首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Gyro pumps were developed for long-term circulatory support. The first generation Gyro pump (C1E3) achieved 1 month paracorporeal circulatory support in chronic animal experiments; the second generation (PI702) implantable ventricular assist device (VAD) was successful for over 6 months. The objective of the next generation Gyro pump is for use as a long-term totally implantable VAD and for pediatric circulatory support. This tiny Gyro pump (KP101) was fabricated with the same design concept as the other Gyro pumps. The possibility of an implantable VAD was determined after performance and hemolysis test results were compared to those of the other Gyro pumps. The pump housing and impeller were fabricated from polycarbonate with an impeller diameter of 35 mm. The diameter and height of the pump housings are 52.3 mm and 29.9 mm, respectively. At this time, a DC brushless motor drives the KP101, which is the same as that for the C1E3. The pump performance was measured in 37% glycerin water at 37 degrees C. Hemolysis tests were performed utilizing a compact mock loop filled with fresh bovine blood in a left ventricular assist device (LVAD) condition at 37 degrees C. The KP101 achieved the LVAD conditions of 5 L/min and 100 mm Hg at 2,900 rpm; generated 10 L/min against 100 mm Hg at 3,200 rpm; 3 L/min against 90 mm Hg at 2,600 rpm; and 2 L/min against 80 mm Hg at 2,400 rpm. In addition, the pump efficiency during this experiment was 12.5%. The other Gyro pumps. that is, the C1E3, PI601, and PI701, in an LVAD condition require 1,600, 2,000, and 2,000 rpm, respectively. The KP101 produced a normalized index of hemolysis (NIH) value of 0.005 g/100 L. With regard to the NIH, the other Gyro pumps, namely the C1E3, PI601, and PI701 demonstrated 0.0007, 0.0028, and 0.004 g/100 L, respectively. The KP101 produced an acceptable pressure flow curve for a VAD. The NIH value was higher than that of other Gyro pumps, but is in an acceptable range.  相似文献   

2.
A miniaturized Gyro centrifugal pump has been developed to be incorporated into a totally implantable artificial heart. The Gyro PI (permanently implantable) model is a pivot bearing supported centrifugal pump with a priming volume of 20 ml. With the miniaturized actuator, the pump-actuator package has a height of 53 mm, a diameter of 65 mm, and a displacement volume of 145 ml. To evaluate the hemocompatibility and efficiency of the Gyro PI pump system, a plastic prototype (Gyro PI-601) was implanted into a bovine model as a left or right ventricular assist device (LVAD or RVAD), bypassing from the left ventricular apex to the descending aorta or from the right ventricular infundibulum to the main pulmonary artery. The calves were anticoagulated with heparin to maintain activated clotting times from 150 to 200 s. Four calves were supported for 23, 24, and 50 days in the LVAD studies, and 40 days in the RVAD study. The first calf died due to intrathoracic bleeding associated with sepsis. The second calf was euthanized for a low flow rate less than 2 L/min due to an obstructed inflow with growing pannus. The third and fourth calves were euthanized as scheduled. Renal and hepatic functions remained normal, and plasma free hemoglobin values were less than 8 mg/dL throughout the experiments. The fourth case showed flow rates of 4.83 ± 0.57 L/min, and input power of 6.16 ± 0.49 W, and the inside temperature of the actuator of 43.5 ± 0.52°C. The pumps implanted in the fourth calf demonstrated no thrombus formation at the autopsy. These in vivo experiments revealed that the Gyro PI pump can provide adequate flow as an easily implantable, efficient, antithrombogenic, and nonhemolytic centrifugal LVAD or RVAD with miniaturized actuators.  相似文献   

