg?1 dose of [14C]CP-122,721. Total recovery of the administered dose was on average 89% for male dogs and 95% for female dogs. Approximately 94% of the radioactivity recovered in urine and feces was excreted in the first 72?h. Male bile duct-cannulated dogs excreted a mean of ~56% of the dose in bile, ~11% in feces, and ~25% in urine. The sum of radioactivity in bile and urine indicates >80% of the [14C]CP-122,721-derived radioactivity was absorbed by the gastrointestinal tract. CP-122,721 was extensively metabolized in dogs, and only a small amount of parent CP-122,721 was excreted as unchanged drug. There were no significant gender-related quantitative/qualitative differences in the excretion of metabolites in urine or feces. The major metabolic pathways of CP-122,721 were O-demethylation, aromatic hydroxylation, and indirect glucuronidation. The minor metabolic pathways included: Aliphatic oxidation at the piperidine moiety, O-dealkylation of the trifluoromethoxy group, and N-dealkylation with subsequent sulfation and/or oxidative deamination. In addition, the novel cleaved product 5-trifluoromethoxy salicylic acid (TFMSA) was identified in plasma. These results suggest that dog is the most relevant animal species in which the metabolism of CP-122,721 can be studied for extrapolating the results to humans.  相似文献   

10.
The pharmacokinetics and biotransformation of the antiretroviral agent nevirapine (NVP) after autoinduction were characterized in eight healthy male volunteers. Subjects received 200-mg NVP tablets once daily for 2 weeks, followed by 200 mg twice daily for 2 weeks. Then they received a single oral dose (solution) of 50 mg containing 100 microCi of [(14)C]NVP. Biological fluids were analyzed for total radioactivity, parent compound (HPLC/UV), and metabolites (electrospray liquid chromatography/mass spectroscopy and liquid chromatography/tandem mass spectroscopy). Mean recovery of radioactivity was 91.4%, with 81.3% excreted in urine and 10.1% recovered in the feces over a period of 10 days. Circulating radioactivity was evenly distributed between whole blood and plasma. At maximum plasma concentration, parent compound accounted for approximately 75% of the circulating radioactivity. Mean plasma elimination half-lives for total radioactivity and NVP were 21.3 and 20.0 h, respectively. Several metabolites were identified in urine including 2-hydroxynevirapine glucuronide (18.6%), 3-hydroxynevirapine glucuronide (25.7%), 12-hydroxynevirapine glucuronide (23.7%), 8-hydroxynevirapine glucuronide (1.3%), 3-hydroxynevirapine (1.2%), 12-hydroxynevirapine (0.6%), and 4-carboxynevirapine (2.4%). Greater than 80% of the radioactivity in urine was made up of glucuronidated conjugates of hydroxylated metabolites of NVP. Thus, cytochrome P-450 metabolism, glucuronide conjugation, and urinary excretion of glucuronidated metabolites represent the primary route of NVP biotransformation and elimination in humans. Only a small fraction of the dose (2.7%) was excreted in urine as parent compound.  相似文献   

11.
The disposition and metabolism of the new antihypertensive agent 2-(2"(1", 3"-dioxolan-2-yl)-2-methyl-4-(2'-oxopyrrolidin-1-yl)-6-nitro -2H-1-benzopyran (SKP-450) were investigated in male rats after single oral and i.v. doses of 14C-labeled compound. After an oral 2.0 mg/kg dose, mean radiocarbon recovery was 98.2 +/- 2.3% with 31.1 +/- 7.3% in the feces and 67.1 +/- 14.3% in the urine. Biliary excretion of radioactivity for the first 24-h period was approximately 40%, suggesting that SKP-450 is cleared either by hepatobiliary excretion or by renal excretion. SKP-450 was well absorbed; bioavailability calculated on the basis of radioactivity was 68 to 97%. Tissue distribution of the radioactivity was widespread with high concentrations in the liver and kidney but low central nervous system penetration. Radio-HPLC analysis of bile and urine from rats indicated the extensive metabolism of SKP-450 into oxidative metabolites. Oxidative metabolism of the dioxolanyl ring resulted in an aldehyde intermediate, subsequently confirmed in vitro, which was further oxidized to the corresponding carboxylic acid (M1) or reduced to the corresponding alcohol (M3). No parent drug was detected in the urine or bile. Glucuronide conjugate of M3 was also detected in urine and bile, accounting for 5.8 +/- 2.1 and 8.9 +/- 3. 7% of the excreted radioactivity, respectively. Quantitative data obtained from plasma samples suggest that the majority of circulating radioactivity was associated with metabolites. Our results suggest that the long duration of pharmacological activity of SKP-450 (>10 h) is largely attributable to its metabolites.  相似文献   

