首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role played by efflux transport systems across the blood-brain barrier (BBB) in the disposition of xenobiotics in the brain is described. Several drugs and organic anions are transported across the BBB via P-glycoprotein and other carrier-mediated efflux transport systems. Studies using in vitro cultured brain capillary endothelial cells, kinetic analysis, and mdr1a gene knock-out mice have shown that P-glycoprotein, located on the BBB, restricts the entry of vincristine and quinidine to the brain. Brain microdialysis studies have demonstrated that the brain interstitial fluid (ISF) concentrations of quinolone antibiotics are significantly lower than their corresponding unbound serum concentrations. A distributed model analysis supports the finding that efflux transport systems on the BBB restrict distribution of 3'-azido-3'-deoxythymidine (AZT), 2',3'-dideoxyinosine (DDI), and quinolone antibiotics. A brain efflux index (BEI) method has been developed to provide direct evidence of an efflux transport system for carrying substrates from the cerebrum to the circulating blood across the BBB. The BEI method revealed the existence of carrier-mediated efflux organic anion transport systems for compounds such as p-aminohippuric acid, AZT, DDI, taurocholic acid, BQ-123, and estron sulfate. Moreover, cerebral neurotransmitters such as gamma-aminobutyric acid, L-glutamic acid, and L-aspartic acid are transported from brain to the circulating blood in the intact form via a carrier-mediated efflux transport system. The BBB not only restricts nonspecific permeation from the circulating blood to the brain, but also functions as an active efflux transport system for xenobiotics. Accordingly, the BBB plays a very important role by pumping xenobiotics and some endogenous compounds out of the brain, acting as a central nervous system (CNS)-specific detoxifying system supporting and maintaining normal cerebral function.  相似文献   

2.
ABC transporters and the blood-brain barrier   总被引:7,自引:0,他引:7  
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) form a very effective barrier to the free diffusion of many polar solutes into the brain. Many metabolites that are polar have their brain entry facilitated by specific inwardly-directed transport mechanisms. In general the more lipid soluble a molecule or drug is, the more readily it will tend to partition into brain tissue. However, a very significant number of lipid soluble molecules, among them many useful therapeutic drugs have lower brain permeability than would be predicted from a determination of their lipid solubility. These molecules are substrates for the ABC efflux transporters which are present in the BBB and BCSB and the activity of these transporters very efficiently removes the drug from the CNS, thus limiting brain uptake. P-glycoprotein (Pgp) was the first of these ABC transporters to be described, followed by the multidrug resistance-associated proteins (MRP) and more recently breast cancer resistance protein (BCRP). All are expressed in the BBB and BCSFB and combine to reduce the brain penetration of many drugs. This phenomenon of "multidrug resistance" is a major hurdle when it comes to the delivery of therapeutics to the brain, not to mention the problem of cancer chemotherapy in general. Therefore, the development of strategies for bypassing the influence of these ABC transporters and for the design of effective drugs that are not substrates and the development of inhibitors for the ABC transporters becomes a high imperative for the pharmaceutical industry.  相似文献   

3.
Modulation of drug transporters at the blood-brain barrier   总被引:4,自引:0,他引:4  
Fricker G  Miller DS 《Pharmacology》2004,70(4):169-176
A major challenge in the management of diseases of the central nervous system is the limited penetration of drugs into the brain. The structures responsible are the capillaries of the brain, whose endothelial cells form the so-called blood-brain barrier. Understanding the cellular and molecular structure as well as integrated function of this barrier is a prerequisite for successful drug delivery to the brain. Here we briefly review current knowledge about the active transport proteins (ABC and organic anion transporters) which function at the blood-brain barrier. We describe novel approaches to (1). modulate carrier protein function, and (2). circumvent the transporter-based carrier by targeted site-specific drug delivery systems, such as immunoliposome and nanoparticulate systems.  相似文献   