3.
In this study, a tripod supported sealless centrifugal blood pump was designed and fabricated for implantable application using a specially designed DC brushless motor. The tripod structure consists of 3 ceramic balls mounted at the bottom surface of the impeller moving in a polyethylene groove incorporated at the bottom pump casing. The follower magnet inside the impeller is coupled to the driver magnet of the motor outside the bottom pump casing, thus allowing the impeller to slide-rotate in the polyethylene groove as the motor turns. The pump driver has a weight of 230 g and a diameter of 60 mm. The acrylic pump housing has a weight of 220 g with the priming volume of 25 ml. At the pump rpm of 1,000 to 2,200, the generated head pressure ranged from 30 to 150 mm Hg with the maximum system efficiency being 12%. When the prototype pump was used in the pulsatile mock loop to assist the ventricle from its apex to the aorta, a strong correlation was obtained between the motor current and bypass flow waveforms. The waveform deformation index (WDI), defined as the ratio of the fundamental to the higher order harmonics of the motor current power spectral density, was computed to possibly detect the suction occurring inside the ventricle due to the prototype centrifugal pump. When the WDI was kept under the value of 0.20 by adjusting the motor rpm, it was successful in suppressing the suction due to the centrifugal pump in the ventricle. The prototype sealless, centrifugal pump together with the control method based on the motor current waveform analysis may offer an intermediate support of the failing left or right ventricle bridging to heart transplantation.  相似文献   

4.
The Baylor Gyro permanently implantable centrifugal blood pump (Gyro PI pump) has been under development since 1995 at Baylor College of Medicine. Excellent results were achieved as a left ventricular assist device (LVAD) with survival up to 284 days. Based on these results, we are now focusing on the development of a biventricular assist device (BVAD) system, which requires 2 pumps to be implanted simultaneously in the preperitoneal space. Our hypothesis was that the Gyro PI pump would be an appropriate device for an implantable BVAD system. The Gyro PI 700 pump is fabricated from titanium alloy and has a 25 ml priming volume, pump weight of 204 g, height of 45 mm, and pump diameter of 65 mm. This pump can provide 5 L/min against 100 mm Hg at 2,000 rpm. In this study, 6 half-Dexter healthy calves have been used as the experimental model. The right pump was applied between the infundibular of the right ventricle and the main pulmonary artery. The left pump was applied between the apex of the left ventricle and the thoracic descending aorta. As for anticoagulation, heparin was administered at the first postoperative week and then converted to warfarin sodium from the second week after surgery. Both pump flow rates were controlled maintaining a pulmonary arterial flow of less than 160 ml/kg/min for the sake of avoidance of pulmonary congestion. Blood sampling was done to assess visceral organ function, and the data regarding pump performance were collected. After encountering the endpoint, which the study could not keep for any reasons, necropsy and histopathological examinations were performed. The first 2 cases were terminated within 1 week. Deterioration of the pump flow due to suction phenomenon was recognized in both cases. To avoid the suction phenomenon, a flexible conduit attached on the inlet conduit was designed and implanted. After using the flexible inflow conduit, the required power and the rotational speed were reduced. Furthermore, the suction phenomenon was not observed except for 1 case. There was no deterioration regarding visceral organ function, and pulmonary function was maintained within normal range except for 1 case. Even though the experimental animal survived up to 45 days with the flexible inflow conduit, an increase in power consumption due to thrombus formation behind the impeller became a problem. Lower rotational speed, which was probably produced by the effectiveness of the flexible inflow conduit, was speculated to be one of the reasons. And the minimum range of rotational speed was 1,950 rpm in these 6 BVAD cases and the previous 3 cases of LVAD. In conclusion, 6 cases of BVAD implantation were performed as in vivo animal studies and were observed up to 45 days. The flexible inflow conduit was applied in 4 of 6 cases, and it was effective in avoiding a suction phenomenon. The proper rotational speed of the Gyro PI 700 pump was detected from the viewpoint of antithrombogenicity, which is more than 1,950 rpm.  相似文献   

5.
The Gyro permanently implantable (PI) pump is activated magnetically when a double pivot bearing supported impeller is rotated at predetermined revolutions per minute (rpm). The male bearing shaft of the impeller is supported by the top and bottom female pivot bearing in a loosely mated fashion. The Gyro PI pump's impeller transfers to a floating condition when the rpm is increased. The design objective of the Gyro PI pump is to drive the impeller while maintaining a top contact position to prevent thrombus formation. As a left ventricular assist device (LVAD), the Gyro PI pumps achieved long-term survivals in calves without thrombus formation. However, thrombus formation occurred during a biventricular assist device (BVAD) implantation. Our hypothesis was that the impeller remaining in the bottom contact position during the BVAD experiment caused this thrombus formation. Therefore, a replica of the Gyro PI pump housing was fabricated from a transparent plastic to observe the floating conditions of the impeller. When simulating an LVAD animal experiment, the impeller was at a non-bottom contact position. However, when simulating the BVAD animal experiment, the impeller remained at the bottom contact position. This study shows that the magnet balance affects the antithrombogenicity in a Gyro PI pump.  相似文献   

