首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single neuron activities in the lateral hypothalamic area (LHA) were recorded during bar press feeding task in the monkey. First registered neurons were sorted into 2 groups, glucose-sensitive (GS) and glucose-insensitive (GIS) neurons, depending on their glucose sensitivity. Then firing variations to feeding, electrophoretically applied catecholamines and opiate, and to odor and taste stimuli were investigated. GS neurons responded to dopamine, noradrenaline and morphine more often than GIS neurons. In feeding task GS neurons responded during bar press (BP) and reward (RW) periods with long-lasting inhibition of firing and at cue tone (CT) with transient inhibition, while GIS neurons responded during BP and RW periods mainly with excitation and at cue light (CL) with excitation. A majority of GS neurons responded to both odor and taste stimuli more often than GIS neurons. Data suggest that these two kinds of neurons in the LHA may be involved in different functional aspects of feeding: GS neurons, mainly in internal information processing and reward mechanism, and GIS neurons, in external information processing and motor aspects.  相似文献   

2.
The functional role of the catecholaminergic mechanism in the lateral hypothalamus (LHA), in feeding behavior of the monkey was investigated by single neuron activity recording and electrophoretic application of dopamine (DA), noradrenaline (NA) and their antagonists. The feeding paradigm had 4 phases: cue light (CL) signaled start of bar press; bar press (BP, 20-30 times); short cue tone (CT) triggered by last bar press signaled presentation of food; and ingestion-reward (RW). Of 312 neurons tested, 189 (61%) responded in one or more phases of the feeding task. Two types of response were observed: CL- or CT-related transient, and BP- or RW-related long-lasting responses. These feeding-related responses depended on the nature of the food and on the hunger-satiety level. DA excited or inhibited different neurons, while NA mainly inhibited firing. DA-sensitive neurons responded more often in the feeding task than insensitive neurons due mainly to differences in responsiveness to CL on (chi 2 test, P less than 0.01), at motor initiation, and during BP (P less than 0.05). Spiperone blocked the former two responses. NA-sensitive neurons responded more often in the feeding task due to responsiveness during BP and RW (P less than 0.01). Sotalol blocked some BP-related responses, and phenoxybenzamine and sotalol blocked the CT-related responses. The data suggest that dopaminergic and noradrenergic inputs in the LHA are crucial in task initiation and reward processing, respectively. Integration of these catecholaminergic and other inputs in the LHA might be important in accomplishing motivated feeding.  相似文献   

3.
Prefrontal cortical (PFC) pyramidal neurons (PN) and fast spiking interneurons (FSI) receive dopaminergic (DA) and non-DA inputs from the ventral tegmental area (VTA). Although the responses of PN to VTA stimulation and DA administration have been extensively studied, little is known about the response of FSI to mesocortical activation. We explored this issue using single and double in vivo juxtacellular recordings of medial PFC PN and FSI with chemical VTA stimulation. Electrophysiological characteristics combined with Neurobiotin staining and parvalbumin immunohistochemistry allowed identification of recorded cells as FSI or PN. NMDA injection into the VTA increased firing in all FSI tested (n = 7), whereas most PN (7/11) responded with an inhibition. Furthermore, FSI excitation matching the temporal course of PN inhibition was observed with FSI-PN paired recordings (n = 5). These divergent electrophysiological responses to mesocortical activation could reflect PFC GABAergic interneurons contributing to silencing PN. Thus, the mesocortical system could provide a critical control of PFC circuits by simultaneously affecting FSI and PN firing.  相似文献   

4.
Systemic administration of nicotine increases dopaminergic (DA) neuron firing in the ventral tegmental area (VTA), which is thought to underlie nicotine reward. Here, we report that the medial prefrontal cortex (mPFC) plays a critical role in nicotine-induced excitation of VTA DA neurons. In chloral hydrate-anesthetized rats, extracellular single-unit recordings showed that VTA DA neurons exhibited two types of firing responses to systemic nicotine. After nicotine injection, the neurons with type-I response showed a biphasic early inhibition and later excitation, whereas the neurons with type-II response showed a monophasic excitation. The neurons with type-I, but not type-II, response exhibited pronounced slow oscillations (SOs) in firing. Pharmacological or structural mPFC inactivation abolished SOs and prevented systemic nicotine-induced excitation in the neurons with type-I, but not type-II, response, suggesting that these VTA DA neurons are functionally coupled to the mPFC and nicotine increases firing rate in these neurons in part through the mPFC. Systemic nicotine also increased the firing rate and SOs in mPFC pyramidal neurons. mPFC infusion of a non-α7 nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine blocked the excitatory effect of systemic nicotine on the VTA DA neurons with type-I response, but mPFC infusion of nicotine failed to excite these neurons. These results suggest that nAChR activation in the mPFC is necessary, but not sufficient, for systemic nicotine-induced excitation of VTA neurons. Finally, systemic injection of bicuculline prevented nicotine-induced firing alterations in the neurons with type-I response. We propose that the mPFC plays a critical role in systemic nicotine-induced excitation of VTA DA neurons.  相似文献   