4.
Peptides are key regulators in cellular and intercellular physiological responses and possess enormous promise for the treatment of pathological conditions. Opioid peptide activity within the central nervous system (CNS) is of particular interest for the treatment of pain owing to the elevated potency of peptides and the centrally mediated actions of pain processes. Despite this potential, peptides have seen limited use as clinically viable drugs for the treatment of pain. Reasons for the limited use are primarily based in the physiochemical and biochemical nature of peptides. Numerous approaches have been devised in an attempt to improve peptide drug delivery to the brain, with variable results. This review describes different approaches to peptide design/modification and provides examples of the value of these strategies to CNS delivery of peptide drugs. The various modes of modification of therapeutic peptides may be amalgamated, creating more efficacious "hybrid" peptides, with synergistic delivery to the CNS. The ongoing development of these strategies provides promise that peptide drugs may be useful for the treatment of pain and other neurologically-based disease states in the future.  相似文献   

5.
Ischaemic stroke is one of the most common diseases world-wide. Recent studies provide new insights into the role of ATP-binding cassette (ABC) transporters in brain ischaemia. Expressional and functional transporter changes that have been observed at the brain capillary endothelium during ischaemia impede the access of pharmacological compounds into the brain tissue. The current review summarizes the most important findings and discusses the role of hypoxia, inflammation, oxidative stress and lipids as factors regulating ABC transporters at the blood-brain barrier. A better understanding of biodistribution processes at the blood-brain barrier is urgently needed, so that the accumulation of drugs in the brain can be improved, enabling a successful translation of pharmacological treatments in ischaemic stroke.  相似文献   

6.
The blood-brain barrier (BBB) segregates the circulating blood from interstitial fluid in the brain, and restricts drug permeability into the brain. Our latest studies have revealed that the BBB transporters play important physiological roles in maintaining the brain milieu. The BBB supplies creatine to the brain for an energy-storing system, and creatine transporter localized at the brain capillary endothelial cells (BCECs) is involved in BBB creatine transport. The BBB is involved in the brain-to-blood efflux transport of the suppressive neurotransmitter, gamma-aminobutyric acid, and GAT2/BGT-1 mediates this transport process. BCECs also express serotonin and norepinephrine transporters. Organic anion transporter 3 (OAT3) and ASCT2 are localized at the abluminal membrane of the BCECs. OAT3 is involved in the brain-to-blood efflux of a dopamine metabolite, a uremic toxin and thiopurine nucleobase analogs. ASCT2 plays a role in L-isomer-selective aspartic acid efflux transport at the BBB. Dehydroepiandrosterone sulfate and small neutral amino acids undergo brain-to-blood efflux transport mediated by organic anion transporting polypeptide 2 and ATA2, respectively. The BBB transporters are regulated by various factors, ATA2 by osmolarity, taurine transporter by TNF-alpha, and L-cystine/L-glutamic acid exchange transporter by oxidative stress. Clarifying the physiological roles of BBB transport systems should give us important information allowing the development of better CNS drugs and improving our understanding of the relationship between CNS disorders and BBB function.  相似文献   

7.
ABC转运体作为血脑屏障上一类重要的外排转运体,介导了内源性物质、药物及环境毒素的外排过程。疾病状态下,ABC转运体的功能及表达会发生改变,有些疾病会导致转运体过表达或者活性增强,引发耐药现象;还有一些疾病会引起转运体损伤,导致毒素蓄积脑内,加剧疾病的发展。将各种脑部疾病与ABC转运体之间的关系研究清楚,将有助于阐明致病机制,并可为改善脑部耐药及治疗中枢神经疾病提供思路和策略。本文就这一问题,综述了血脑屏障ABC转运体在多种疾病状态下功能与表达的变化,及这些改变对疾病产生的影响,并初步探讨了相关机制,提出了一些改善耐药和治疗疾病的策略。  相似文献   

8.
Introduction: The blood-brain barrier (BBB) is a dynamic biological interface which actively controls the passage of substances between the blood and the central nervous system (CNS). From a biological and functional standpoint, the BBB plays a crucial role in maintaining brain homeostasis inasmuch that deterioration of BBB functions are prodromal to many CNS disorders. Conversely, the BBB hinders the delivery of drugs targeting the brain to treat a variety of neurological diseases.