6.
In order to develop a centrifugal blood pump that meets the requirements of a long-term, implantable circulatory support device, in this study a single-pivot bearing supported centrifugal blood pump was designed to evaluate its basic performance. The single-pivot structure consisted of a ceramic ball male pivot mounted on the bottom surface of the impeller and a polyethylene female pivot incorporated in the bottom pump casing. The follower magnet mounted inside the impeller was magnetically coupled to the driver magnet mounted on the shaft of the direct current brushless motor. As the motor rotated, the impeller rotated supported entirely by a single-pivot bearing system. The static pump performance obtained in the mock circulatory loop revealed an acceptable performance as a left ventricular assist device in terms of flow and head pressure. The pump flow of 5 L/min against the head pressure of 100 mm Hg was obtained at rotational speeds of 2,000 to 2,200 rpm. The maximum pump flow was 9 L/min with 2,200 rpm. The maximum electrical-to-hydraulic power conversion efficiency was around 14% at pump flows of 4 to 5 L/min. The stability of the impeller was demonstrated at the pump rpm higher than 1,400 with a single-pivot bearing without an additional support at its top. The single-pivot supported centrifugal pump can provide adequate flow and pressure as a ventricular assist device, but its mechanical stability and hemolytic as well as thrombotic performances must be tested prior to clinical use.  相似文献   

7.
Abstract We specially devised 3 types of turbo pumps, a centrifugal pump (CFP), a mixed flow pump (MFP), and an axial flow pump (AFP), and analyzed their in vitro performance. The common structural design elements were an impeller diameter of 20 mm and sealless magnet couple driving. In vitro tests were carried out using heparinized fresh bovine blood. The hemolysis was comprehensively evaluated at 7–16 points by changing the flow rate and pressure head (mapping of hemolytic property). The maximum efficiency (motor output to pump output) was 44.9% at 7,000 rpm, 3.17 L/min, 191 mm Hg in the CFP; 66.3% at 7,000 rpm, 6.9 L/min, 136 mm Hg in the MFP; and 20.6% at 9,000 rpm, 5.54 L/min, 74 mm Hg in the AFP, respectively. The minimum normalized index of hemolysis (NIH) (g/100 L) was 0.038 at 5,000 rpm, 4.60 L/min, 38 mm Hg in the CFP; 0.010 at 7,000 rpm, 8.22 L/min, 100 mm Hg in the MFP; and 0.033 at 7,000 rpm, 2.84 L/min, 48 mm Hg in the AFP, respectively. The best efficiency and NIH were achieved in the MFP.  相似文献   

8.
Kim WG  Jo YH  Min BG  Won TH 《Artificial organs》2000,24(9):760-763
In this report, we describe an operative procedure for our implantable 1 piece biventricular assist device (BiVAD) based on a moving actuator mechanism, using an ovine model. Our implantable BiVAD is a volumetric coupled 1 piece unit including right and left blood sacs and an actuator assembly based on the moving actuator mechanism. The BiVAD was controlled by fixed rate control with 75 bpm for the most part. Both the left and the right full ejection modes with the maximum stroke angle were selected to minimize blood stasis in the blood sacs because of low assist flow condition. Three Corriedale sheep were used for the device implantation by a left thoracotomy incision. Cannulation was successfully performed in all cases. Although exposability of the right atrial appendage varied from animal to animal, the insertion of the cannula was easily performed. The cannulas were connected to the pump-actuator assembly in the preperitoneal pocket. All 3 animals survived the experimental procedure. During implantation of the device, in the 1 month survival animal, pump flow was maintained between 2.0 L/min and 2.5 L/min, mean aortic pressure was 90-110 mm Hg, and mean pulmonary artery pressure was 20-30 mm Hg. The left and right atrial pressure were maintained between 0 and 5 mm Hg. In conclusion, this ovine model for implantation of the 1 piece BiVAD can be an effective alternative for testing in vivo biocompatibility of the device although it needs more consideration for anatomical fittability for future human application.  相似文献   