5.
Single neuron activity was recorded from monkey lateral hypothalamic area (LHA) to relate neuronal events to food discrimination and initiation of procurement movement in operant bar press feeding behavior. Of 429 neurons tested, 68 (16%) responded during visual phase. Of these, 30 (7%) responded selectively to the sight of food or non-food associated with a juice reward, but not to the sight of meaningless non-food or food associated with aversive saline. Neuronal activity related to discrimination was readily influenced by extinction, reversal or satiation. The strength of visual responses was correlated with latency of bar press initiation and speed of bar pressing, but was not related directly to bar press movement. These suggest that the LHA is deeply involved in discrimination of reinforcement or non-reinforcement, and might be associated with higher functions to regulate internal states such as physiological need to get food during operant feeding behavior.  相似文献   

6.
Schneider SP 《Brain research》2005,1034(1-2):71-89
Relationships between neuronal firing pattern and mechanosensory input in the deep dorsal horn were investigated using whole-cell recordings from isolated hamster spinal cord with innervation from an attached skin patch. Neurons that fired repetitively to depolarizing current (tonic cells) responded to both moving and static stimulation of their cutaneous receptive fields, and discharged continuously for the duration of stimulus application. Neurons responding to depolarizing current with transient, rapidly adapting firing (phasic cells) were significantly more responsive to stimulus movement than to static skin contact. Phasic cells typically issued a brief discharge at the onset or termination of a stimulus; their responses during static skin contact were weaker than tonic cells. Tonic cells were activated during both ramp and steady-state skin indentations, whereas phasic cells responded with their strongest excitation to displacement velocities exceeding 8 microm/ms. Mechanosensory input to phasic cells originated primarily from low threshold receptors, whereas tonic cells demonstrated a mixture of inputs from both low and high threshold sources. A third class of neurons responded to depolarizing current with a pronounced firing delay and displayed a sensitivity to cutaneous stimuli that was similar to tonic cells except they showed a modest decrease in firing as skin indentation velocity increased. The results suggest a correlation between functional properties of mechanoreceptive afferent fibers and intrinsic discharge properties of laminae III-V neurons that may significantly influence integration of cutaneous mechanosensory information at the first spinal relay.  相似文献   

7.
Phasic firing of dopamine (DA) neurons in the ventral tegmental area (VTA) and substantia nigra (SN) is likely to be crucial for reward processing that guides learning. One of the key structures implicated in the regulation of this DA burst firing is the pedunculopontine tegmental nucleus (PPTg), which projects to both the VTA and SN. Different literatures suggest that the PPTg serves as a sensory-gating area for DA cells or it regulates voluntary movement. This study recorded PPTg single-unit activity as rats perform a spatial navigation task to examine the potential for both reward and movement contributions. PPTg cells showed significant changes in firing relative to reward acquisition, the velocity of movement across the maze and turning behaviors of the rats. Reward, but not movement, correlates were impacted by changes in context, and neither correlate type was affected by reward manipulations (e.g. changing the expected location of a reward). This suggests that the PPTg conjunctively codes both reward and behavioral information, and that the reward information is processed in a context-dependent manner. The distinct anatomical distribution of reward and movement cells emphasizes different models of synaptic control by PPTg of DA burst firing in the VTA and SN. Relevant to both VTA and SN learning systems, however, PPTg appears to serve as a sensory gating mechanism to facilitate reinforcement learning, while at the same time provides reinforcement-based guidance of ongoing goal-directed behaviors.  相似文献   