12.
Metabolic fate of phenprocoumon in humans   总被引:2,自引:0,他引:2  
Samples of urine and feces were collected daily from a normal human volunteer who had received a dose of pseudoracemic phenprocoumon [an equimolar mixture of (R)-[12C]- and (S)-[2-13C]phenprocoumon] containing a tracer dose of 10 microCi of [14C]phenprocoumon and analyzed by TLC, HPLC, and GC-MS. After 25 days, 96% of the radiolabeled material was recovered (62.8% in urine and 33.3% in feces). By isotopic dilution and comparison to the Rf values, retention times, and mass fragmentograms of synthetic standards, the metabolites of the drug were identified as the 4'-, 6-, and 7-hydroxy analogues of phenprocoumon. Virtually all of the recovered radioactivity could be accounted for by the parent drug (approximately 40%) and the three metabolites (approximately 60%). The formation of both 4'-(8.1% of administered dose) and 7- (33.4% of administered dose) hydroxyphenprocoumon was highly stereoselective, giving S/R ratios of 2.86 and 1.69, respectively. The formation of 6- (15.5% of administered dose) hydroxyphenprocoumon showed little stereoselectivity (S/R ratio equal to 0.85). The urinary excretion pattern was also confirmed in four additional healthy male subjects who received a single oral dose of pseudoracemic phenprocoumon and whose urine was analyzed by GC-MS. All the drug-related materials (both hydroxylated metabolites and parent compound) that were excreted into the urine were extensively conjugated.  相似文献   

13.
MK-0767 (KRP-297; 2-methoxy-5-(2,4-dioxo-5-thiazolidinyl)-N-[[4-(trifluoromethyl)phenyl] methyl]benzamide) is a thiazolidinedione (TZD)-containing dual agonist of the peroxisome proliferator-activated receptors alpha and gamma that has been studied as a potential treatment for patients with type 2 diabetes. The metabolism and excretion of [14C]MK-0767 were evaluated in six human volunteers after a 5-mg (200 microCi) oral dose. Excretion of 14C radioactivity was found to be nearly equal into the urine (approximately 50%) and feces (approximately 40%). Elimination of [14C]MK-0767 was primarily by metabolism, with minimal excretion of parent compound into the urine (<0.5% of dose) and feces (approximately 14% of the dose). [14C]MK-0767 was the major circulating compound-related entity (>96% of radioactivity) through 48 h postdose. It was also found that approximately 91% of the total radioactivity area under the curve was due to intact MK-0767. Several minor metabolites were detected in plasma (<1% of radioactivity, each), formed by cleavage of the TZD ring and subsequent S-methylation and oxidation. All the metabolites excreted into urine were formed by TZD cleavage, whereas the major metabolite in feces was the O-demethylated derivative of MK-0767.  相似文献   

14.
The absorption, metabolism, and excretion of [14C]aprepitant, a potent and selective human substance P receptor antagonist for the treatment of chemotherapy-induced nausea and vomiting, was evaluated in rats and dogs. Aprepitant was metabolized extensively and no parent drug was detected in the urine of either species. The elimination of drug-related radioactivity, after i.v. or p.o. administration of [14C]aprepitant, was mainly via biliary excretion in rats and by way of both biliary and urinary excretion in dogs. Aprepitant was the major component in the plasma at the early time points (up to 8 h), and plasma metabolite profiles of aprepitant were qualitatively similar in rats and dogs. Several oxidative metabolites of aprepitant, derived from N-dealkylation, oxidation, and opening of the morpholine ring, were detected in the plasma. Glucuronidation represented an important pathway in the metabolism and excretion of aprepitant in rats and dogs. An acid-labile glucuronide of [14C]aprepitant accounted for approximately 18% of the oral dose in rat bile. The instability of this glucuronide, coupled with its presence in bile but absence in feces, suggested the potential for enterohepatic circulation of aprepitant via this conjugate. In dogs, the glucuronide of [14C]aprepitant, together with four glucuronides derived from phase I metabolites, were present as major metabolites in the bile, accounting collectively for approximately 14% of the radioactive dose over a 4- to 24-h period after i.v. dosing. Two very polar carboxylic acids, namely, 4-fluoro-alpha-hydroxybenzeneacetic acid and 4-fluoro-alpha-oxobenzeneacetic acid, were the predominant drug-related entities in rat and dog urine.  相似文献   