9.
The New Energy and Industrial Technology Development Organization (NEDO) project was started in 1995. The goal is the development of a multipurpose, totally implantable biventricular assist device (BVAD) that can be used for any patient who suffers from severe heart failure. Our C1E3 (two-week pump) centrifugal pump, called the Gyro pump, has three design characteristics: a magnetic coupling and double pivot bearing system, an eccentric inlet port, and secondary vanes on the bottom of the impeller. The pump was miniaturized. The C1E3 evolved into the NEDO PI-601, a totally implantable centrifugal pump for BVAD. The current NEDO PI-710 pump (five-year pump) system includes a centrifugal pump with pivot bearings, a hydraulically-levitated impeller, an rpm-controlled miniaturized actuator (all-in-one actuator plus controller), an emergency clamp on the left outflow, and a Frank-Starling-type flow control. The final mass production model is now finalized, and the final animal study and two-year endurance studies are ongoing.  相似文献   

10.
During the past 10 years, different types of blood pumps were developed to address various clinical needs. The Nikkiso centrifugal blood pump was developed for cardiopulmonary bypass application. This blood pump has been widely used in Japan in more than 20% of the cardiopulmonary bypass procedures. The Kyocera C1E3 Gryo pump was developed for short-term circulatory assistance and extracorporeal membrane oxygenation application for up to 2 weeks. This blood pump has been clinically used for up to 28 days without any blood clot formation. Through Phase I of the Japanese government New Energy and Industrial Technology Development Organization (NEDO) program, a chronically implanted centrifugal pump for left ventricular assistance was developed. This pump has already demonstrated its effectiveness, safety, and durability as a 2 year blood pump through in vitro and in vivo experiments. Currently, it is in the process of being converted from an experimental to a clinical device. Through Phase II of the NEDO program, a permanently implantable biventricular assist centrifugal blood pump system is under development. It has demonstrated that the previously mentioned left ventricular assist device blood pump is easily converted into a right ventricular assist pump by simply adding a spacer between the pump and the actuator. This communication discusses the historical development strategies for centrifugal blood pumps and their current status for different clinical needs.  相似文献   

11.
According to recent trends to develop implantable nonpulsatile blood pumps for different function modes and times, our intention was and still is to build a Mini-Spindle-Pump for a pumping duration of about 14 days. Initial conception for this plan was the premise that the device in a mock circuit should move 4 L of water/min at a speed of 12,000 to 15,000 rpm against a pressure difference of 90 mm Hg between pump inlet and outlet. Despite the development of 6 different prototypes, this project was not realized. Under the above-mentioned conditions, the main problem of this type of blood pump, the blood trauma, could not be reduced to an adequate level, i.e., the Mini-Spindle-Pump is not a high speed pump. Therefore, a revision of the conception was necessary. The device in a mock circuit should transport 5 L of water/min at a speed of about 9,000 rpm against a pressure difference of 90 mm Hg between its inlet and outlet. Considering the implantability of the blood pump, the following measurements for its components were arrived at. The U-shaped blockformed plexiglas housing was enlarged to 120 x 40 x 40 mm (length of blood chamber 86 mm, inner diameter 27 mm), and the rotor with 5 windings was redesigned at a length of 64 mm (outer diameter 25 mm, inner diameter 6.7 mm). In a mock circuit, this 7th prototype transported with a speed of 9,000 rpm about 10 L of water/min at an afterload of 80 mm Hg. In acute animal experiments with calves up to 15 h of pumping duration, the device showed the expected efficiency. Experiments with a longer pumping duration are necessary to confirm that this prototype will fulfill the criteria of a short-term pump according to Dr. Y. Nosé's advice.  相似文献   

12.
Abstract: We have developed a compact, highly efficient, totally implantable assist pump system, which consists of a motor–driven assist pump and a transcutaneous energy and optical information transmission system. The motor–driven assist pump consists of ad. c. brushless motor and a specially designed miniature ball screw. A magnetic coupling mechanism between the blood pump and an actuator provides active blood filling via mild suction force. The controller consists of a PID follow–up controller using an 8–bit one–chip microcomputer. The volume of the pump is 350 ml, and its controller is 210 ml. Pump outflow of 5. 8 L/min was obtained against a mean afterload of 100 mm Hg. The pump showed a high efficiency rate and good durability. An efficiency rate of 19–21% (pump output/motor input) was obtained during 87 days of continuous pumping. No mechanical trouble occurred for an accumulated period of 6 months.  相似文献   