Area covered: This article reviews recent technological improvements and innovation in the field of BBB modeling including static and dynamic cell-based platforms, microfluidic systems and the use of stem cells and 3D printing technologies. Additionally, the authors laid out a roadmap for the integration of microfluidics and stem cell biology as a holistic approach for the development of novel in vitro BBB platforms.

Expert opinion: Development of effective CNS drugs has been hindered by the lack of reliable strategies to mimic the BBB and cerebrovascular impairments in vitro. Technological advancements in BBB modeling have fostered the development of highly integrative and quasi- physiological in vitro platforms to support the process of drug discovery. These advanced in vitro tools are likely to further current understanding of the cerebrovascular modulatory mechanisms.  相似文献   

9.
The blood-brain barrier (BBB) provides a vast interface for cytokines to affect CNS function. The BBB is a target for therapeutic intervention. It is essential, therefore, to understand how cytokines interact with each other at the level of the BBB and how secondary signals modulate CNS functions beyond the BBB. The interactions between cytokines and lipids, however, have not been fully addressed at the level of the BBB. Here, we summarize current understanding of the localization of cytokine receptors and transporters in specific membrane microdomains, particularly lipid rafts, on the luminal (apical) surface of the microvascular endothelial cells composing the BBB. We then illustrate the clinical context of cytokine effects on the BBB by neuroendocrine regulation and amplification of inflammatory signals. Two unusual aspects discussed are signaling crosstalk by different classes of cytokines and genetic regulation of drug efflux transporters. We also introduce a novel area of focus on how cytokines may act through nuclear hormone receptors to modulate efflux transporters and other targets. A specific example discussed is the ATP-binding cassette transporter-1 (ABCA-1) that regulates lipid metabolism. Overall, cytokine signaling at the level of the BBB is a crucial feature of the dynamic regulation that can rapidly change BBB function and affect brain health and disease.  相似文献   

10.
The blood-brain barrier (BBB) to water-soluble drugs and macromolecules can be opened in vivo by infusing a hypertonic solution of arabinose or mannitol into the carotid artery for 30 sec. Opening involves widening of tight junctions between endothelial cells of the cerebrovasculature and is mediated by endothelial cell shrinkage, vascular dilatation associated with removal of water from brain, and modulation of the contractile state of the endothelial cytoskeleton and junctional proteins by increased intracellular calcium. A 10-fold increase in BBB permeability to intravascular substances, lasting about 10 min following osmotic exposure, reflects both increased diffusion and bulk fluid flow from blood into brain. Furthermore, recent evidence indicates that the duration of peak BBB opening can be extended beyond 30 min, by pre-treatment with a Na+/Ca2+ channel blocker. In experimental animals, the osmotic method has been used to grant wide access to brain of water-soluble drugs, peptides, antibodies, boron compounds for neutron capture therapy, viral vectors for gene therapy and enzymes. Ongoing multi-centre clinical studies suggest that the method, when used with intra-arterially administered anticancer drugs, can prolong survival in patients with malignant brain tumours, with minimal morbidity. However, controlled clinical trials are critical to see if the osmotic procedure with intra-arterial drugs enhances survival in brain tumour patients compared with intra-arterial drug alone.  相似文献   

11.
The presence of active carrier-mediated transport of substrates from the brain to the blood is a major feature of the barrier properties of the blood-brain barrier (BBB). These proteins lie in the luminal or abluminal membranes of the endothelial cells that form the BBB. Some are ATP-binding cassette proteins (ABC) and many amphipathic cationic drugs are carried by P-glycoprotein (ABCB1) or ABCG2, which lie at the luminal pole of the BBB. Several multidrug resistance-associated proteins (MRPs, ABCCs) are also present on the membranes of brain microvessels; these are mainly involved in the efflux of anionic compounds. All these ABC proteins help to protect the brain and form a critical target for CNS pharmaceuticals, influencing the clinical variability of responses to, and the design of, these drugs.  相似文献   