8.
Recent research has suggested that the mesencephalic dopaminergic (DA) system is activated by stress. For example, alterations in DA metabolites have been found in the ventral tegmental area (VTA) following footshock and immobilization in the rat [15,37]. Furthermore, this activation appears selective to DA neurons within the VTA since no changes were observed within the substantia nigra [15,16]. While this research suggests that DA neurons in the VTA are activated by aversive events, there has been a paucity of electrophysiological research designed to examine the sensory response characteristics of these DA neurons, and in particular their response to stimuli which predict aversive events. The present study was conducted to investigate the response characteristics of DA neurons within the VTA of the awake rabbit to acoustic stimuli which, via Pavlovian aversive conditioning procedures, came to predict the occurrence of a mild shock to the pinna. 45%, of the neurons meeting pre-established criteria for DA neurons demonstrated either significant excitation or inhibition to conditioned aversive stimuli. These neurons responded differentially to CS+ and CS- presentations. Some of these neurons (65%) demonstrated a greater increase in activity during the CS+ compared to the CS-, some (22%,) demonstrated a greater decrease in activity during the CS+ compared to the CS- and some (13%) demonstrated a greater increase in activity during the CS- compared to the CS+. Further, conditioned heart rate responses in the rabbits occurred during the recording of a majority of these neurons. These overall results suggest that conditioned aversive stimuli can affect the firing of VTA DA neurons and that these neurons comprise a heterogenous population with respect to their response profiles.  相似文献   

9.
Single neuron activity was recorded from monkey lateral hypothalamus to investigate neuronal events correlated with operant bar press feeding behavior. The behavioral paradigm was divided into three phase: visual (discrimination), bar press (procurement), and ingestion (consummatory). Of 669 neurons tested, 158 (24%) responded in one or more phases. During the visual phase, 106 neurons (16%) responded. Of 80 neurons that responded in the visual phase and were tested systematically, 33 (41%, 33/80) responded selectively to the sight of food or nonfood objects associated with a juice reward, but not to the sight of nonfood or objects associated with aversive saline. Neuronal activity related to discrimination was modulated by satiation and learning (i.e., acquisition and extinction). During the bar press phase, 51 neurons (7.6%) responded. These responded tonically during the early or late stage of the bar press period, but did not depend on individual bar pressing motions. During ingestion, 90 neurons (13%) responded. The ingestion response was modulated by palatability of food and satiation. Data suggest that the LHA is deeply involved in operant feeding behavior; discrimination of food, drive to get food, and perception of reward, all of which are affected by learning and internal states such as hunger and satiety.  相似文献   

10.
Activity was recorded from 358 neurons in the globus pallidus (GP) of monkeys (Macaca fuscata) during an operant feeding task consisting of 3 stages: (1) food or non-food presentation (1st stage); (2) bar pressing (2nd stage); and (3) food acquisition and ingestion (3rd stage). There were two kinds of neurons, one with high and the other with very low (almost silent), spontaneous firing rates. Two hundred and four neurons (57%) responded in one or more of the feeding stages. Of the 21 neurons which responded in the 1st stage, two responded selectively to food presentation, and 19 responded to both food and non-food visual presentation. One hundred and seventy-four neurons (49%) and 107 neurons (30%) responded in the 2nd and 3rd stages, respectively, and 106 (30%) of these were directly related to specific feeding motor acts such as arm extension, flexion, bar pressing, grasping, chewing etc. Both high and low firing neurons responded to motor acts with sharp or gradual onset. More than half of those that responded to arm extension showed laterality (contra or ipsi)- and function (extension or flexion)-dependent responses. The incidence of the motor related neurons was higher in the caudodorsal part of the GP. On the other hand, about one third, especially in the rostroventral part of the GP, showed dissociating responses in that they responded during bar pressing for food or during ingestion in an operant task, but not during bar pressing for non-food or during forcible ingestion. The magnitude of firing changes during arm extension and bar pressing depended on the nature of the food. Moreover, in trials using new food or false (model) food, firing changes during bar press appeared or disappeared within a few trials with no correlation to bar press movement. These data suggest heterogeneous functions within the GP; the caudodorsal part is strictly concerned with motor execution and preparation, while the rostroventral part is not related to motor function directly, but may rather be important in coupling internal, motivational information to the motor system.  相似文献   