15.
Galantamine is a competitive acetylcholine esterase inhibitor with a beneficial therapeutic effect in patients with Alzheimer's disease. The metabolism and excretion of orally administered (3)H-labeled galantamine was investigated in rats and dogs at a dose of 2.5 mg base-Eq/kg body weight and in humans at a dose of 4 mg base-Eq. Both poor and extensive metabolizers of CYP2D6 were included in the human study. Urine, feces, and plasma samples were collected for up to 96 h (rats) or 168 h (dogs and humans) after dosing. The radioactivity of the samples and the concentrations of galantamine and its major metabolites were analyzed. In all species, galantamine and its metabolites were predominantly excreted in the urine (from 60% in male rats to 93% in humans). Excretion of radioactivity was rapid and nearly complete at 96 h after dosing in all species. Major metabolic pathways were glucuronidation, O-demethylation, N-demethylation, N-oxidation, and epimerization. All metabolic pathways observed in humans occurred in at least one animal species. In extensive metabolizers for CYP2D6, urinary metabolites resulting from O-demethylation represented 33.2% of the dose compared with 5.2% in poor metabolizers, which showed correspondingly higher urinary excretion of unchanged galantamine and its N-oxide. The glucuronide of O-desmethyl-galantamine represented up to 19% of the plasma radioactivity in extensive metabolizers but could not be detected in poor metabolizers. Nonvolatile radioactivity and unchanged galantamine plasma kinetics were similar for poor and extensive metabolizers. Genetic polymorphism in the expression of CYP2D6 is not expected to affect the pharmacodynamics of galantamine.  相似文献   

16.
Abstract

1.?The absorption, distribution, metabolism and excretion of a novel dipeptidyl peptidase IV inhibitor, gemigliptin, were examined following single oral administration of 14C-labeled gemigliptin to rats.

2.?The 14C-labeled gemigliptin was rapidly absorbed after oral administration, and its bioavailability was 95.2% (by total radioactivity). Distribution to specific tissues other than the digestive organs was not observed. Within 7 days after oral administration, 43.6% of the administered dose was excreted via urine and 41.2% was excreted via feces. Biliary excretion of the radioactivity was about 17.7% for the first 24?h. After oral administration of gemigliptin to rats, the in vivo metabolism of gemigliptin was investigated with bile, urine, feces, plasma and liver samples.

3.?The major metabolic pathway was hydroxylation, and the major circulating metabolites were a dehydrated metabolite (LC15-0516) and hydroxylated metabolites (LC15-0635 and LC15-0636).  相似文献   

17.
The pharmacokinetics, metabolism, and excretion of sitagliptin [MK-0431; (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine], a potent dipeptidyl peptidase 4 inhibitor, were evaluated in male Sprague-Dawley rats and beagle dogs. The plasma clearance and volume of distribution of sitagliptin were higher in rats (40-48 ml/min/kg, 7-9 l/kg) than in dogs ( approximately 9 ml/min/kg, approximately 3 l/kg), and its half-life was shorter in rats, approximately 2 h compared with approximately 4 h in dogs. Sitagliptin was absorbed rapidly after oral administration of a solution of the phosphate salt. The absolute oral bioavailability was high, and the pharmacokinetics were fairly dose-proportional. After administration of [(14)C]sitagliptin, parent drug was the major radioactive component in rat and dog plasma, urine, bile, and feces. Sitagliptin was eliminated primarily by renal excretion of parent drug; biliary excretion was an important pathway in rats, whereas metabolism was minimal in both species in vitro and in vivo. Approximately 10 to 16% of the radiolabeled dose was recovered in the rat and dog excreta as phase I and II metabolites, which were formed by N-sulfation, N-carbamoyl glucuronidation, hydroxylation of the triazolopiperazine ring, and oxidative desaturation of the piperazine ring followed by cyclization via the primary amine. The renal clearance of unbound drug in rats, 32 to 39 ml/min/kg, far exceeded the glomerular filtration rate, indicative of active renal elimination of parent drug.  相似文献   