12.
From a complications standpoint, diabetes mellitus is a disease of the vasculature. Diabetics face a considerably higher risk of developing cardiovascular and cerebrovascular diseases. Both large and small blood vessels are susceptible to alterations from diabetes. Endothelial cell dysfunction associated with small vessel (known as microangiopathy) is a primary factor in the development and progression of diabetes-related disabilities, including blindness, kidney failure, and peripheral neuropathy. Recent clinical evidence show that people with diabetes have increased incidences of vascular dementia, ventricular hypertrophy, lacunar infarcts, hemorrhage, and may be a predisposing factor for Alzheimer's disease. However, the effects of diabetes mellitus on the cerebral microvascular are still largely unknown. This communication will review the relationship between diabetes mellitus and changes in cognition with a particular focus on how alterations in blood-brain barrier structure and function may play a long term role in worsened cognitive abilities.  相似文献   

13.
The recent identification of drug-metabolizing enzymes cytochrome P450 (CYP) in the human blood-brain barrier (BBB) raises the question of whether these enzymes act in concert with ATP-binding cassette (ABC) transporters to limit the brain distributions of drugs. We recently demonstrated several CYP genes in freshly isolated human brain microvessels; the main isoforms expressed were CYP1B1 and CYP2U1. Many studies using different experimental approaches have revealed that P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and the multidrug resistance-associated protein 4 (MRP4, ABCC4) are the main ABC transporters in the human BBB. The first part of this review covers recent studies on the expression, regulation and function of CYP450 and ABC transporters in the rodent and human BBBs. The second part focuses on the possible interplay between some CYPs and certain ABC transporters at the BBB, which makes it a determining element of brain drug concentrations and thus of the effects of centrally acting drugs.  相似文献   

14.
Permeability of the blood-brain barrier (BBB) is one of the factors determining the bioavailability of therapeutic drugs. The BBB only allows entry of lipophilic compounds with low molecular weights by passive diffusion. However, many lipophilic drugs show negligible brain uptake. They are substrates for transporters such as P-glycoprotein (P-gp), multidrug-resistance associated protein (MRP) and organic anion transporting polypeptides (OATPs). The action of these carrier systems results in rapid efflux of xenobiotics from the central nervous system (CNS). Classification of candidate drugs as substrates or inhibitors of such carrier proteins is of crucial importance in drug development. Positron emission tomography (PET) can play an important role in the screening process by providing in vivo information, after the putative drug has passed in vitro tests. Although radiolabeled probes for MRP and OATP function are not yet available, many radiotracers have been prepared to study P-glycoprotein function in vivo with PET. These include alkaloids ((11)C-colchicine), antineoplastic agents ((11)C-daunorubicin, (18)F-paclitaxel), modulators of L-type calcium channels ((11)C-(+/-)verapamil, (11)C-R(+)-verapamil), beta-adrenoceptor antagonists ((11)C-(S)-carazolol, (18)F-(S)-1'-fluorocarazolol, (11)C-carvedilol), serotonin 5-HT(1A) receptor antagonists ((18)F-MPPF), opioid receptor antagonists ((11)C-loperamide, (11)C-carfentanyl), and various (64)Cu-labeled copper complexes. Studies in experimental animals have indicated that it is possible to assess P-glycoprotein function in the BBB and its effect on the uptake and binding of drugs within the intact CNS, using suitable P-gp modulators labeled with positron emitters. Provided that radiopharmaceuticals (and P-gp modulators) can be developed for human use, several exciting fields of study may be explored, viz. (i) direct evaluation of the effect of modulators on the cerebral uptake of therapeutic drugs; (ii) assessment of mechanisms underlying drug resistance in epilepsy; (iii) examination of the role of the BBB in the pathophysiology of neurodegenerative and affective disorders; and (iv) exploration of the relationship between polymorphisms of transporter genes and the pharmacokinetics of test compounds within the CNS.  相似文献   

15.
The blood-brain barrier (BBB) is a major physiological barrier for drugs that target CNS receptors or enzymes. Several methods exist by which permeability to the CNS can be increased, one of which is using native nutrient transporters to carry these drugs through the endothelial cells of the BBB. In this review, we focus on work that characterizes the use of nutrient transporters of the BBB in delivering drugs to the CNS.  相似文献   