11.
Neuronal oscillations have been suggested to play an important role in information processing in the brain. Using spectral analysis, we have recently shown that the repetitive burst-like firing in many dopamine (DA) neurons in the ventral tegmental area (VTA) can be described as a slow oscillation (SO) in firing rate. In this study, we examined whether DA neurons in the adjacent substantia nigra (SN) also display a SO. DA neurons were recorded extracellularly using the cells/track technique in chloral hydrate-anesthetized rats. Spectral analysis showed that firing patterns of SN DA neurons exhibited a SO similar to that observed in VTA DA neurons. The amplitude of the SO, however, was much reduced in the SN compared with that in the VTA and so was the number of DA neurons qualified as high-SO cells. In high-SO DA neurons, the amplitude of the SO was strongly correlated with the degree of bursting, and this correlation was observed in both the VTA and SN. In low-SO cells, however, the SO was more significantly correlated with the variability of firing than with firing rate and bursting. Since the generation of the SO depends on afferent inputs to DA neurons, a better understanding of its difference between the SN and VTA may provide important insights into the neural networks that control DA neurons in the two areas.  相似文献   

12.
M E Olds 《Brain research》1988,452(1-2):237-254
The effects of haloperidol pretreatment in striatum on the motor response, and on concurrently recorded unit responses of nondopamine (DA) neurons in substantia nigra (SN) and ventral tegmental area (VTA) to systemic amphetamine and apomorphine, were investigated with the objective of determining the role of the striatum in the output of putative DA output neurons. Unit and motor activity were recorded in the male rat, chronically implanted with 9 electrodes in SN and VTA and with two cannulae for bilateral injections into striatum. The recording electrodes were 3 bundles of 3 wires, each wire in the bundle of a different length, but all 3 aimed at SN, pars reticulata, or VTA. In each recording session, unit activity was derived from 7 wires while gross motor activity was recorded with the open-ended wire technique. The subjects were tested under two conditions. In the first, the vehicle was injected bilaterally into striatum 90 min before one of the DA agonists was injected by the intraperitoneal route. In the second, the DA antagonist haloperidol was injected bilaterally into striatum before the systemic treatment with the DA agonist. In subjects which received injections of the vehicle into striatum, amphetamine induced a large motor response, and concurrently, a large increase in the rate of discharge of a portion of the identified non-DA neurons in SN and VTA. In subjects which received injections of haloperidol into striatum, amphetamine induced a smaller behavioral response, a smaller increase in the rate of discharge of these neurons in SN but not in VTA where the increase was of the same magnitude as controls. In control subjects, apomorphine induced an increase in motor activity and concurrently, an increase in the rate of firing of the identified non-DA neurons in SN and VTA. But the increases were of somewhate smaller magnitude and much shorter duration than the increases induced by amphetamine. In subjects which had been pretreated with haloperidol in striatum, apomorphine induced an increase in motor activity that was of the same magnitude as the insion that the striatum has the capacity to influence the output of non-DA neurons only in SN but also in VTA, indicating that, if there is a specialization of function, it is only relative.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
This paper presents a model of both tonic and phasic dopamine (DA) effects on maintenance of working memory representations in the prefrontal cortex (PFC). The central hypothesis is that DA modulates the efficacy of inputs to prefrontal pyramidal neurons to prevent interferences for active maintenance. Phasic DA release, due to DA neurons discharges, acts at a short time-scale (a few seconds), while the tonic mode of DA release, independent of DA neurons firing, acts at a long time-scale (a few minutes). The overall effect of DA modulation is modeled as a threshold restricting incoming inputs arriving on PFC neurons. Phasic DA release temporary increases this threshold while tonic DA release progressively increases the basal level of this threshold. Thus, unlike the previous gating theory of phasic DA release, proposing that it facilitates incoming inputs at the time of their arrival, the effect of phasic DA release is supposed to restrict incoming inputs during a period of time after DA neuron discharges. The model links the cellular and behavioral levels during performance of a working memory task. It allows us to understand why a critical range of DA D1 receptors stimulation is required for optimal working memory performance and how D1 receptor agonists (respectively antagonists) increase perseverations (respectively distractability). Finally, the model leads to several testable predictions, including that the PFC regulates DA neurons firing rate to adapt to the delay of the task and that increase in tonic DA release may either improve or decrease performance, depending on the level of DA receptors stimulation at the beginning of the task.  相似文献   