18.
Metabolism and excretion of the new antitumor drug N4-octadecyl-1-beta-D-arabinofuranosylcytosine (NOAC) was investigated in mice. Mice were injected i.v. with tritium-labeled liposomal NOAC (4 micromol/mouse). Analysis of HPLC-purified extracts of liver homogenates by liquid chromatography coupled with mass spectrometry revealed only the presence of unmetabolized drug. To study the excretion of the administered drug, mice were injected with tritium-labeled liposomal NOAC or as comparison with 1-beta-D-arabinofuranosylcytosine (ara-C; 4 micromol/mouse) and housed up to 48 h in metabolic cages. Urine and feces were collected at different time points and the kinetics of excreted radioactivity were determined. After 48 h, 39% of the injected [5-3H]NOAC radioactivity was excreted in urine and 16% in feces, whereas ara-C radioactivity was only found in urine with 48% of the injected dose. Feces extracts and urine were purified by HPLC and radioactive fractions were further analyzed by liquid chromatography coupled with mass spectrometry. The radioactivity of feces extracts of NOAC-treated mice was composed of unmetabolized NOAC, hydroxylated NOAC (NOAC + OH), its sulfated derivative (NOAC + OSO3H), and unidentified metabolites, whereas in urine, the hydrophilic molecules ara-C and ara-U were found. During the period of 48 h only 2% of the injected NOAC was eliminated in its unmetabolized form, whereas 25% was identified as main metabolite ara-C. Urine collected during 48 h in ara-C-treated mice contained 33% of the injected dose as unmetabolized drug and 13% as the main metabolite ara-U. Thus, NOAC is metabolized by two major pathways, one leading to the hydrophilic metabolites ara-C and ara-U and the other to hydroxylated and sulfated NOAC.  相似文献   

19.
The study objectives were to characterize the metabolism of nevirapine (NVP) in mouse, rat, rabbit, dog, monkey, and chimpanzee after oral administration of carbon-14-labeled or -unlabeled NVP. Liquid scintillation counting quantitated radioactivity and bile, plasma, urine, and feces were profiled by HPLC/UV diode array and radioactivity detection. Metabolite structures were confirmed by UV spectral and chromatographic retention time comparisons with synthetic metabolite standards, by beta-glucuronidase incubations, and in one case, by direct probe electron impact ionization/mass spectroscopy, chemical ionization/mass spectroscopy, and NMR. NVP was completely absorbed in both sexes of all species except male and female dogs. Parent compound accounted for <6% of total urinary radioactivity and <5.1% of total fecal radioactivity, except in dogs where 41 to 46% of the radioactivity was excreted as parent compound. The drug was extensively metabolized in both sexes of all animal species studied. Oxidation to hydroxylated metabolites occurred before glucuronide conjugation and excretion in urine and feces. Hydroxylated metabolites were 2-, 3-, 8-, and 12-hydroxynevirapine (2-, 3-, 8-, and 12-OHNVP). 4-carboxynevirapine, formed by secondary oxidation of 12-OHNVP, was a major urinary metabolite in all species except the female rat. Glucuronides of the hydroxylated metabolites were major or minor metabolites, depending on the species. Rat plasma profiles differed from urinary profiles with NVP and 12-OHNVP accounting for the majority of the total radioactivity. Dog plasma profiles, however, were similar to the urinary profiles with 12-OHNVP, its glucuronide conjugate, 4-carboxynevirapine, and 3-OHNVP glucuronide being the major metabolites. Overall, the same metabolites are formed in animals as are formed in humans.  相似文献   

20.
The absorption, metabolism, and excretion of imidafenacin [KRP-197/ONO-8025, 4-(2-methyl-1H-imidazol-1-yl)-2,2-diphenylbutanamide], a new antimuscarinic drug developed for treatment of overactive bladder, were assessed in six healthy male subjects after a single oral administration of 0.25 mg of [(14)C]imidafenacin (approximately 46 microCi). The highest radioactivity in the plasma was observed at 1.5 h after administration. The apparent terminal elimination half-life of the total radioactivity was 72 h. Approximately 65.6 and 29.4% of the administered radioactivity were recovered in the urine and feces, respectively, within 192 h after administration. The metabolite profiling by high-performance liquid chromatography-radiodetector and liquid chromatography/tandem mass spectrometry demonstrated that the main component of radioactivity was unchanged imidafenacin in the 2-h plasma. The N-glucuronide conjugate (M-9) was found as the major metabolite and the oxidized form of the 2-methylimidazole moiety (M-2) and the ring-cleavage form (M-4) were detected as the minor metabolites in the 2-h plasma, but M-4 was found to be the main component in the 12-h plasma. Unchanged imidafenacin, M-9, M-2, and other oxidized metabolites were excreted in the urine, but the unchanged imidafenacin and M-9 were not found in the feces. Two unique metabolites were found in the urine and feces, which were identified as the interchangeable cis- and trans-isomers of 4,5-dihydrodiol forms of the 2-methylimidazole moiety. These findings indicate that imidafenacin is rapidly and well absorbed (at least 65% of dose recovered in urine) after oral administration, circulates in human plasma as the unchanged form, its glucuronide, and other metabolites, and is then excreted in urine and feces as the oxidized metabolites of 2-methylimidazole moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号