13.
The AB-180 is a new implantable centrifugal pump with a low volume dome (10 ml) and a local heparin delivery system which avoids systemic heparinization. This study focuses on its hemodynamic performance. We analyzed 3 anesthetized calves (71.0 +/- 2.5 kg), equipped with arterial pressure (AP), and Swan-Ganz and left atrial pressure (LAP) catheters. The AB-180 pump was installed through a left thoracotomy, with a transmitral left ventricular (LV) inflow cannula inserted via the left appendage and an outflow tract sutured to the descending aorta. LAP, AP, and blood flow across the pump were recorded for various pump speed and in different preload conditions (right atrial pressure = 4, 7, and 10 mm Hg, respectively). The pump significantly unloaded the left heart cavities and was able to increase the mean AP. For an RAP of 10 mm Hg, running the pump at 4,500 rpm decreased the LAP from 11.0 +/- 0.8 mm Hg to 3.0 +/- 0.8 mm Hg (p < 0.001) and augmented the mean AP from 48.2 +/- 6.4 mm Hg to 80.8 +/- 12.1 mm Hg (p < 0.001). A maximal pump flow of 5.6 +/- 0.2 L/min was obtained under these conditions. In addition to the advantage of its particular design, the AB-180 can be considered as an efficient left ventricular assist device (LVAD). It significantly unloads the left heart cavities and ensures efficient systemic AP and blood flow.  相似文献   

14.
A prototype of a new implantable centrifugal blood pump system named Heart Turcica Centrifugal (HTC) was developed as a left ventricular assist device (LVAD) for the treatment of end-stage cardiac failure. In the development of HTC, effects of blade height and volute tongue profiles on the hydraulic and hemolytic performances of the pump were investigated. As a result, the prototype was manufactured using the best blade height and volute tongue profiles. Performance of the prototype model was experimentally evaluated in a closed-loop flow system using water as the medium. The hydraulic performance requirement of an LVAD (5 L/min flow rate against a pressure difference of 100 mm Hg) was attained at 2800 rpm rotational speed.  相似文献   

15.
Abstract: A compact eccentric inlet port centrifugal blood pump (C1E3) has been perfected for a long-term centrifugal ventricular assist device as well as a cardiopulmonary bypass pump. The C1E3 pump incorporates a sealless design and a blood stagnation free structure. The pump's impeller is magnetically coupled to the driver magnet in a sealless manner. The latest hemolysis study reveals that hemolysis is affected by the magnetic coupling distance between the driver and impeller magnet. Furthermore, a floating phenomenon can be observed in a pivot bearing supported pump. Attention was focused on the relationship between the floating phenomenon's characteristics and the magnetic coupling design in the C1E3 pump. Studies were conducted to evaluate the hydromechanical performance in the floating phenomenon. In this study, the relationship between the magnetic coupling design and the floating phenomenon was verified with a smooth spinning condition. The optimized magnetic coupling distance for the floating mode was estimated to be 12 mm for left ventricular assist device and 9 mm for cardiopulmonary bypass pump. Obtaining an optimal spinning condition is required for regulating the magnetic coupling force. To develop a double pivot bearing pump, it is necessary to establish an optimal spinning and/or floating condition and to determine the proper magnetic coupling and magnetic force between the impeller and driver.  相似文献   

16.
An implantable electromechanical ventricular assist system (VAS) intended for permanent use has been developed. It consists of a conically shaped pumping chamber, a polyolefin (Hexsyn) rubber diaphragm attached to a conically shaped pusher-plate, and a compact roller-screw actuator. Design stroke volume is 63 ml. The device weighs 620 g, and has a total volume of 348 ml. The pump can provide 8 L/min flow against 120 mm Hg afterload with a preload of 10 mm Hg. The inner surfaces are biolized by dry gelatin coating, with inflow and outflow ports accommodating tissue valves. Three subacute in vivo validation studies have been conducted in calves up to two weeks. The entire system functioned satisfactorily in both the fill/empty and the fixed-rate modes. There was no thromboembolic complication without anticoagulation. The pump showed reasonable anatomical fit inside the left thorax. This VAS is compact, efficient, quiet, and easy to control.  相似文献   