14.
To examine the intrinsic properties of postnatal mesolimbic dopamine (DA) neurons, we dissociated the ventral tegmental area (VTA) from postnatal rats, enriched for DA neurons by microdissection or gradient purification, and grew the cells in culture. In these cultures, up to 50% of neurons were dopaminergic. DA neurons resembled their in vivo counterparts in soma shapes, and in showing two levels of tyrosine hydroxylase (TH) expression, axodendritic differentiation, two sizes of synaptic vesicles, nest-like synaptic arrangements with non-DA cells, and synaptic specializations. Electrophysiologically, however, they could not be distinguished from non-DA cells, which could be consistent with heterogeneity in cell properties. To examine a functional subset of VTA DA neurons, we retrogradely labeled VTA neurons projecting to the nucleus accumbens. These mesoaccumbens neurons were 86% TH positive, 56% cholecystokinin positive, and 0% neurotensin positive; they also displayed the soma shapes characteristic of DA neurons more generally and two levels of TH expression. Like their in vivo counterparts, mesoaccumbens cells generally fired single broad spikes that were triggered by slow depolarizations and had robust spike afterhyperpolarizations, low- and high-threshold Ca2+ spikes, rapid accommodation of firing, time-dependent anomalous rectification, and hyperpolarizing autoreceptor responses. Strikingly, the expression of these active properties did not change with time in culture. Mesoaccumbens DA cells could be identified by a distinctive subset of properties that made up an electrophysiological signature; however, unlike their in vivo counterparts, they were less often spontaneously active and never fired in bursts. These results suggest that most DA cell properties are intrinsic to the cells, including a significant heterogeneity that is maintained in postnatal culture; their level and mode of activity, however, appear to require afferent input. Culturing identified postnatal VTA DA neurons now makes possible examination of the impact of their individual properties on synaptic function.  相似文献   

15.
In the cocaine self‐administering rat, individual nucleus accumbens (NAcc) neurons exhibit phasic changes in firing rate within minutes and/or seconds of lever presses (i.e. slow phasic and rapid phasic changes, respectively). To determine whether neurons that demonstrate these changes during self‐administration sessions are differentially distributed in the NAcc, rats were implanted with jugular catheters and microwire arrays in different NAcc subregions (core, dorsal shell, ventromedial shell, ventrolateral shell, or rostral pole). Neural recording sessions were typically conducted on days 13–17 of cocaine self‐administration (0.77 mg/kg per 0.2‐mL infusion; fixed‐ratio 1 schedule of reinforcement; 6‐h daily sessions). Pre‐press rapid phasic firing rate changes were greater in lateral accumbal (core and ventrolateral shell) than in medial accumbal (dorsal shell and rostral pole shell) subregions. Slow phasic pattern analysis revealed that reversal latencies of neurons that exhibited change + reversal patterns differed mediolaterally: medial NAcc neurons exhibited more early reversals and fewer progressive/late reversals than lateral NAcc neurons. Comparisons of firing patterns within individual neurons across time bases indicated that lateral NAcc pre‐press rapid phasic increases were correlated with tonic increases. Tonic decreases were correlated with slow phasic patterns in individual medial NAcc neurons, indicative of greater pharmacological sensitivity of neurons in this region. On the other hand, the bias of the lateral NAcc towards increased pre‐press rapid phasic activity, coupled with a greater prevalence of tonic increase firing, may reflect particular sensitivity of these neurons to excitatory afferent signaling and perhaps differential pharmacological influences on firing rates between regions.  相似文献   

16.
To investigate neuronal responses to interoceptive information, single neuron activity of the orbitofrontal cortex (OBF) of the behaving monkey was recorded during glucose injection, natural feeding and an operant bar press feeding task. Intravenous glucose injection had almost no effect on rates of spontaneous firing, but tended to attenuate neuronal responses during the bar press and reward periods. In about half of the neurons tested, the spontaneous firing rate changed for a relatively long period after the animal ate to satiety. The results suggest that blood glucose concentration is a modulatory factor in neuronal processing for feeding, but other interoceptive information generated by satiety strongly affects the activity of OBF neurons.  相似文献   