16.
"Once the regulation of brain endothelial transcytosis is understood at the molecular level, it should be possible to exploit these mechanisms as targets for facilitated CNS drug delivery".  相似文献   

17.
Exchange of compounds between blood and brain occurs at two barriers, the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). The barrier function is mainly a result of the functionality of the cerebral endothelial cells and choroidal epithelial cells, respectively. These cell types have restricted permeability due to the presence of tight junctions between the cells. Furthermore, these cells express a broad range of transporters. So far, the BBB has been viewed as the most important barrier, especially as its surface is about 3 orders of magnitude larger than that of the BCSFB. Today, there is a shift in the appreciation of the contribution of the BCSFB. In a few recent studies, it has been shown that the BCSFB expresses two types of ATP-binding cassette (ABC) transporters, being the multidrug transporters P-glycoprotein (P-gp) and the multidrug resistance-related protein 1 (MRP1). The knowledge on the function of these transporters in the BCSFB is relatively scarce, but in general, it seems that MRP1 transport is directed towards the blood side, which makes this transporter helpful in elimination of harmful compounds from the CSF. Thereby MRP1 potentially contributes to detoxification of the brain, as a whole, as it is also expressed at the level of the BBB. P-gp, however, while also functional as an efflux pump at the BBB, has an opposite transport direction at the level of the BCSFB, towards the CSF. P-gp may therefore raise the concentration of neurotoxic P-gp substrates in the CSF. Whether this will have a significant contribution to the toxicity in the regions directly exposed to the CSF (periventricular organs) remains to be determined. Specifically, in the epithelial cells of the choroid plexus of the BCSFB, P-gp and MRP1 together serve a protective role by preventing the accumulation of their overlapping and often toxic substrates. A concerted action of P-gp and MRP1 at the choroid plexus might contribute to the maintenance of the role of the BCSFB in brain homeostasis.  相似文献   

18.
Some of the ATP-binding cassette (ABC) transporters like P-glycoprotein (P-gp; ABCB1, MDR1), BCRP (ABCG2) and MRPs (ABCCs) that are present at the blood-brain barrier (BBB) influence the brain pharmacokinetics (PK) of their substrates by restricting their uptake or enhancing their clearance from the brain into the blood, which has consequences for their CNS pharmacodynamics (PD). Opioid drugs have been invaluable tools for understanding the PK-PD relationships of these ABC-transporters. The effects of morphine, methadone and loperamide on the CNS are modulated by P-gp. This review examines the ways in which other opioid drugs and some of their active metabolites interact with ABC transporters and suggests new mechanisms that may be involved in the variability of the response of the CNS to these drugs like carrier-mediated system belonging to the solute carrier (SLC) superfamily. Exposure to opioids may also alter the expression of ABC transporters. P-gp can be overproduced during morphine treatment, suggesting that the drug has a direct or, more likely, an indirect action. Variations in cerebral neurotransmitters during exposure to opioids and the release of cytokines during pain could be new endogenous stimuli affecting transporter synthesis. This review concludes with an analysis of the pharmacotherapeutic and clinical impacts of the interactions between ABC transporters and opioids.  相似文献   

19.
《中南药学》2015,(8):844-849
脑组织局部及相关疾病的药物治疗一直是一个难题,由于血脑屏障的存在,一方面保护了脑组织免于各种有害物质的损伤,但另一方面也增加了药物到达治疗部位的难度。随着脑部疾病发病率增加,加上其较高的致残率和致死率,药物的脑靶向递送成为目前研究的一个热点。本文主要综述近年来药物脑靶向递送相关领域的研究进展。  相似文献   

20.
Although several possible mechanisms exist by which the pancreatic hormone, insulin, could enter the brain from the blood, most evidence suggests that the majority of it enters primarily by a receptor-mediated transport process. Many factors influence the rate of entry, including fasting and refeeding and several pathological conditions. Within the brain insulin acts on specific receptors to influence a number of behaviors, and especially caloric homeostasis and cognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号