17.
Abstract: Recently, a newly developed centrifugal pump, the Baylor-Nikkiso pump, was approved for clinical use in the United States. This pump is the most compact centrifugal pump with a priming volume of only 25 ml. Although it is small, this pump can provide a flow of 4 L/min against a total pressure head of 300 mm Hg at 3,000 rpm. In vitro and in vivo validation of the Baylor-Nikkiso pump has proved that this pump could effectively reduce blood trauma even under high total head pressure. In addition, 48-h durability tests with biventricular bypass using calves verified the reliability of shaft sealing and anti-thrombogenicity. Clinical trials of the Baylor-Nikkiso pumps have been initiated in our department. This pump provides flows of 60–70 ml/kg/min with stable hemody-namic conditions. No leakage or thrombus formation was observed. The results of the initial clinical experience of the Baylor-Nikkiso pump suggest that it is suitable for cardiopulmonary bypass surgery.  相似文献   

18.
Li G  Zhao H  Zhu X  Ren B 《Artificial organs》2002,26(10):890-893
To achieve the aim of long-term heart-assist with a simple implantable device, we have been trying to develop a minimal intra-aortic impeller blood pump driven by an extracorporeal magnetic device. The purpose of the current study was to evaluate its feasibility by acute in vivo animal tests. The minimal intra-aortic pump was a cage-supported rotor-impeller, 17 mm in diameter with a total length of 30 mm. The driving magnet, mounted extracorporeally, was 55 mm in diameter and 50 mm in length. Seventeen dogs weighing from 28-34 kg were used in the study. After thoracic incision, heparin (50 U/kg) was infused. The impeller pump was inserted into the aortic chamber via a prosthetic vessel and fastened. Thin tubes were inserted into the left ventricular apex and the femoral artery to monitor the left ventricular (LV) and the aortic pressure. After closing the thoracic cavity, the extracorporeal whirling magnet, turned by an electric motor, was placed tightly against the thoracic wall parallel to the intra-aortic pump. The experiments, each lasting for about 40 min, were successful in 7 animals; the other 10 animals died of bleeding during pump implantation and were excluded from the experiment. The peak systolic pressure of the left ventricle could be considerably decreased by the pump and was reduced to as low as 28 mm Hg at a rotational speed of 9,000 rpm, showing that the simple intra-aortic impeller was effective in unloading the natural heart. The novel left ventricular assist device (LVAD) concept of an intra-aortic impeller pump, driven by an extracorporeal magnetic device, is feasible.  相似文献   

19.
A permanently implantable biventricular assist device (BVAD) system has been developed with a centrifugal pump which is activated by a hydraulically-levitated impeller. The pump impeller floats hydraulically into the top contact position; this position prevents thrombus formation by creating a washout effect at the bottom bearing area, a common stagnant region. The pump was subjected to in vitro studies using a pulsatile mock circulation loop to confirm the impeller's top contact position and the swinging motion produced by the pulsation. Eleven in vivo BVAD studies confirmed that this swinging motion eliminated blood clot formation. Twenty-one pumps im-planted for up to three months did not reveal any thrombosis in the pumps or downstream organs. One exception was a right pump which was exposed to severe low flow due to the kinking of the outflow graft by the accidental pulling of the flow meter cable. Three ninety-day BVAD studies were achieved without thrombus formation.  相似文献   

20.
In 1995, a group at Baylor College of Medicine started to develop the NEDO biventricular assist device (BVAD) using two Gyro permanently implantable (PI) centrifugal pumps. This pump consists of a sealless pump housing and an impeller supported with a double pivot bearing. In May 2001, an RPM dynamic suspension system (RPM-DS) for the impeller was developed to improve durability and antithrombogenicity without a complex magnetic suspension system. From March 2000 to March 2002, eight BVAD bovine experimental studies were performed for more than 1 month. Two pumps were implanted in two cases without the RPM-DS (group A) and in six cases with the RPM-DS (group B). In group A, the survival period was 45 and 50 days. The primary reason for termination was an increase in the requiring power, which was related to deposition of white thrombus on the bottom bearing. In group B, the survival period was 37, 48, 51, 60, 80, and 90 days. The reasons for termination were not related to thrombus formation. No thrombus was observed in the pumps except for one right pump. In that experiment, the thrombus formation may have occurred when that pump had a low flow rate at a level of 1 L/min for 6 hr. These studies demonstrate the apparent antithrombogenic effect of RPM-DS. The NEDO BVAD is ready to move into a 3-month preclinical system evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号