17.
By use of various histochemical techniques, it was shown that both DA and non-DA cells in the VTA project to the NAc. Of these VTA-NAc output cells, the great majority were DA-containing cells. A small number of non-DA cells were encountered most frequently in the lateral part of the VTA. Correspondingly, two distinct groups of neurons, types I and II, could be identified by antidromic stimulation of the NAc. Several lines of evidence suggest that type I cells are DA-containing neurons. The evidence may be summarized as follows:
1. (1) type I cells had a slow-bursting or regular firing pattern, slow discharge rate and wide spike duration which appears to be identical to the characteristics of DA neurons originally described by Bunney et al.16;
2. (2) the great majority of these cells could be activated antidromically by stimulation of the NAc;
3. (3) the conduction velocity and absolute refractory period of type I cells are consistent with unmyelinated fine DA fibers;
4. (4) injection of 6-OHDA, but not 5,7-DHT directly in the MFB blocked antidromic responses of these cells;
5. (5) they were extremely sensitive to intravenously administered DA agonist apomorphine (ID50 = 7 μg/kg); and
6. (6) direct fluorescence histochemical examination of serial sections from brains of animals in which type I cells have been identified by antidromic stimulation of the NAc showed that type I cells are most likely catecholamine-containi ng neurons. By contrast, type II cells possessed an entirely different spectrum of physiological characteristics; in addition, they showed no consistent response to apomorphine and their antidromic responses to stimulation of the NAc were not affected by 6-OHDA. It is concluded that (1) VTA output neurons consist of both DA and nonDA neurons, and (2) identified types I and II neurons in the VTA by antidromic stimulation of the NAc are DA and non-DA cells, respectively.
Author Keywords: dopamine neurons; non-dopamine neurons; ventral tegmental area; antidromic stimulation; nucleus accumbens; histofluorescence; apomorphine; 6-hydroxy-dopamine  相似文献   

18.
Extracellular single neuron activity of the dorsolateral prefrontal cortex (DL) was recorded in the monkey, during bar pressing for reward. The bar press-related neurons which exhibited excitation or inhibition during the bar press period were found to be scattered diffusely in the DL. Activity changes that arose during the bar press period also appeared when the experimenter pressed the bar for the monkey. When delivery of food was delayed for a random time after cue tone on, bar press responses were still confined to the bar press period and did not extend beyond the cue tone. These results, together with the lesion studies, suggest that bar press-related neurons are involved in the animal's concentration during the bar press period.  相似文献   

19.
Summary The acute effect of systemic administration of the antipsychotic drug haloperidol on the activity of midbrain dopamine (DA) neurons was investigated with extracellular single cell recording in the chloral hydrate anaesthetized male rat. DA cells in the zona compacta-substantia nigra (SN) and ventral tegmental area (VTA) were excited by low doses of haloperidol. This excitation, which included increased firing rate and burst firing, was no longer present after treatment with the excitatory amino acid (EAA) antagonist kynurenate (1 mol ICV). Kynurenate alone profoundly regularized the activity and abolished burst firing in VTA-DA neurons, while SN-DA neuronal activity was unaffected by this treatment. Thus, VTA-DA neurons, but not SN neurons, appear to be dependent on a tonic EAA input for their normal varied, burst-firing activity. The antagonism of haloperidol-induced effects by kynurenate suggests that the acute excitatory action of haloperidol on midbrain DA neurons is executed via EAA neurons, in the case of the VTA probably via a corticofugal EAA pathway from the medial prefrontal cortex.  相似文献   

20.
(1) To study neural mechanisms used to encode kinesthetic information in somatosensory cortex of awake monkeys, we recorded from 227 single neurons responsive to joint movement or specific postures of the forelimb or hand (kinesthetic neurons). Unit responses were characterized quantitatively with respect to: (a) firing patterns; (b) responses to ramp changes in joint position and joint velocity; and (c) responses to sinusoidal joint movements.
(2) Kinesthetic neurons were divided into 3 groups. Rapidly-adapting neurons (44%) responded only to joint movement, giving a burst of impulses proportional to velocity. They showed no tonic responses to limb posture. Two populations of tonically active neurons were observed: slowly-adapting neurons (43%) and postural neurons (13%). Both types increased their firing rates with increasing degrees of flexion or extension, showing maximum excitation at the extremes of joint position in the preferred direction. They were distinguished by their sensitivity to the velocity of movement, the size of the angle over which they respond, and the phase relation of their responses to sinusoidal joint movement.
(3) The firing rates of kinesthetic neurons in S-I cortex are functions of both joint angle and joint velocity. The importance of each component varies in the 3 classes: velocity of movement is the most important determinant of firing rates of rapidly-adapting and slowly-adapting kinesthetic neurons, and joint angle predominates the responses of postural neurons.
Keywords: kinesthesis; position sense; somatosensory cortex; joint receptors; muscle receptors; cerebral cortex; primates; single unit recordings  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号